Article information

2019 , Volume 24, ¹ 5, p.38-48

Skibina N.P.

Mathematical modeling of gas-dynamic processes in a pulsed aerodynamic facility and the numerical calculation of flow parameters in the test chamber

Purpose. The aim of this paper is the mathematical modelling of gas-dynamic processes and the incoming airflow around the model fixed in the test chamber of the main functional elements of a pulsed aerodynamic facility.

Methodology. Physical and mathematical modelling methods are jointly used for comprehensive description of the processes under study. The experimentally obtained results of drainage and balance measurements combined with visualization of the flow around the model using the shadow method are used to validate the numerical solution of the problem. System of unsteady Reynolds averaged Navier—Stokes (RANS) equations and SST turbulence model are used for mathematical description of the movement of working gas flow from pre-chamber through the nozzle to the test chamber where the body was fixed. Finite elements method implemented in Ansys Fluent computational complex is used for the numerical solution.

Findings. Mathematical modelling of the flow around the cone model by the incoming flow with Mach numbers M = 2...5 was carried out. The distribution fields of gas-dynamic parameters (ρ,P,T,M) over the entire internal volume of the pulsed aerodynamic facility (pre-chamber, axisymmetric nozzles set, test chamber) are obtained. The values of static pressure at the model surface and Mach number at nozzle exit are calculated for each velocity. Relative error between numerical calculation and experimental data is obtained to be of the order of 10 and 3%, respectively. For flow structure near the model we obtain a qualitative agreement that the density distribution field is identical to the shadowgraph flow visualization pattern.

Value. A numerical method for calculation of local and integral parameters of supersonic and hypersonic flow around models in test chamber of aerodynamic facility was implemented. Information about the gas-dynamic flow parameters at the nozzle exit allowing the study of the flow around the model for the cases with more complex geometry using mathematical modelling based on the results of experiments.

[full text]
Keywords: computational fluid dynamics, mathematical modeling, aerodynamic facility, aerodynamic drag coefficient

doi: 10.25743/ICT.2019.24.5.004

Author(s):
Skibina Nadezhda Petrovna
Position: Student
Office: Tomsk State University
Address: 634050, Russia, Tomsk, 36, Lenina str.
Phone Office: (999) 495-46-22
E-mail: uss.skibina@gmail.com
SPIN-code: 5826-4898

References:
[1] Zvegintsev, V.I. Gazodinamicheskie ustanovki kratkovremennogo deystviya. Chast' I. Ustanovki dlya nauchnykh issledovaniy [Gas dynamic devices of short duration. Pt I. Devices for scientific research]. Novosibirsk: Parallel; 2014: 551. (In Russ.)

[2] Model'naya aerodinamicheskaya ustanovka. Tekhnicheskoe opisanie [Model aerodynamic devices. Technical description]. Novosibirsk: Institut teoreticheskoy i prikladnoy mekhaniki im. S.A. Khristianovich SO RAN; 2009: . (In Russ.)

[3] Maslov, E.A., Zharova, I.K., Faraponov, V.V., Matskevich, V.V., Chizhov, S.Yu. Physical modeling of supersonic flows around plane or axisymmetric bodies. V Mezhdunarodnaya molodezhnaya nauchnaya konferentsiya «Aktual'nye problemy sovremennoy mekhaniki sploshnykh sred i nebesnoy mekhaniki», 25–27 noyabrya 2015 g. Tomsk: Izdatel'stvo Tomskogo universiteta; 2016: 84-88. DOI: 10.17223/9785751124199/17. (In Russ.)

[4] Artonkin, V.G., Leutin, P.G., Petrov, K.P. Aerodynamic characteristics of sharp and dulled cones at subsonic and supersonic speeds. Trudy TsAGI. 1972; (1413): 92. (In Russ.)

[5] Sheludko, Yu.V. Izmerenie donnogo davleniya osesimmetrichnykh tel malogo udlineniya. Fiziko-gazodinamicheskie ballisticheskie issledovaniya [Measurement of the bottom pressure of slightly elongated axisymmetric bodies]. Ed. G.I. Mishina. Leningrad: Nauka; 1980: 6877. (In Russ.)

[6] Skibina, NP, Savkina, N.V., Faraponov, V.V. Numerical determination of the aerodynamic characteristics of cylindrical bodies with different types of geometry at supersound speeds. Materialy XVII Vserossiyskoy konferentsii molodykh uchenykh po matematicheskomu modelirovaniyu. Novosibirsk, Rossiya, 30 oktyabrya – 3 noyabrya 2016. Novosibirsk: IVT SO RAN; 2016: 67-68. (In Russ.)

[7] ANSYS Fluent User’s Guide. ANSYS, Inc., 2013. 2692 p. Available at: http://www.pmt.usp. br/academic/martoran/notasmodelosgrad/ANSYS%20Fluent%20Users%20Guide.pdf

[8] Snegirev, A.Yu. Vysokoproizvoditel'nye vychisleniya v tekhnicheskoy fizike. Chislennoe modelirovanie turbulentnykh techeniy. Uchebnoe posobie [High performance computing in engineering physics. Numerical modeling of turbulent flows]. SPb.: Izd-vo Politekhnicheskogo un-ta; 2009: 143. (In Russ.)

[9] Skibina, N.P., Savkina, N.V. Faraponov, V.V. Chislennoe modelirovanie obtekaniya tsilindricheskogo tela sverkhzvukovym potokom. Fundamental'nye i prikladnye problemy sovremennoy mekhaniki (FPPSM-2016) [Numerical simulation of supersonic flow around a cylindrical body. Fundamental and applied problems
of modern mechanics (FPSPM-2016)] , 21-25 sentyabrya 2016 goda, Tomsk. Sbornik trudov IX vserossiyskoy nauchnoy konferentsii. Tomsk: Tomskiy gosudarstvennyy universitet; 2016: 151-153. (In Russ.)

[10] Kovalev, P.I., Mende, N.P. Al'bom sverkhzvukovykh techeniy [Album of supersonic flows]. SPb.: Iz-vo Politekhnicheskogo un-ta. 2011: 251. (In Russ.)


Bibliography link:
Skibina N.P. Mathematical modeling of gas-dynamic processes in a pulsed aerodynamic facility and the numerical calculation of flow parameters in the test chamber // Computational technologies. 2019. V. 24. ¹ 5. P. 38-48
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT