| Article information  2025 ,  Volume 30, ¹ 1, p.64-79
Persova M.G., Soloveichik Y.G., Vagin D.V., Sivenkova A.P., Simon E.I., Tokareva M.G. Peculiarities of sensitivity calculation when implementing geometric 3D inversions in electrical prospecting problemsThepaper proposes various methods for calculating sensitivities when solving 3D inverse problems  of electrical prospecting. It is assumed that the geoelectric model dependson both physicaland  geometric parameters. Solution of the forward problem relies on the finite element method for  space discretization and the implicit three-point scheme “with backward overstepping” for time  discretization. We also use the primary-secondary field approach when the primary field is calculated  for 1D horizontally layered medium. To minimize the functional in the inverse problem, the Gauss Newton method with adaptive regularization is applied. Computational experiments have shown  that in problems of ground-based induction electrical prospecting with a small number of positions of  controlled sources, the proposed numerical-analytical methods for calculating sensitivity can reduce  computational costs when solving 3D inverse problems. Thus, for a geoelectric model containing 82  geometric parameters and 26 electrical conductivity parameters, the numerical-analytical method  allows reducing the computational time by half. Increasing the number of geometric parameters  leads to more profound advantage. However, the same mesh both for calculating the residual and for  calculating the derivatives when implementing the numerical-analytical method, may not provide  computational advantages, but also become more expensive than the numerical method, where  for calculating influence fields coarse meshes are always used. In this case, the geoelectric models  obtained as a result of 3D inversion practically coincide and differ only within the framework of  equivalence.
[link to elibrary.ru] 
 Keywords: finite element 3D modelling, electromagnetic field, 3D inverse problems, sensitivities
 
 doi: 10.25743/ICT.2025.30.1.007
 
 Author(s):Persova Marina Gennad'evna
 Dr. , Professor
 Position: Head of Laboratory
 Office: Novosibirsk State Technical University
 Address: 630073, Russia, Novosibirsk, 20, prospekt K. Marksa
 E-mail: mpersova@mail.ru
 SPIN-code: 5788-0453Soloveichik Yuri Grigor'evich
 Dr. , Professor
 Position: Leading research officer
 Office: Novosibirsk State Technical University
 Address: 630073, Russia, Novosibirsk, 20, prospekt K. Marksa
 E-mail: soloveychik@ami.nstu.ru
 SPIN-code: 7856-7702Vagin Denis Vladimirovich
 Dr. , Associate Professor
 Position: Senior Research Scientist
 Office: Novosibirsk State Technical University
 Address: 630073, Russia, Novosibirsk, 20, Prospekt K. Marksa
 E-mail: vdv_wk@mail.ru
 SPIN-code: 9619-9380Sivenkova Anastasia Pavlovna
 Position: Junior Research Scientist
 Office: Novosibirsk State Technical University
 Address: 630073, Russia, Novosibirsk, 20, Prospekt K. Marksa
 E-mail: nastya_sivenkova19@mail.ru
 Simon Evgenia Igorevna
 PhD.
 Position: Research Scientist
 Office: Novosibirsk State Technical University
 Address: 630073, Russia, Novosibirsk, 20, Prospekt K. Marksa
 E-mail: simon@corp.nstu.ru
 SPIN-code: 3032-5355Tokareva Marina Georgievna
 PhD.
 Position: Research Scientist
 Office: Novosibirsk State Technical University
 Address: 630073, Russia, Novosibirsk, 20, Prospekt K. Marksa
 E-mail: tokareva@ami.nstu.ru
 SPIN-code: 5651-4010
 References:1. Haber E., Schwarzbach C. Parallel inversion of large-scale airborne time-domain electromagnetic data with multiple OcTree meshes. Inverse Problems. 2014; 30(5):055011. DOI:10.1088/0266-5611/30/5/055011.
 
 2. Liu Y., Yin C. 3-D inversion for multipulse airborne transient electromagnetic data. Geophysics. 2016; 81(6):E401–E408. DOI:10.1190/geo2015-0481.1.
 
 3. Oldenburg D.W., Haber E., Shekhtman R. Three dimensional inversion of multisource time domain electromagnetic data. Geophysics. 2013; 78(1):E47–E57. DOI:10.1190/geo2012-0131.1.
 
 4. Ren X., Yin C., Macnae J., Liu Y., Zhang B. 3D time-domain airborne electromagnetic inversion based on secondary field finite-volume method. Geophysics. 2018; 83(4):E219–E228.
 DOI:10.1190/geo2017-0585.1.
 
 5. Yang D., Oldenburg D.W. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit. Geophysics. 2012; 77(2):B23–B34. DOI:10.1190/geo2011-0194.1.
 
 6. Yang D., Oldenburg D.W., Haber E. 3-D inversion of airborne electromagnetic data parallelized and accelerated by local mesh and adaptive soundings. Geophysical Journal International. 2014; 196(3):1492–1507. DOI:10.1093/gji/ggt465.
 
 7. Persova M.G., Soloveichik Y.G., Vagin D.V., Kiselev D.S., Grif A.M., Koshkina Y.I., Sivenkova A.P. Three-dimensional inversion of airborne data with applications for detecting elongated subvertical bodies overlapped by an inhomogeneous conductive layer with topography. Geophysical Prospecting. 2020; 68(7):2217–2253. DOI:10.1111/1365-2478.12979.
 
 8. Persova M.G., Soloveichik Y.G., Trigubovich G.M., Vagin D.V., Grif A.M., Kiselev D.S., Sivenkova A.P. Geometric 3-D inversion of airborne time-domain electromagnetic data with applications to kimberlite pipes prospecting in a complex medium. Journal of Applied Geophysics. 2022;
 (200):104611. DOI:10.1016/j.jappgeo.2022.104611.
 
 9. Persova M.G., Soloveichik Y.G., Kjerstad J.K., Sivenkova A.P., Kiseleva A.S., Kiselev D.S. Geometric 2.5 D inversion of marine time domain electromagnetic data with application to hydrocarbon deposits prospecting. Journal of Applied Geophysics. 2023; (212):104996. DOI:10.1016/
 j.jappgeo.2023.104996.
 
 10. McMillan M.S., Schwarzbach C., Haber E., Oldenburg D.W. 3D parametric hybrid inversion of time-domain airborne electromagnetic data. Geophysics. 2015; 80(6):K25–K36. DOI:10.1190/geo2015-0141.1.
 
 11. Persova M.G., Soloveychik Y.G., Vagin D.V., Kiselev D.S., Sivenkova A.P., Kiseleva A.S.,Grif A.M. An approach to multiphysics 3D inversion of electromagnetic, magnetic, and gravity data with applications for the search for solid minerals [Podkhod k mul’tifizichnoi 3D-inversii dannykh
 elektrorazvedki, magnitorazvedki i gravirazvedki pri poiske tverdykh poleznykh iskopaemykh]. Materialy Konferentsii: 18-ya Nauchno-Prakticheskaya Konferentsiya i Vystavka “Inzhenernaya i Rudnaya Geofizika 2022” (Proceedings of the 17th Conference “Engineering and Mining Geophysics 2022”).
 Moscow; 2022: 267–272. (In Russ.)
 
 12. Persova M.G., Soloveichik Y.G., Vagin D.V., Kiselev D.S., Koshkina Y.I. Finite element solution to 3-D airborne time-domain electromagnetic problems in complex geological media using non-conforming hexahedral meshes. Journal of Applied Geophysics. 2020; (172):103911. DOI:10.1016/j.jappgeo.2019.103911.
 
 13. Persova M.G., Soloveichik Y.G., Vagin D.V., Kiselev D.S., Sivenkova A.P., Grif A.M. Improving the computational efficiency of solving multisource 3-D airborne electromagnetic problems in complex geological media. Computational Geosciences. 2021; (25):1957–1981. DOI:10.1007/s10596-021-10095-6.
 
 14. Soloveichik Y.G., Royak M.E., Moiseev V.S., Trigubovich G.M. Three-dimensional modeling of nonstationary electromagnetic fields using the finite element method. Izvestiya. Physics of the Solid Earth. 1998; 34(10):859–864.
 
 15. Badea E.A., Everett M.E., Newman G.A., Biro O. Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics. 2001; 66(3):786–799. DOI:10.1190/1.1444968.
 
 16. Castillo-Reyes O., de la Puente J., Garcia-Castillo L.E., Cela J.M. Parallel 3-D marine controlled-source electromagnetic modelling using high-order tetrahedral Nedelec elements. Geophysical Journal International. 2019; 219(1):39–65. DOI:10.1093/gji/ggz285.
 
 17. Grayver A.V., Burg M. Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method. Geophysical Journal International. 2014; 198(1):110–125. DOI:10.1093/gji/ggu119.
 
 18. Ren X., Yin C., Liu Y., Cai J., Wang C., Ben F. Efficient modeling of time-domain AEM using finite-volume method. Journal of Environmental and Engineering Geophysics. 2017; 22(3):267–278. DOI:10.2113/JEEG22.3.267.
 
 19. Soloveichik Y.G., Persova M.G., Domnikov P.A., Koshkina Y.I., Vagin D.V. Finite element nsolution to multidimensional multisource electromagnetic problems in the frequency domain using non-conforming meshes. Geophysical Journal International. 2018; 212(3):2159–2193. DOI:10.1093/gji/ggx530.
 
 20. Mogilatov V., Goldman M. Generalized Tikhonov’s algorithm for accurate calculation of one-dimensional transient responses directly in time domain. Geophysical Prospecting. 2020; 68(2):690–708. DOI:10.1111/1365-2478.12843.
 Bibliography link:
 Persova M.G., Soloveichik Y.G., Vagin D.V., Sivenkova A.P., Simon E.I., Tokareva M.G. Peculiarities of sensitivity calculation when implementing geometric 3D inversions in electrical prospecting problems // Computational technologies. 2025. V. 30. ¹ 1. P. 64-79
 |