| Article information  2017 ,  Volume 22, ¹ 5, p.3-13
Bulygin A.D., Zemlyanov A.A. Fully conservative numerical scheme for nonlinear Schrodinger equation with higher nonlinearitiesThe paper examines the performance conditions to satisfy the complete conservatism property for most widely used various numerical schemes in the context of filamentation problem of the nonlinear Schrodinger equation (NLSE). Stationary radial model has two integrals of motion which are the Hamilton function and the “number of particles”.   We set the explicit form of the unbalanced terms arising in asymmetrical schemes of splitting into physical factors. On the basis of numerical calculations it is understood that the standard scheme constructing the adaptive meshes with filamentation leads to a catastrophic violation of the conservation laws. We found the conditions for the numerical mesh for which it is possible to satisfy the conservation law with any acceptable accuracy for both fully symmetric scheme and the scheme with splitting on physical factors that includes the Crank -Nicolson scheme.
[full text] Keywords: filamentation, nonlinear Schrodinger equation, conservation laws, fully conservative scheme
 
 Author(s):Bulygin Andrey Dmitrievich
 PhD.
 Position: Research Scientist
 Office: V.E. Zuev Institute of Atmospheric Optics SB RAS
 Address: 634055, Russia, Tomsk, 1, Academician Zuev square
 E-mail: b.a.d@iao.ru
 Zemlyanov Aleksandr Anatol`evich
 Dr.
 Position: Head of Laboratory
 Office: V.E. Zuev Institute of Atmospheric Optics SB RAS
 Address: 634055, Russia, Tomsk, 1, Academician Zuev square
 E-mail: zaa@iao.ru
 
 References:[1] Boyd, R.W., Lukishova, S.G., Shen, Y.R. Self-focusing: Past and Present: Fundamentals and Prospects. Topics in Applied Physics. Volume 114. New York: Springer Verlag; 2009: 605.
 [2] Vlasov, S.N., Talanov, V.I. Samofokusirovka voln [Self-focusing of Waves]. Nizhniy Novgorod: IPF RAN; 1997:220. (In Russ.)
 [3] Kandidov, V.P., Kosareva, O.G., Koltun, A.A. Nonlinear optical transformation of a high-power femtosecond laser pulse in air.  Quantum Electronics. 2003; 33(1):69–75. (In Russ.)
 [4] Alekseenko, V.N. The integrals of the motion of nonlinear equations of Schrodinger type.  Differentsial'nye Uravneniya. 1976; 12(6):1121—1122. (In Russ.)
 [5] Hui Gao, Weiwei Liu, See Leang Chin Post-filamentation multiple light channel formation in air.  Laser Physics. 2014; 24(5):1581–1596.
 [6] Balashov, A.D., Pergament, A.Kh. Mathematical modeling of femtosecond pulse propagation.  Mathematical Models and Computer Simulations. 2006; 18(4):3–18 (In Russ.)
 [7] Chesnokov, S.S., Egorov, K.D., Kandidov, V.P., Vysloukh, V.A. The finite element method in problems of nonlinear opticsà.  Journal For Numerical Methods In Engineering. 1979; 14(1):1581–1596.
 [8] Dergachev, A.A. Formirovanie i kharakteristiki plazmennykh kanalov pri filamentatsii femtosekundnogo lazernogo izlucheniya v vozdukhe. Dis. kand. fiz.-mat. nauk [Formation and characteristics of plasma channels under filamentation of femtosecond laser radiation in air. Dis. kand. fiz.-mat. nauk]. Moscow: MGU; 2014: 146. (In Russ.)
 [9] Pritchett, T.M. Fast Hankel transform algorithms for optical beam propagation. 2001: 29. Available at: http://previewer.org/?pdfurl=1qeXpurpn6WihSUpOGunKqnh7LQ6dmUsMbe3c7alLrnztPf1eXX4Yim3NnY4N3a3drYjNXl15S31eTbzM_ghrfSxtmPxtfj2MbX093X49SVm5OakbHYrpmfktiLqeegqqKfjtfq2eSilJ_p4OWix-fZk83h496i1c7cocrg4Nja3dTe4-mUppiVoaGqwMCTyb-SnqOvl6LYydaUpOs
 [10] Samarskiy, A.A., Popov, Yu.P. Raznostnye metody resheniya zadach gazovoy dinamiki [Finite difference methods for solving gas dynamics]. Moscow: Nauka; 1980: 351. (In Russ.)
 [11] Zemlyanov, A.A., Bulygin, A.D., Geints, Yu.E. Diffraction optics of a light filament generated during self-focusing of femtosecond laser pulse in air.  Optika Atmosfery i Okeana. 2011; 24(10):839-847. (In Russ.)
 [12] Cunliang, Ma, Wenbin, Lin. Parallel simulation for the ultra-short laser pulses’ propagation in air. Available at: http://arxiv.org/pdf/1507.05988.pdf[physics.optics] (accessed 23.06.2017)
 [13] Couairon, A., Brambilla, E., Corti, T., Majus, D., Ramrez-Gongora, O. de J., Kolesik, M. Practitioner’s guide to laser pulse propagation models and simulation. Numerical implementation and practical usage of modern pulse propagation models.  Europ. Phys. Journal. 2011; 199(3):5–76.
 
 Bibliography link:
 Bulygin A.D., Zemlyanov A.A. Fully conservative numerical scheme for nonlinear Schrodinger equation with higher nonlinearities // Computational technologies. 2017. V. 22. ¹ 5. P. 3-13
 |