| 
			
				| Информация о статье  2015 г.,  Том 20, № 3, с.3-32
Гусев О.И., Хакимзянов Г.С. Численное моделирование распространения длинных поверхностных волн по вращающейся сфере в рамках полной нелинейно-дисперсионной моделиДля численного моделирования процесса распространения длинных поверхностных волн предложен алгоритм, основанный на расщеплении системы нелинейно-дисперсионных уравнений на вращающейся сфере на равномерно эллиптическое уравнение для дисперсионной составляющей давления и гиперболическую систему уравнений мелкой воды первого приближения с модифицированным источниковым членом в правой части уравнения импульса. Алгоритм реализован в виде явной двухшаговой схемы предиктор-корректор, на каждом шаге которой поочередно решаются задачи, полученные в результате расщепления. На модельных задачах о распространении волн над ровным дном дана оценка важности учета эффектов, связанных со сферичностью Земли и ее вращением, зависимости дисперсионных эффектов от дальности распространения волн и размеров области начального возмущения свободной границы.
[полный текст] Ключевые слова: вращающаяся сфера, мелкая вода, длинные поверхностные волны, нелинейно-дисперсионные уравнения, численное моделирование, дисперсия, сила Кориолиса
 
 Библиографическая ссылка:
 Гусев О.И., Хакимзянов Г.С. Численное моделирование распространения длинных поверхностных волн по вращающейся сфере в рамках полной нелинейно-дисперсионной модели // Вычислительные технологии. 2015. Т. 20. № 3. С. 3-32
 |  
			  |  |  |