АЛГОРИТМИЗАЦИЯ ЗАДАЧИ О ФЛАТТЕРЕ ВЯЗКОУПРУГИХ ТРЕХСЛОЙНЫХ ОБОЛОЧЕК, ОБТЕКАЕМЫХ СВЕРХЗВУКОВЫМ ПОТОКОМ ГАЗА

Б.А. Худаяров

Taшкентский институт ирригации и мелиорации, Узбекистан e-mail: bakht-flpo@yandex.ru

Flutters of viscoelastic cylindrical three layer sandwich shells placed in a gas flow are investigated. Using Bubnov — Galerkin methods, the problems are reduced to the investigation of a system of ordinary integro-differential equations (IDE). The IDE system is solved by a numerical method based on the use of the quadrature formula and the numerical algorithm relied on this method was described. The critical speeds for shell's flutter are identified.

Введение

Слоистые конструкции, в частности трехслойные пластинки и оболочки, находят применение в различных областях техники (авиастроении, судостроении и др.). Трехслойные конструкции обладают многими качествами, которых нет у обычных конструкций, выполненных только из металла. Они имеют высокую удельную жесткость и могут выдержать большие удельные нагрузки. Слоистые пластины и оболочки обладают хорошими теплои звукоизоляционными качествами, демпфирующими и вибропоглощающими свойствами. Поскольку на наружной поверхности трехслойных конструкций отсутствуют какого-либо рода крепления и поверхность идеально гладкая, они обладают высокими аэродинамическими качествами.

В настоящее время в авиационных, ракетно-космических и других отраслях машиностроения в качестве материалов внешних слоев и заполнителя трехслойных пластин и оболочек широко используются композиционные материалы.

В настоящей статье рассматривается устойчивость вязкоупругой трехслойной круговой опертой цилиндрической оболочки с жестким, сопротивляющимся поперечному сдвигу заполнителем, обтекаемой с внешней стороны сверхзвуковым потоком. Аэродинамическое давление потока учитывается по поршневой теории А.А. Ильюшина [1].

Ранее в работах [2, 3] и др. уже рассматривались подобные задачи для упругой трехслойной цилиндрической оболочки в сверхзвуковом потоке газа, причем было показано, что минимальная скорость флаттера зависит от числа волн в окружном направлении.

[©] Институт вычислительных технологий Сибирского отделения Российской академии наук, 2005.

В данной работе на основе метода Бубнова — Галеркина рассматривается зависимость критической скорости флаттера от жесткости заполнителя на поперечный сдвиг, а также других геометрических и механических параметров задачи. Решение интегродифференциальных уравнений находится численным методом, основанным на использовании квадратурных формул [4]. Основное внимание уделяется анализу флаттерных колебаний оболочки с учетом вязкоупругих характеристик материалов.

1. Постановка задачи и методы решения

Рассмотрим вязкоупругую трехслойную цилиндрическую круговую оболочку несимметричной структуры с жестким заполнителем, состоящую из двух наружных слоев. Оболочка длиной L при нулевом угле атаки обтекается потоком газа с большой сверхзвуковой скоростью V, направленной вдоль образующих.

Нелинейные уравнения движения вязкоупругих трехслойных цилиндрических оболочек выпишем в виде

$$D(1 - R^*)(1 - \Theta h^2 \beta_3^{-1} \nabla^2) \nabla^4 \chi - \frac{\partial^2 \Phi}{\partial x^2} \frac{\partial^2}{\partial y^2} \left[\left(1 - h^2 \beta_3^{-1} \nabla^2\right) \chi \right] + \\ + 2 \frac{\partial^2 \Phi}{\partial x \partial y} \frac{\partial^2}{\partial x \partial y} \left[\left(1 - h^2 \beta_3^{-1} \nabla^2\right) \chi \right] - \frac{\partial^2 \Phi}{\partial y^2} \frac{\partial^2}{\partial x^2} \left[\left(1 - h^2 \beta_3^{-1} \nabla^2\right) \chi \right] - \\ - \frac{1}{R} \frac{\partial^2 \Phi}{\partial x^2} - q = 0, \tag{1}$$

$$\nabla^4 \Phi = E(1 - R^*) h \left\{ \left(\frac{\partial^2}{\partial x \partial y} \left[\left(1 - h^2 \beta_3^{-1} \nabla^2\right) \chi \right] \right)^2 - \\ - \frac{\partial^2}{\partial x^2} \left[\left(1 - h^2 \beta_3^{-1} \nabla^2\right) \chi \right] \frac{\partial^2}{\partial y^2} \left[\left(1 - h^2 \beta_3^{-1} \nabla^2\right) \chi \right] - \frac{1}{R} \frac{\partial^2 W}{\partial x^2} \right\}.$$

Здесь $\chi(x, y, t)$ — функция перемещений, связанная с прогибом W(x, y, t) соотношением $W = (1 - h^2 \beta_3^{-1} \nabla^2) \chi$, где $\nabla^2 = \partial^2 / \partial x^2 + \partial^2 / \partial y^2$. Величины D, Θ , β_3 характеризуют соответственно цилиндрическую жесткость трехслойного пакета, изгибную жесткость несущих слоев и жесткость заполнителя на сдвиг; h — толщина пакета; R^* — интегральный оператор с ядром релаксации R(t): $R^* \varphi(t) = \int_{0}^{t} R(t - \tau) \varphi(\tau) d\tau$.

Поперечная нагрузка q(x, y, t) складывается из сил инерции, сил аэродинамического демпфирования и аэродинамического давления:

$$q(x, y, t) = -\Omega \frac{\partial^2 W}{\partial t^2} - B \frac{\partial W}{\partial t} + \Delta p.$$
(2)

Уравнение аэродинамического давления Δp в случае одностороннего обтекания имеет вид

$$\Delta p = -\aleph p_{\infty} \left[\mathrm{M}^* \frac{\partial W}{\partial x} + \frac{\aleph + 1}{4} \mathrm{M}^{*2} \left(\frac{\partial W}{\partial x} \right)^2 + \dots \right], \tag{3}$$

где М* = V/V_{∞} — число Маха для невозмущенного потока.

Будем искать приближенное решение системы (1) в виде

$$\chi(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} \chi_{nm}(t)\varphi_{nm}(x, y),$$

$$\Phi(x, y, t) = \sum_{n=1}^{N} \sum_{m=1}^{M} \Phi_{nm}(t)\psi_{nm}(x, y).$$
(4)

Подставляя (4) в уравнение (1) и применяя к этому уравнению метод Бубнова — Галеркина, получим систему интегродифференциальных уравнений относительно коэффициентов (4). Введя следующие безразмерные параметры

$$\frac{x}{L}, \quad \frac{y}{R}, \quad \frac{V_{\infty}}{L}t, \quad \frac{W}{h}, \quad \frac{L}{V_{\infty}}R(t)$$

и сохраняя прежние обозначения, систему интегродифференциальных уравнений сводим к уравнению относительно χ_{nm} :

$$A_{kl}\ddot{\chi}_{kl} + B_{kl}\dot{\chi}_{kl} + (1 - R^*)C_{kl}\chi_{kl} + V_* \sum_{n=1}^{N} F_{knl}\chi_{nl} + V_*^2 \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} D_{klnmir}\chi_{nm}\chi_{ir} - \frac{p_1}{2\pi\beta_1} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} F_{klnmir}\chi_{nm}(1 - R^*)\chi_{ir} + \frac{p_1}{2\pi^3\lambda^2\beta_1} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} K_{klnmir}(1 - R^*)\chi_{mn}\chi_{ir} - \frac{p_1}{4\pi^4\lambda^2} \sum_{n,i,j=1}^{N} \sum_{m,r,s=1}^{M} a_{klnmirjs}\chi_{nm}(1 - R^*)\chi_{ir}\chi_{js} = 0.$$
(5)

Здесь $A_{kl}, B_{kl}, C_{kl}, F_{kln}, K_{klnmir}, F_{klnmir}, \alpha_{klnmirjs}, p_1, V_* = æ p_{\infty} R^3 M^* / D$ — безразмерные параметры.

2. Численные результаты

Интегрируем систему (5) два раза по t, запишем ее в интегральной форме. Полагая затем $t = t_i, t_i = ih, i = 1, 2, ... (h = \text{const})$ и заменяя интегралы квадратурными формулами трапеций для вычисления $\chi_{ikl} = \chi_{kl}(t_i)$, получим следующие рекуррентные формулы при ядре Колтунова — Ржаницына $(R(t) = A \cdot \exp(-\beta t)t^{\alpha-1}, 0 < \alpha < 1)$:

$$\begin{split} (A_{kl} + A_i B_{kl}) &= A_{kl} \left(\chi_{0kl} + \dot{\chi}_{0kl} \right) - \sum_{j=0}^{i-1} A_j (t_i - t_j) \left\{ V_* \sum_{n=1}^N F_{knl} \chi_{jnl} + \right. \\ &+ V_*^2 \sum_{n,i_1=1}^N \sum_{m,r=1}^M D_{klnmi_1r} \chi_{jnm} \chi_{ji_1r} + C_{kl} \chi_{jkl} - \frac{A}{\alpha} C_{kl} \sum_{s=0}^j B_s e^{-\beta t_s} \chi_{j-skl} - \\ &- \frac{p_1}{2\pi \beta_1} \sum_{n,i_1=1}^N \sum_{m,r=1}^M F_{klnmi_1r} \chi_{jnm} \chi_{ji_1r} + \\ &+ \frac{A}{\alpha} \frac{p_1}{2\pi \beta_1} \sum_{n,i_1=1}^N \sum_{m,r=1}^M F_{klnmi_1r} \chi_{jnm} \sum_{s=0}^j B_s e^{-\beta t_s} \chi_{j-si_1r} + \\ \end{split}$$

$$+ \frac{p_1}{2\pi^3\lambda^2\beta_1} \sum_{n,i_1=1}^N \sum_{m,r=1}^M K_{klnmi_1r} \sum_{s=0}^j B_s e^{-\beta t_s} \chi_{ji_1r} \chi_{jnm} - \\ - \frac{A}{\alpha} \frac{p_1}{2\pi^3\lambda^2\beta_1} \sum_{n,i_1=1}^N \sum_{m,r=1}^M K_{klnmi_1r} \sum_{s=0}^j B_s e^{-\beta t_s} \chi_{j-snm} \chi_{j-si_1r} - \\ - \frac{p_1}{4\pi^4\lambda^2} \sum_{n,i_1,j_1=1}^N \sum_{m,r,s_1=1}^M a_{klnmi_1rj_1s_1} \chi_{jnm} \chi_{ji_1r} \chi_{jj_1s_1} + \\ + \frac{A}{\alpha} \frac{p_1}{4\pi^4\lambda^2} \sum_{n,i_1,j_1=1}^N \sum_{m,r,s_1=1}^M a_{klnmi_1rj_1s_1} \chi_{jnm} \sum_{s=0}^j B_s e^{-\beta t_s} \chi_{j-si_1r} \chi_{j-sj_1s_1} \right\} + \\ + B_{kl} \left\{ \chi_{0kl} t_i - \sum_{j=0}^{i-1} A_j \chi_{jkl} \right\}; \qquad i = 1, 2, \dots, \ k = \overline{1, N}, \ l = \overline{1, M};$$

где

$$A_0 = h/2, \ A_j = h, \ j = 1, i - 1, \ A_i = h/2;$$
$$B_0 = \frac{h^{\alpha}}{2}, \ B_j = \frac{h^{\alpha}(j^{\alpha} - (j - 1)^{\alpha})}{2}, \ s = j, \ B_s = \frac{h^{\alpha}((s + 1)^{\alpha} - (s - 1)^{\alpha})}{2}.$$

Результаты вычислений представлены в таблице и на графиках (рис. 1–3). В качестве критерия, определяющего критическую скорость V_{*kp} , принимаем условие, предложенное в работе [5].

Из таблицы видно, что увеличение коэффициента вязкости A приводит к уменьшению критической скорости V_{*kp} флаттера на 54%. При A = 0 и A = 0.1 скорость флаттера соответственно равна 83.0 и 38.3. Полученные результаты согласуются с результатами работ [6, 7]. На рис. 1 приведены кривые, соответствующие различным значениям параметра A. По оси ординат на фигуре откладывается параметр прогиба оболочки, а по оси абсцисс — параметр безразмерного времени. Кривые построены для облочки при скорости $V_* = 5$ и следующих значениях параметра вязкости: A = 0 (кривая 1), A = 0.005 (кривая 2), A = 0.05 (кривая 3), A = 0.1 (кривая 4). Видно, что с увеличением параметра Aамплитуда и частота колебаний уменьшаются.

С увеличением реологического параметра α критическая скорость флаттера возрастает. Рост критической скорости более сильно заметен при значениях $\alpha = 0.7$ в отличие от значения $\alpha = 0.1$. Разница между ними составляет 54.1%. Для критической скорости флаттера влияние реологического параметра β незаметно.

Изучено влияние параметра k_1 ($k_1 = h^2 \beta_3^{-1}/L^2$) на критическую скорость V_{*kp} флаттера. Расчеты были проведены при $k_1 = 0.01$, 0.04, 0.08 и 0.3. Полученные результаты показывают, что с уменьшением жесткости заполнителя на сдвиг (с ростом коэффициента k_1) критическая скорость флаттера трехслойной оболочки уменьшается.

На рис. 2 приведены характерные кривые изменения безразмерного прогиба оболочки от безразмерного времени t для значений параметра $k_1 = 0.01, 0.04, 0.1$ (кривые 1–3 соответственно). Амплитуда колебаний для значения $k_1 = 0.01$ начинает быстро падать, а при значении $k_1 = 0.1$, наоборот, начинаются колебания с быстро возрастающей амплитудой.

Как показали вычисления, при увеличении параметра λ критическая скорость флаттера существенно уменьшается. Это объясняется тем, что по поверхности оболочкиаэродинамические нагрузки увеличиваются с ростом параметра λ из-за увеличения длины оболочки L.

Рис. 1. Зависимость амплитуды колебаний оболочки от параметра вязкости: A = 0 (кривая 1); A = 0.005 (кривая 2); A = 0.05 (кривая 3); A = 0.1 (кривая 4).

Рис. 2. Зависимость амплитуды колебаний оболочки от параметра k: k = 0.01 (кривая 1); k = 0.04 (кривая 2); k = 0.1 (кривая 3).

Рис. 3. Зависимость амплитуды колебаний оболочки от параметра $\Theta: \Theta = 0.01$ (кривая 1); $\Theta = 0.2$ (кривая 2).

Изучено влияние параметра Θ , характеризующего изгибную жесткость несущих слоев. Увеличение параметра Θ благоприятно влияет на флаттерные характеристики. Из рис. 3

A	α	β	k_1	λ	Θ	ε	$V_{\rm *kp}$
0 0.001 0.01 0.1	0.25	0.05	0.2	10	0.05	0.1	
0.1	$0.1 \\ 0.4 \\ 0.7$	0.05	0.2	10	0.05	0.1	30.5 42 47
0.1	0.25	0.01 0.1	0.2	10	0.05	0.1	38.5 38.1
0.1	0.25	0.05	$\begin{array}{c} 0.01 \\ 0.04 \\ 0.08 \\ 0.3 \end{array}$	1	0.05	0.1	172 146.3 133.9 122.95
0.1	0.25	0.05	0.2	$\begin{array}{c c} 4\\ 6\\ 8 \end{array}$	0.05	0.1	$ \begin{array}{r} 132.2 \\ 91.3 \\ 59 \end{array} $
0.1	0.25	0.05	0.2	1	$\begin{array}{c} 0.01 \\ 0.05 \\ 0.08 \\ 0.1 \\ 0.2 \end{array}$	0.1	$ \begin{array}{r} 115 \\ 124.2 \\ 130.95 \\ 135.3 \\ 156.4 \end{array} $
0.1	0.25	0.05	0.2	4	0.05	$\begin{array}{c} 0.5 \\ 1 \\ 5 \end{array}$	$ 139.5 \\ 143 \\ 147.5 $

Зависимость критической скорости флаттера от физико-механических и геометрических параметров трехслойных оболочек

видно, что увеличение параметра Θ способствует заметному падению амплитуды прогиба оболочки. При значении $\Theta = 0.01$ (кривая 1) наблюдается плавное нарастание амплитуд прогиба. Причину роста амплитуд можно объяснить тем, что скорость потока выше критической.

Также изучено влияние параметра ε (аэродинамическое демпфирование). С ростом коэффициента ε наблюдается повышение безразмерной критической скорости флаттера.

Расчеты показывают, что критическая скорость флаттера для круговой трехслойной цилиндрической оболочки зависит от числа волн m в окружном направлении. Если условно принять V_{*kp} при m = 6 за истинное значение, то, как показывают расчеты при различных параметрах, погрешность "второго приближения" (m = 2) составляет 100–150 %, третьего — 10–16 %, а пятого — 6–9 %. Это число волн m зависит также от размеров и характеристик материала оболочки.

Заключение

Таким образом, вязкоупругие свойства материала уменьшают критическую скорость флаттера трехслойных оболочечных конструкций. Увеличение жесткости заполнителя на сдвиг и изгибную жесткость несущих слоев приводит к возрастанию критической скорости. Увеличение изгибной жесткости несущих слоев в некоторых случаях влияет значительно слабее. Влияние увеличения изгибной жесткости несущих слоев и жесткости заполнителя на сдвиг в каждом конкретном случае следует оценивать специальным расчетом. Кроме того, следует иметь в виду, что увеличение изгибной жесткости несущих слоев и жесткости заполнителя на сдвиг требует дополнительного увеличения массы оболочечных конструкций и делается только при крайней необходимости, когда другие способы увеличения критической скорости оказываются недостаточными.

Список литературы

- Ильюшин А.А. Закон плоских сечений в аэродинамике больших сверхзвуковых скоростей // ПММ. 1956. Т. 20, вып. 6. С. 733–755.
- [2] ГРИГОЛЮК Э.И., МИХАЙЛОВ А.П. Флаттер трехслойных цилиндрических оболочек в сверхзвуковом потоке газа // Инженерный журнал. 1965. Т. V, вып. 6. С. 1087–1091.
- [3] СМИРНОВ А.И. Собственные колебания и флаттер трехслойных цилиндрических оболочек в сверхзвуковом потоке газа // Докл. АН СССР. 1969. Т. 186, № 3. С. 533–536.
- [4] БАДАЛОВ Ф.Б., ЭШМАТОВ Х., ЮСУПОВ М. О некоторых методах решения систем ИДУ, встречающихся в задачах вязкоупругости // ПММ. 1987. Т. 51, № 5. С. 867–871.
- [5] Худаяров Б.А. Алгоритмизация задачи о флаттере вязкоупругих пластинок, обтекаемых сверхзвуковым потоком газа // Вычисл. технологии. 2003. Т. 8, № 6. С. 100–103.
- [6] МАТЯШ В.И. Флаттер упруговязкой пластинки // Механика полимеров. 1971. № 6. С. 1077– 1083.
- [7] ЛАРИОНОВ Г.С. Нелинейный флаттер упруговязкой пластинки // Механика твердого тела. 1974. № 4. С. 95–100.

Поступила в редакцию 17 мая 2004 г., в переработанном виде — 26 июля 2004 г.