Article information

2021 , Volume 26, ą 5, p.4-14

Meshkova V.D., Dekterev A.A., Litvintsev K.Y., Filimonov S.A., Gavrilov A.A.

The role of urban development in the formation of a heat island

Introduction. The configuration of modern micro districts leads to the formation of zones with low velocity, in which the accumulation of pollutants occurs. On the other hand, during the construction of cities, the surface of the Earth is covered with materials that actively absorb solar radiation, which leads to the formation of an urban heat island. Our work is devoted to the study of the local influence of urban development on the spread of pollutants, which takes into account the above mentioned factors.

Mathematical model. For solving our problems we developed the microscale mathematical model based on the Reynolds-averaged Navier–Stokes equations for incompressible flows with variable density. For the correct calculation of the temperature on the surface of buildings, we used a model of conjugate heat transfer with a one-dimensional equation of thermal conductivity. As a model problem, we considered the Krasnoyarsk area with dense development and the presence of a highrise building for two seasons: winter and summer. The source of emission of pollutants was traffic.

Results. The results of the calculations show a significant decrease in velocity around buildings. On the contrary, solar radiation leads to the intensification of free convective motion, especially in the surface area. That can double the near-surface velocity compared to the solution that does not account for the heat transfer.

Conclusions. The developed mathematical model allows a comprehensive approach to solving hydrodynamic problems of prediction the ecological situation of cities.

[full text]
Keywords: hydrodynamics, aeration regime, urban microclimate, numerical modelling, SigmaFlow, convective motion, heat transfer

doi: 10.25743/ICT.2021.26.5.002

Author(s):
Meshkova Victoria Dmitrievna
Position: Student
Office: Institute of EngineeringPhysics and Radioelectronics of theSiberian Federal University
Address: 660041, Russia, Krasnoyarsk, Svobodnyy pr., 79
E-mail: vredel@sfu-kras.ru
SPIN-code: 2653-5120

Dekterev Alexandr Anatolyevich
PhD.
Position: Senior Research Scientist
Office: Institute of Thermophysics SB of RAS
Address: 660090, Russia, Novosibirsk, avenue Akademika Lavrenteva,1
Phone Office: (391) 2494726
E-mail: dekterev@mail.ru
SPIN-code: 9100-0502

Litvintsev Kirill Yurievich
PhD.
Position: Research Scientist
Office: Researcher of the Institute of Thermophysics of SB RAS
Address: 660036, Russia, Krasnoyarsk, Krasnoyarsk, Akademgorodok 50/44
Phone Office: (391) 2494726
E-mail: sttupick@yandex.ru
SPIN-code: 4034-9004

Filimonov Sergey Anatolyevich
PhD.
Position: Research Scientist
Office: Siberian Federal University
Address: 660041, Russia, Krasnoyarsk, Svobodnyy pr., 79
E-mail: bdk@inbox.ru
SPIN-code: 5419-6323

Gavrilov Andrey Anatolyevich
PhD.
Position: Research Scientist
Office: Krasnoyarsk branch of Institute of ThermophysicsSibirian Branch of Russian Academy of Sciences
Address: 660036, Russia, Krasnoyarsk, 50/44 Akademgorodok
Phone Office: (391) 2494726
E-mail: gavand@yandex.ru
SPIN-code: 3054-3567

References:

1. Mikhailuta S.V., Lezhenin A.A., Pitt A., Taseiko O.V. Urban wind fields: Phenomena in transformation. Urban Climate. 2017; (9):122–140. DOI:10.1016/j.uclim.2016.12.005. Available at: https://ieeexplore.ieee.org/document/7055320.

2. Li B., Luo Z., Sandberd M., Liu J. Revisiting the “Venturi effect” in passage ventilation between two non-parallel buildings. Building and Environment. 2015; (94):714–722. DOI:10.1016/j.buildenv.2015.10.023.

3. Serdyukova A.F., Barabanshchikova D.A. Vliyanie avtotransporta na okruzhayushchuyu sredu [Impact of auto transport on the environment]. Kazan’: Izdatel’stvo Molodoy uchenyy; 2018: 374. (In Russ.)

4. Roth M., Chow W.T.L. A historical review and assessment of urban heat island research in Singapore. Journal of Tropical Geography. 2012; (33):381–397. DOI:10.1111/sjtg.12003.

5. Doroshenko A.V. Pedestrian area aerodynamic comfort evaluation program. Bulletin of Irkutsk State Technical University. 2013; 5(76):100–102. (In Russ.)

6. Tominaga Y., Yoshie R., Mochida A., Kataoka H., Harito R., Kazuyoshi K., Nozi T. Cross comparisons of CFD prediction for wind environment at pedestrian level around buildings. The Sixth Asia-Pacific Conference on Wild Engineering (APCWE-V). Seoul, Korea, 2005: 12–14.

7. Danilkin E.A., Starchenko A.V. Modelling the transfer of road transport emissions in a street canyon. Computational Technologies. 2020; 25(2):4–21. DOI:10.25743/ICT.2020.25.2.002. (In Russ.)

8. Yushkov V.P., Kurbatova M.M., Varentsov M.I., Lezina E.A., Kurbatov G.A., Miller E.A., Repina I.A., Artamonov A.Yu., Kallistratova M.A. Modeling an urban heat island during extreme frosts in Moscow in January 2017. Izvestiya RAN. Atmospheric and Oceanic Physics. 2019; 55(5):13–31. DOI:10.31857/S0002-351555513-31-14347. (In Russ.)

9. Meshkova V.D., Filimonov S.A., Shebelev A.V. Computational modeling of architectural and construction aerodynamics problems. IOP Conference Series: Materials Science and Engineering. 2018; 456. DOI:10.1088/1757-899X/456/1/012079.

10. Zaichik L.I., Drobyshevsky N.I., Filippov A.S., Mukin R.V., Strizhov V.F. A diffusioninertia model for predicting dispersion and deposition of low-inertia particles in turbulent flows. International Journal of Heat and Mass Transfer. 2010; (53):154–162.

11. Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti [Numerical methods for solving problems of heat transfer and fluid dynamics]. Moscow: Izdatel’stvo Energoatomizdat; 1984: 152. (In Russ.)
12. Menter F.R. Zonal two equation 𝑘−𝜔 turbulence models for aerodynamic flows. AIAA Paper. 1993;
93(906):21. DOI:10.2514/6.1993-2906.

13. Oke T.R. Boundary layer climates. 2nd ed. Routledge Publishing House; 1987: 435.

14. Psiloglou B., Santamouris M., Asimakopoulos D. Atmospheric broadband model for computation of solar radiation at the Earth’s surface. Application to mediterranean climate. Pure and Applied Geophysics. 2000; (157):829–860. DOI:10.1007/PL00001120.

15. Litvintsev K.Yu., Filimonov S.A. The use of the “marching order” scheme for solving SLAE obtained on the basis of the finite volume method for the radiating heat transfer equation. Computational Technologies. 2017; 22(4):69–79. (In Russ.)

16. Dekterev A.A., Gavrilov A.A., Minakov A.V. Sovremennye vozmozhnosti SFD koda SigmaFlowdlya resheniya teplofizicheskikh zadach. Sbornik statey. Sovremennaya nauka: Issledovaniya, idei, rezul’taty, tekhnologii [Modern capabilities of the SigmaFlow CFD code for solving thermophysical problems. Digest of Articles. Modern Science: Research, Ideas, Results, Technologies]. 2010; 4(2):117–122. (In Russ.)

17. Dekterev A.A., Litvintsev K.Yu., Gavrilov A.A., Kharlamov E.B., Filimonov S.A. Free software package SIGMA_FW for numerical simulation of hydrodynamics and heat transfer. Journalof Siberian Federal University. Engineering & Technologies. 2017; 10(4):534–542.

Bibliography link:
Meshkova V.D., Dekterev A.A., Litvintsev K.Y., Filimonov S.A., Gavrilov A.A. The role of urban development in the formation of a heat island // Computational technologies. 2021. V. 26. ą 5. P. 4-14
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT