Article information

2018 , Volume 23, ¹ 4, p.83-94

Lagutin A.A., Volkov N.V., Mordvin E.Y.

The influence of global climate changes on Western Siberia climate in the first half of XXI century

Purpose. An analysis of the influence of a global climate changes on the climate of Western Siberia, determination of zones of the region where changes are expected in the middle of the twenty-first century.

Methodology. Results obtained using the model data of the regional climate model RegCM4 and the standardized Euclidean distances between climate characteristics.

Findings, originality. Simulations of the climate characteristics for the two states of the climate system - contemporary and future - have been carried out. The zones of Western Siberia region, in which climate change is expected in the framework of RCP 4.5 and RCP 8.5 radiative forcing scenarios by the 2050, have been determined.

[full text]
Keywords: Western Siberia, climate change, 2050, regional model RegCM4, Euclidean distance, temperature, precipitations

doi: 10.25743/ICT.2018.23.16505

Author(s):
Lagutin Anatoly Alekseevich
Dr. , Professor
Position: Head of Chair
Office: Altai State University
Address: 656049, Russia, Barnaul, Lenin avenue, 61
Phone Office: (3852) 29 66 68
E-mail: lagutin@theory.asu.ru
SPIN-code: 3713-0024

Volkov Nikolay Viktorovich
PhD. , Associate Professor
Position: Associate Professor
Office: Altai State University, Institute of Computational Technologies SB RAS
Address: 656049, Russia, Barnaul, Lenin avenue, 61
Phone Office: (3852) 29-66-69
E-mail: volkov@theory.asu.ru
SPIN-code: 7795-1090

Mordvin Egor Yurievich
PhD. , Associate Professor
Office: Altai State University, Federal Research Center for Information and Computational Technologies
Address: 656049, Russia, Barnaul, Lenin avenue, 61
Phone Office: (3852) 29-66-68
E-mail: zion0210@gmail.com
SPIN-code: 6028-3962

References:
[1] NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2016, published online January 2017. Available at: https://www.ncdc.noaa.gov/sotc/global/201613 (accessed 30.06.2017).

[2] NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for May 2017, published online June 2017. Available at: https://www.ncdc.noaa.gov/sotc/global/201705 (accessed 30.06.2017).

[3] Dickinson, R. E., Errico, R. M., Giorgi, F., Bates, G. T. A regional climate model for the western United States. Climatic Change. 1989; (15):383–422.

[4] Giorgi, F., Mearns, L. O. Introduction to special section: regional climate modeling revisited. Journal of Geophysical Research. 1999; (104):6335–6352.

[5] Wang, Y., Leung, L. R., McGregor, J. L., Lee, D.-K., Wang, W.-C., Ding, Y., Kimura, F. Regional climate modeling: Progress, challenges, and prospects. Journal of the Meteorological Society of Japan. 2004; (82):1599–1628.

[6] Shkolnik, I. M., Meleshko, V. P., Kattsov, V. M. The MGO climate model for Siberia. Russian Meteorology and Hydrology. 2007; (6):351–359. (In Russ.)

[7] Rummukainen, M. State-of-the-art with regional climate models. WIREs Climate Change. 2010; (1):82–96.

[8] Feser, F., Rockel, B., von Storch, H. Regional climate models add value to global model data: A review and selected examples. Bulletin of the American Meteorological Society. 2011; 92 (Iss.9):1181–1192.

[9] Shkolnik, I. M., Efimov, S. V. A new generation regional climate model for northern Eurasia. Proceedings of MGO. 2015; (576):201–211. (In Russ.)

[10] Ippolitov, I. I., Kabanov, M. V., Loginov, S. V., Kharyutkina, E. V. Structure and Dynamic of Meteorological Fields on the Asian Region of Russia in the Period of the Global Warming for 1975-2005. Journal of Siberian Federal University. Biology. 2008; 1(4):323–344. (In Russ.)

[11] Lagutin, A. A., Volkov, N. V., Mordvin, E. Yu., Reznikov, A. N. Modelling Western Siberia Climate: Results of the RegCM4 Model. Bulletin of Altai State University. 2012; 1/2(73):181–189. (In Russ.)

[12] Lagutin, A.A., Volkov, N.V., Mordvin, E.Yu. Modelling of the Siberian Region climate: Results of the RegCM/CLM Model for 1970–2029. Vestnik Altaiskoy Nauki (ïåðåâîä àâòîðà). 2013. No. 1. P. 191–197. (In Russ.)

[13] Lagutin, A. A., Volkov, N. V., Makushev, K. M., Mordvin, E. Yu. Outgoing Longwave Radiation from the Data of Regional Climate Model and AIRS/AMSU Satellite Suite. Bulletin of Altai State University. 2014; 1/2(82):155–161. (In Russ.)

[14] Makushev, K. M., Lagutin, A. A., Volkov, N. V., Mordvin, E. Yu. Validation of the RegCM4/CLM4.5 regional climate modeling system over the Western Siberia. Proceedings of SPIE. 2016: 10035. doi: 10.1117/12.2249163.

[15] Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U., Cozzini, S., Guttler, I., O’Brien, T. A., Tawfik, A. B., Shalaby, A., Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., Brankovic, C. RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research. 2012; (52):7–29.

[16] Oleson, K. W., Niu, G.-Y., Yang, Z.-L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stockli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., Qian, T. Improvements to the Community Land Model and their impact on the hydrological cycle. Journal of Geophysical Research. 2008; 113: G01021.

[17] Elguindi, N., Bi, X., Giorgi, F., Nagarajan, B., Pal, J., Solmon, F., Rauscher, S., Zakey, A., O’Brien, T., Nogherotto, R., Giuliani, G. Regional Climate Model RegCM. Reference manual. Version 4.6. Available at: http://gforge.ictp.it/gf/download/docmanfileversion/98/1691/ReferenceMan.pdf (accessed 30.06.2017).

[18] Unidata Network Common Data Form (NetCDF). Available at: https://www.unidata.ucar.edu/software/netcdf/ (accessed 30.06.2017).

[19] COLA Grid Analysis and Display System (GrADS). Available at: http://cola.gmu.edu/grads/ (accessed 30.06.2017).

[20] CISL’s NCAR Command Language (NCL). Available at: https://www.ncl.ucar.edu/ (accessed 30.06.2017).

[21] Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., Vitart, F. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society. 2011; (137):553–597.

[22] Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., Woodward, S. Development and evaluation of an Earth-System model — HadGEM2. Geoscientific Model Development. 2011; (4):1051–1075.

[23] Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T., R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., Wilbanks, T. J. The next generation of scenarios for climate change research and assessment. Nature. 2010; (463): 747–756.

[24] Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., Rummukainen, M. Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2013.

[25] Holtslag, A. A. M., de Bruijn, E. I. F., Pan, H.-L. A high resolution air mass transformation model for short-range weather forecasting. Monthly Weather Review. 1990; (118):1561– 1575.

[26] Grell, G. Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review. 1993; (121):764–787.

[27] Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., Clough, S. A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research. 1997; (102):16663–16682.

[28] Harris, I., Jones, P. D., Osborn, T. J., Lister D. Updated high-resolution grids of monthly climatic observations — the CRU TS3.10 Dataset. International Journal of Climatology. 2014; 34(3):623–642.

[29] Williams, J. W., Jackson, S. T., Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America. 2007; (104):5738–5742.

[30] Koven, C. D. Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience. 2013; (6):452–456.

[31] Pugh, T. A. M., Muller, C., Elliott, J., Deryng, D., Folberth, C., Olin, S., Schmid, E., Arneth, A. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nature Communications. 2016; (7):12608. doi:10.1038/ncomms12608.


Bibliography link:
Lagutin A.A., Volkov N.V., Mordvin E.Y. The influence of global climate changes on Western Siberia climate in the first half of XXI century // Computational technologies. 2018. V. 23. ¹ 4. P. 83-94
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT