Article information

2020 , Volume 25, ¹ 4, p.69-82

Zgoda I.N., Semenov A.A., Vager B.G.

Features of BIM-model preparation for photorealistic interactive visualization in virtual and augmented reality

Purpose: built-in tools of software packages, such as Autodesk Revit or Renga do not allow rendering realistic BIM-model. Visualization tools of various graphical packages (Autodesk 3ds Max, Blender, Cinema 4D etc.) are mostly using ray tracing, which makes it almost impossible to change the camera angle, geometry materials, lighting parameters etc. in real-time. Therefore, an interactive BIM-model visualization is needed. Such visualization achieves its maximum efficiency when virtual and augmented reality technologies are employed, which allow studying the designed object in volume but requires preliminary processing for model optimization. The purpose of this work is the development of an algorithm for preparation of BIM-model for interactive visualization in virtual and augmented reality. Methodology: processing of BIM-models developed in BIM-modelling software package Autodesk Revit is considered (but main concepts could be applied to other BIM-modelling software packages). Autodesk 3ds Max was selected for model’s geometry processing. Various features of BIM-model export were examined, as well as available ways for optimization of geometry of a building, BIMmodel component structuring and material management. A literature on the subject of the study was analyzed. Findings: a universal algorithm has been developed allowing, on the basis of the information model of the building, in the shortest possible time to prepare a highly optimized 3D model, ready for interactive visualization Value: the developed algorithm can be applied to a BIM-model of any complexity. High level of model optimization allows performing realistic visualization with various interactive components thereby increasing overall realism of interactive visualization

[full text]
Keywords: BIM, virtual reality, augmented reality, interactive visualization, 3D-modelling

doi: 10.25743/ICT.2020.25.4.007

Author(s):
Zgoda Iurii Nikolaevich
Position: Student
Office: Saint Petersburg State University of Architecture and Civil Engineering
Address: 190005, Russia, St-Petersburg, 2nd Krasnoarmeyskaya st., 4
Phone Office: (812) 575-05-49
E-mail: yurii.zgoda@mail.ru
SPIN-code: 1887-3538

Semenov Alexey Aleksandrovich
PhD. , Associate Professor
Position: Head of Chair
Office: Saint Petersburg State University of Architecture and Civil Engineering
Address: 190005, Russia, St-Petersburg, 2nd Krasnoarmeyskaya st., 4
Phone Office: (812) 575-05-49
E-mail: sw.semenov@gmail.com
SPIN-code: 9057-9882

Vager Boris Georgievich
Dr. , Professor
Position: Professor
Office: Saint Petersburg State University of Architecture and Civil Engineering
Address: 190005, Russia, St-Petersburg, 2nd Krasnoarmeyskaya st., 4
Phone Office: (812) 575-05-49
E-mail: bgvager@mail.ru
SPIN-code: 8005-2215

References:

1. Anikeeva S.O. Experience using BIM technology for musefication wooden architectural monuments.Tomsk State University Journal of Cultural Studies and Art History. 2014; 1(13):31–36. (In Russ.)

2. Barazzetti L., Banfi F., Brumana R., Gusmeroli G., Previtali M., Schiantarelli G. Cloud-to-BIMto-FEM: Structural simulation with accurate historic BIM from laser scans. Simulation Modelling Practice and Theory. 2015; (57):71–87. DOI:10.1016/j.simpat.2015.06.004.

3. Zhao X. A scientometric review of global BIM research: Analysis and visualization. Automation inConstruction. 2017; (80):37–47. DOI:10.1016/j.autcon.2017.04.002.

4. Pezeshki Z., Ivari S.A.S. Applications of BIM: A brief review and future outline. Archives of Computational Methods in Engineering. 2016; (25):273–312. DOI:10.1007/s11831-016-9204-1.

5. Xu J. Research on application of BIM 5D technology in central grand project. Procedia Engineering.2017; (174):600–610. DOI:10.1016/j.proeng.2017.01.194.

6. Nical A.K., Wodynski W. Enhancing facility management through BIM 6D. Procedia Engineering.2016; (164):299–306. DOI:10.1016/j.proeng.2016.11.623.

7. Abaglo A.J., Bonalda C., Pertusa E. Environmental digital model: Integration of BIM into environmental building simulations. Energy Procedia. 2017; (122):1063–1068. DOI:10.1016/j.egypro.2017.07.438.

8. Ob utverzhdenii plana poetapnogo vnedreniya tekhnologiy informatsionnogo modelirovaniya v oblastipromyshlennogo i grazhdanskogo stroitel’stva: prikaz ministerstva stroitel’stva i zhilishchno-kommunal’nogo khozyaystva Rossiyskoy Federatsii 926/pr ot 29 dekabrya 2014 goda [On approval of the Plan of phased introduction of information modelling technologies in the field of industrial and civil construction: Order of the Ministry of Construction and Housing of the Russian Federation No. 926 / order of December 29, 2014.] Available at: http://docs.cntd.ru/document/420245345. (In Russ.)

9. Belova O.P., Kaznin A.A., Berezovskaya Yu.V. Features of recognition mechanisms in augmentedreality marker technology. Actual Research Areas of the XXI Century: Theory and Practice. 2015; 7-3(18-3):356–360. (In Russ.)

10. Blagoveshchenskiy I.A., Demyankov N.A. Technologies and algorithms for building the augmentedreality. Modeling and Analysis of Information Systems. 2013; 20(2):129–138. DOI:10.18255/1818-10152013-2-129-138. (In Russ.)

11. Chi H.-L., Kang S.-C., Wang X. Research trends and opportunities of augmented reality applications inarchitecture, engineering, and construction. Automation in Construction. 2013; (33):116–122. DOI:10.1016/j.autcon.2012.12.017.

12. Yakovlev B.S., Pustov S.I. History, features and prospects of augmented reality. Izvestiya Tula StateUniversity. Technical Sciences. 2013; (3):479–484. (In Russ.)

13. Meza S., Turk Z., Dolenc M. Measuring the potential of augmented reality in civil engineering.Advances in Engineering Software. 2015; (90):1–10. DOI:10.1016/j.advengsoft.2015.06.005.

14. Oraee M., Hosseini M.R., Papadonikolaki E., Palliyaguru R., Arashpour M. Collaboration in BIMbased construction networks: A bibliometric-qualitative literature review. International Journal of Project Management. 2017; 35(7):1288–1301. DOI:10.1016/j.ijproman.2017.07.001.

15. Wang X., Kim M.J., Love P.E.D., Kang S.-C. Augmented reality in built environment: Classificationand implications for future research. Automation in Construction. 2013; (32):1–13. DOI:10.1016/j.autcon.2012.11.021.

16. Chu M., Matthews J., Love P.E.D. Integrating mobile building information modelling and augmentedreality systems: An experimental study. Automation in Construction. 2018; (85):305–316. DOI:10.1016/j.autcon.2017.10.032.

17. Fukuda T., Yokoi K., Yabuki N., Motamedi A. An indoor thermal environment design system forrenovation using augmented reality. Journal of Computational Design and Engineering. 2018; 6(2): 179–188. DOI:10.1016/j.jcde.2018.05.007.

18. Zhou Y., Luo H., Yang Y. Implementation of augmented reality for segment displacement inspectionduring tunneling construction. Automation in Construction. 2017; (82):112–121. DOI:10.1016/j.autcon.2017.02.007.

19. Li X., Yi W., Chi H.-L., Wang X., Chan A.P.C. A critical review of virtual and augmented reality(VR/AR) applications in construction safety. Automation in Construction. 2018; (86):150–162. DOI:10.1016/j.autcon.2017.11.003.

20. Fonseca D., Marti N., Redondo E., Navarro I., Sanchez A. Relationship between student profile,tool use, participation, and academic performance with the use of augmented reality technology for visualized architecture models. Computers in Human Behavior. 2014; (31):434–445. DOI:10.1016/j.chb.2013.03.006.

21. Wang X., Love P.E.D., Kim M.J., Park C.-S., Sing C.-P., Hou L. A conceptual framework forintegrating building information modeling with augmented reality. Automation in Construction. 2013; (34):37–44. DOI:10.1016/j.autcon.2012.10.012.

22. Boton C. Supporting constructability analysis meetings with immersive virtual reality-based collaborative BIM 4D simulation. Automation in Construction. 2018; (96):1–15. DOI:10.1016/j.autcon.2018.08.020.

23. Borodkin L.I., Valetov T.Ya., Zherebyatyev D.I., Mironenko M.S., Moor V.V. Representation andvisualisation of virtual reconstruction results on a website. Historical Information Science. Information Technology and Quantitative Methods in Historical Research and Education. 2015; (3–4(13–14)):3–18. (In Russ.)

24. Chistyakov A.V. Interactive virtual prototyping in architectural design. Bulletin of SUSU. ConstructionEngineering and Architecture. 2017; 17(4):74–78. DOI:10.14529/build170411. (In Russ.)

25. Chung D.H.J, Kiang T.B. Optimising real-time virtual reality architecture presentation. CAADRIA2007. Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia. Nanjing, China; 2007: 581–589.

26. Wang P., Wu P., Wang J., Chi H.-L., Wang X. A critical review of the use of virtual reality in construction engineering education and training. Intern. J. Environ. Res. Public Health. 2018; 15(6):1204. DOI:10.3390/ijerph15061204.

27. Autodesk knowledge network. Available at: https://knowledge.autodesk.com (accessed 02.06.2018).

28. Read P., Krygiel E., Vandezande J. Autodesk Revit architecture 2012 essentials. John Wiley & Sons;2011: 384.

29. Gorelik A.G. Samouchitel’ 3ds Max 2018 [3ds Max 2018 self-learning manual]. SPb: BKhV-Peterburg;2018: 528. (In Russ.)

30. Milovskaya O.S. 3ds Max 2017. Dizayn inter’erov i arkhitektury [3ds Max 2017. Interior and architecturedesign]. SPb: Piter; 2017: 416. (In Russ.)

31. Lanham M. Learn ARCore — fundamentals of Google ARCore: Learn to build augmented reality appsfor Android, Unity, and the web with Google ARCore 1.0. Birmingham, UK: Packt Publishing; 2018: 274.

32. Linowes J., Babilinski K. Augmented reality for revelopers: Build practical augmented reality applications with Unity, ARCore, ARKit, and Vuforia. Birmingham, UK: Packt Publishing; 2017: 548.

33. McCaffrey M. Unreal Engine VR cookbook: Developing virtual reality with UE4. 1st ed. Boston, USA: Addison-Wesley Professional; 2017: 288.

34. Parisi T. Learning virtual reality: Developing immersive experiences and applications for desktop,web, and mobile. Sebastopol, CA, USA: O’Reilly Media; 2015: 172.

35. Shannon T. Unreal Engine 4 for design visualization: Developing stunning interactive visualizations,animations, and renderings. 1st ed. Boston, USA: Addison-Wesley Professional; 2016: 384.

36. Boeykens S. Unity for architectural visualization. Birmingham, UK: Packt Publishing; 2013: 144.

37. Linowes J. Unity virtual reality projects. Birmingham, UK: Packt Publishing; 2013: 286.

38. Unreal Engine 4 documentation. Available at: https://docs.unrealengine.com (accessed 30.09.2018).

39. Unity user manual. Available at: https://docs.unity3d.com/ru/current/Manual/index.html (accessed 02.11.2018).

Bibliography link:
Zgoda I.N., Semenov A.A., Vager B.G. Features of BIM-model preparation for photorealistic interactive visualization in virtual and augmented reality // Computational technologies. 2020. V. 25. ¹ 4. P. 69-82
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT