Article information

2022 , Volume 27, ¹ 2, p.74-90

Ulyanov M.V., Urazov S.O.

Implementation of Random Sequential Adsorption (RSA) by auxiliary array reduction method: analytical consideration and computational experiment

The article addresses a method that provides a time-efficient implementation of the kinetics of random sequential adsorption (RSA). RSA model is relevant to many physical, chemical, and biological processes. In this regard, a wide range of researchers is interested in obtaining a large amount of data with statistically significant samples to enhance the studies of RSA kinetics using computer simulation. The underlying problem that arises here helps reducing the time spent on computer simulation.

RSA itself is a stochastic process where objects are randomly and irreversibly deposited on a substrate without overlapping with previously adsorbed objects. Computer simulation of RSA is difficult due to the random choice of the position from which the next object is allowed to fall. Random enumeration of positions, up to finding the allowed one, leads to an exponential dependence of the concentration of the substrate coverage by objects on the simulation time. The previously proposed methods for the implementation of RSA do not have a full theoretical justification. For example, in the method of free cell positions lists, it is not clear which value of concentration becomes effective when using the lists.

This paper considers the problem of developing a theoretically substantiated method that provides time-efficient implementation of RSA in the case of deposition of vertically and horizontally oriented particles on a square two-dimensional lattice with periodic boundary conditions.

The article presents the method of reduction of auxiliary arrays proposed by the authors, which provides a time-efficient implementation of RSA. The presented analytical study determines the optimal reduction threshold and the results of an experimental examination of software implementation are presented. The obtained experimental data have shown that the theoretical predictions for the optimal reduction threshold fall within the interval providing no more than 2% deviation from the optimal time, which provides recommendations for the practical application of the method.

[full text] [link to elibrary.ru]

Keywords: random sequential adsorption, reduction method, time efficiency

doi: 10.25743/ICT.2022.27.2.007

Author(s):
Ulyanov Mikhail Vasilievich
Dr. , Professor
Position: Professor
Office: V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Lomonosov Moscow State University
Address: 117997, Russia, Moscow, 65 Profsoyuznaya street
Phone Office: (495) 334-89-10
E-mail: muljanov@mail.ru

Urazov Stanislav Olegovich
Position: Student
Office: Lomonosov Moscow State University
Address: 119991, Russia, Moscow, 1, Universitetskaya square
E-mail: urazov.msu@gmail.com

References:

1. Evans J.W. Random and cooperative sequential adsorption. Reviews of Modern Physics. 1993; 65(4):1281–1329. DOI:10.1103/RevModPhys.65.1281.

2. Adamczyk Z. Modelling adsorption of colloids and proteins. Current Opinion in Colloid & Interface Science. 2012; 17(3):173–186. DOI:10.1016/j.cocis.2011.12.002. Available at: https:// www.sciencedirect.com/science/article/abs/pii/S135902941100152X.

3. Ulyanov M.V., Smetanin Yu.G., Shulga M.M., Eserkepov A.V., Tarasevich Yu.Yu. Characterisation of diffusion-driven self-organisation of rodlike particles by means of entropy of generalised two-dimensional words. Journal of Physics: Conference Series. 2018; (1141):012137. DOI:10.1088/1742-6596/1141/1/012137. Available at: https://www.researchgate. net/publication/329838597_Characterisation_of_diffusion-driven_self-organisation_of_ rodlike_particles_by_means_of_entropy_of_generalised_two-dimensional_words.

4. Ulyanov M.V., Tarasevich Yu.Yu., Eserkepov A.V., Grigorieva I.V. Characterization of domain formation during random sequential adsorption of stiff linear k-mers onto a square lattice. Physical Review E. 2020; 102(4):042119. DOI:10.1103/PhysRevE.102.042119. Available at: https//link.aps.org/doi/10.1103/PhysRevE.102.042119.

5. Evans J.W. Comment on “Kinetics of random sequential adsorption”. Physical Review Letters. 1989; 62(22):2642. DOI:10.1103/PhysRevLett.62.2642. Available at: https://link.aps.org/doi/10.1103/PhysRevLett.62.2642.

6. Schaaf P., Johner A., Talbot J. Asymptotic behavior of particle deposition. Physical Review Letters. 1991; 66(12):1603–1605. DOI:10.1103/PhysRevLett.66.1603. Available at: https://link. aps.org/doi/10.1103/PhysRevLett.66.1603.

7. Hoffman D.K. On the nonequilibrium distribution of adatoms resulting from dissociative adsorption of a diatomic gas. Journal of Chemical Physics. 1976; 65(1):95–102. DOI:10.1063/1.432762.

8. Evans J.W. Irreversible random and cooperative process on lattices: Direct determination of density expansions. Physica A: Statistical Mechanics and Its Applications. 1984; 123(2):297–318. DOI:10.1016/0378-4371(84)90158-4.

9. Evans J.W. Nonequilibrium percolative c(2×2) ordering: Oxygen on Pd(100). Journal of Chemical Physics. 1987; (87):3038–3048. DOI:10.1063/1.453040.

10. Baram A., Kutasov D. On the dynamics of random sequential absorption. Journal of Physics A: Mathematical and General. 1989; 22(6):L251. DOI:10.1088/0305-4470/22/6/011.

11. Privman V., Wang J.-S., Nielaba P. Continuum limit in random sequential adsorption. Physical Review B: Condensed Matter. 1991; 43(4):3366–3372. DOI:10.1103/PhysRevB.43.3366.

12. Cornette V., Linares D., Ramirez-Pastor A.J., Nieto F. Random sequential adsorption of polyatomic species. Journal of Physics A: Mathematical and Theoretical. 2007; 40(5):11765. DOI:10.1088/1751-8113/40/39/005.

13. Budinski-Petkovi´c L., Vrhovac S.B., Lonˇcarevi´c I. Random sequential adsorption of polydisperse mixtures on discrete substrates. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics. 2008; (78):061603. DOI:10.1103/PhysRevE.78.061603.

14. Ciesla M. Effective modelling of adsorption monolayers built of complex molecules. Journal of Computational Physics. 2019; (401):108999. DOI:10.1016/j.jcp.2019.108999.

15. Slutskii M.G., Barash L.Y., Tarasevich Yu.Yu. Percolation and jamming of random sequential adsorption samples of large linear k-mers on a square lattice. Physical Review E. 2018; 98(6):062130. DOI:10.1103/PhysRevE.98.062130. Available at: https://link.aps.org/doi/10.1103/PhysRevE. 98.062130.

16. Nord R.S. Irreversible random sequential filling of lattices by Monte Carlo simulation. Journal of Statistical Computation and Simulation. 1991; 39(4):231–240. DOI:10.1080/00949659108811358.

17. Brosilow B.J., Ziff R.M., Vigil R.D. Random sequential adsorption of parallel squares. Physical Review A: Atomic, Molecular, and Optical Physics. 1991; 43(2):631–638. DOI:10.1103/PhysRevA.43.631.

18. Fusco C., Gallo P., Petri A., Rovere M. Random sequential adsorption and diffusion of dimers and k-mers on a square lattice. Journal of Chemical Physics. 2001; (114):7563–7569. DOI:10.1063/1.1359740.

19. Gould H., Tobochnik J., Christian W., Ayars E. An introduction to computer simulation methods: Applications to physical systems, 2nd edition. American Journal of Physics. 2006; 74(7):652–653. DOI:10.1119/1.2219401.

20. Cormen T., Leiserson Ch., Rivest R., Stein C. Introduction to algorithms. Cambridge: MIT Press; 1990: 1312.

21. Slepovichev I.I. Generatory psevdosluchainykh chisel [Pseudo random number generators]. Saratov: SGU; 2017: 118. (In Russ.)

Bibliography link:
Ulyanov M.V., Urazov S.O. Implementation of Random Sequential Adsorption (RSA) by auxiliary array reduction method: analytical consideration and computational experiment // Computational technologies. 2022. V. 27. ¹ 2. P. 74-90
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT