
Вычислительные технологии Том 10, № 6, 2005

EVOLUTION OF TEMPLATES FOR SYNTHESIS

OF SCIENTIFIC ALGORITHMS

O.G. Monakhov, E.A. Monakhov

Institute of Computational Mathematics

and Mathematical Geophysics SB RAS, Novosibirsk, Russia

e-mail: {monakhov,emilia}@rav.sscc.ru

Описан новый подход для синтеза алгоритмов на основе заданных темплейтов
и множества пар входных-выходных данных, использующий эволюционные вычис-
ления. Представленный алгоритм эволюционного синтеза интегрирует преимущества
генетических алгоритмов и генетического программирования и был применен для ав-
томатизации открытия и переоткрытия некоторых вычислительных комбинаторных
алгоритмов и алгоритмов на графах.

1. Introduction and Problem Definition

In this work the problem of synthesis of an algorithm A is considered as a problem of searching
for the parameters and functions of the given template T of an algorithm with the aim of
optimization of a given objective function F characterized as a quality of the algorithm A.
The template (skeleton [1, 2], design pattern [3]) is a parameterized control structure of the
algorithm. The template describes a scanning order of data structures of the algorithm and
defines the computational dynamics of the algorithm in space-time coordinates. The template
T of the algorithm A contains parameters P = {pk}, k ≥ 0, which describe the values of input
and local variables, parameters of the data structures, constants and some primitive operations
of the algorithm. The template T also contains a set of functions (formulas) FM = {fn}, n ≥ 0,
of the algorithm A. When giving the values of the parameters P and defining the functions FM
in the template T , the algorithm A(T, P, FM) is obtained. The objective function F estimates
the discrepancy between the observed output data of algorithm Y ′

i = A(T, P, FM,Xi) and the
given expected values Yi for the given input values Xi, 1 ≤ i ≤ N . The function F also should
estimate the complexity of the algorithm A(T, P, FM).

Thus, the problem of discovering an algorithm is the following: for the given template T
and the given input-output values {Xi, Yi}, 1 ≤ i ≤ N , is to find the parameters P ∗ and to
determine the functions FM∗ in the template T defining of the algorithm A∗(T, P ∗, FM∗) such
that

F (A∗(T, P ∗, FM∗, Xi)) ≤ F (A(T, P, FM,Xi))

for all 1 ≤ i ≤ N , P ∈ Dom(P), FM ∈ Dom(FM).
For solving of the problem a new template-based evolutionary approach (TEA) is proposed

for computer discovery (synthesis) of algorithms optimizing a given objective function. This

c© Институт вычислительных технологий Сибирского отделения Российской академии наук, 2005.

3

4 O. G. Monakhov, E. A. Monakhova

approach integrates the templates, genetic algorithms (GA) [4], genetic programming (GP) [5]
and obtains some new properties: more complex loop structure and recursion of the created
algorithms than in the genetic programming, and synthesis of new functions and predicates
that the genetic algorithms can not create. These properties of the approach are based on
the background knowledge and generalization of the expected algorithm and application field
included in the template. GP suffers from weak-restricted blind search in huge spaces for real-
world problems and has the high time efforts. This paper investigates the use of templates
to restrict the search space to admissible models and structures of solutions. This approach
represents the flexible and direct way to incorporate expert knowledge about parameters,
variables, functions and structures of the problems into being developed computation models.

A practical approach to a hybrid GA/GP search without templates and multiple trees was
used in [6 – 8]. The GA performs the search to find the right values for the constants, while the
GP searches the space of parse trees. The chromosome representation contains both the parse
tree and the constant values, and there are different genetic operators for manipulating the
parse trees and the constants. Another interesting approach in [9] to the synthesis of scientific
algorithms and programs is based on evolutionary computation but without genetic operations
and templates.

2. Template-based Evolutionary Algorithm for Automatic

Discovery

The automatic discovery algorithm is based on evolutionary computation and the simulation
of the survival of the fittest in a population of individuals, each being presented by a point
in the space of solutions of the optimization problem. The individuals are presented by data
structures Gen-chromosomes. Each chromosome contains underdeterminated parameters pk

and functions (formulas) fn of the template: Gen = {P, FM}= {p1, p2, ..., pk; f1, f2, ..., fn},
k, n ≥ 0. These parameters and functions determine the required algorithm A(T,Gen) based
on the given template T and the chromosome Gen.

Each population is a set of chromosomes Gen and determines a set of algorithms A(T,Gen)
generated based on the template T .

The main idea of the discovery algorithm consists in the evolutionary transformations over
sets of the chromosomes (parameters and formulas of the template) based on a natural selection:
“the strongest” survive. In our case these individuals are algorithms giving the best possible
value of the objective (fitness) function. In the algorithm the starting point is the generation
of the initial population. All individuals of the population are created at random, the best
individuals are selected and saved. To create the next generation, new solutions are formed
through genetic operations named selection, mutation, crossover and adding new elements.

The function F named as fitness function evaluates the sum of quadratic deviations of
output data of algorithm Y ′

i = A(T,Gen,Xi) from the given expected values Yi for the given
input values Xi, 1 ≤ i ≤ N :

F =
N∑

i=1

(A(T,Gen,Xi) − Yi)
2 + C(A(T,Gen)),

where C(A(T,Gen)) is an estimation of the complexity of the algorithm A (a time of execution,
a number of iterations, a complexity of formulas). The purpose of the discovery algorithm is to
search for a minimum of F .

EVOLUTION OF TEMPLATES FOR SYNTHESIS OF SCIENTIFIC ALGORITHMS 5

3. Data representation

The basic data structures in our program realizing the evolutionary algorithm are the chromosomes
Gen.

In this work a new approach for representation of the chromosomes Gen is proposed.
The chromosome Gen is based on an integration of a linear structure of the chromosome
for representation of parameters pk (as in genetic algorithms [4]) and a multi-tree structure of
the chromosome for representation of functions (formulas) fn (as in genetic programming [5]).
The linear structure of a chromosome is used for representation of the following parameters pk

of the given template T : values of integer and real variables and constants; values of indices,
increments and decrements; signs of variables, logic operations and relations, types of rounding.

The multi-tree structure of a chromosome is used for representation of the functions (formulas)
fn of the given template T . The tree corresponds to the parse tree of the function. The variables
and constants of the formula fn are represented by terminal nodes TS of the tree. The operations
and primitive functions used in the formula fn are represented by non-terminal nodes NS of
the tree. Each operation (primitive function) of the formula and its operands (the arguments
of the primitive function) are represented by a node and its descendant nodes in the tree.
For example, in fig. 1 the tree representation for the formula fn= (x + 2)/

√
a ∗ x − 5 has the

following nodes: TS = {x, a, 2, 5}, NS = {+,−, ∗, /,√ }.

Fig. 1. Tree representation of formula.

Using the template T and generating the chromosomes Gen, we create an analytical expression
for each function fn and determine a value for each parameter pk and, after then, we can
already produce all evaluations and modifications of the algorithm A(T,Gen). Thus, for the
known values of the functions fn and parameters pk we can calculate the output values Y ′

i of the
algorithm A(T,Gen,Xi) generated by evolution of the chromosomes Gen based on the given
template T for the given input values Xi, 1 ≤ i ≤ N . After evaluation of the algorithms A we
obtain the values of the fitness function F and select the best algorithms in the population.

4. Operators of the Algorithm

The mutation operator is applied to the individuals (chromosomes) chosen randomly from the
current population with a probability pm ∈ [0, 1]. Mutation represents a modification of an
individual whose number is randomly selected. The modification of the linear structure of the
chromosome is understood as a replacement of a randomly chosen parameter pi by another
value selected at random from a set of admissible values. The modification of the tree structure

6 O. G. Monakhov, E. A. Monakhova

of the chromosome is performed by a replacement of the value of a randomly chosen node
in the tree representation of function fi by another value selected at random from the set of
admissible values.

The crossover operator is applied to the two individuals (parents) chosen randomly from
the current population with a probability pc ∈ [0, 1]. The crossover consists of the generation of
two new individuals by exchanging the parts of the chromosomes of the parents. For the linear
(or tree) structures of the chromosomes the crossover is performed by replacing a randomly
chosen linear substructure (subtree) of one parent by a linear substructure (subtree) from the
other parent.

The creation of a new element is the generation of random parameters pk and functions fn

for the chromosomes. It allows for the adding of a diversification to the elements of a population.

The selection operator realizes the principle of the survival of the fittest individuals. It
selects the best individuals with the minimum fitness function in the current population.

5. Iteration Process

In the search for the optimum of the fitness function F the iteration process in the computer
discovery algorithm is organized in the following way.

First iteration: a generation of the initial population. It is realized as follows. All individuals
of the population are created by means of the operator new element (with a test and rejection
of all “impractical” individuals). After filling the whole population, the best individuals are
selected and saved in an array best.

One iteration: a step from the current population towards the next population. The basic
step of the algorithm consists of creating a new generation on the basis of selection, mutation,
crossover and also adding some new elements.

After evaluation of fitness function for each individual of the generation, a comparison of
the value of this function to values of fitness function of those individuals which are saved in
the array best is executed. In this case, if an element from the new generation is better than an
element best[i], for some i, we locate the new element on place i and shift all remaining ones
per a unit of downwards. Thus, the best element is located at the top of the array best.

Last iteration (the termination criterion): the iterations are finished either after a given
number of steps T = t or after finding optimal algorithm A(T,Gen) (with the given value of
fitness function).

By producing a given amount of the basic steps of the template-based evolutionary algorithm,
we obtain a set of algorithms A(T,Gen) containing an algorithm A∗(T,Gen) with the minimum
fitness function F in the element best[0].

6. Experimental Results

The template-based evolutionary approach was applied for rediscovery of the following algorithms:
computation of the power and factorial of a natural number, finding the least (largest) element
of an array, computation of the sum of the squares of elements of an array, computation of the
dot product of two vectors, finding the formulas for Fibonacci sequence, computation of the
sum of matrices, bubble, merge and Shell sort, finding the roots of an equation, load balancing
in parallel system, finding the single source shortest paths and minimal spanning tree in a

EVOLUTION OF TEMPLATES FOR SYNTHESIS OF SCIENTIFIC ALGORITHMS 7

graph, for discovery of a distance function of circulant graphs and analytical descriptions of
new dense families of optimal regular networks [10].

The realization of the template-based evolutionary algorithm has been implemented in the
C programming language and templates have been presented in this language. The number of
iterations and population size were chosen by an experimental way based on parameters from
[4, 5].

6.1. Finding the roots of the second-order equation

For the first example, the process of rediscovery of algorithms for finding the roots of the
second-order equation: f(x) = ax2 + bx + c = 0 is presented. Let 20 of input-output pairs
{Xi, Yi} be given, where Xi = (ai, bi, ci) are the coefficients of the equations, Yi = (r1i, r2i) are
roots of the equations (for simplicity, we will consider only real roots), 1 ≤ i ≤ N , N = 20.
The following two templates are used: the first template T1 is given as the following formula:

r1,2 = f1(a, b, c) ± f2(a, b, c) .

Note that the unknown functions are shaded.
The second template T2 of an approximation algorithm is given as the following iterative

loop:
1) {k = 0; xk = xbeg;

2) do {xk+1 = f1(xk, f(xk), f
′(xk)) ; k = k + 1; }

3) while ((f ′(xk) = ǫ > 10−7)&(k < 500));
4) return xk},

with a limited number of iterations k < 500, with a given precision of approximation ǫ < 10−7

and initial point xbeg, with a procedure for calculation of derivative f ′(x). The terminal nodes
for T1 are TS1 = {a, b, c, Cr}, and for T2 are TS2 = {xk, f(xk), f

′(xk), Cr}, where Cr is a
set of random natural constants. The set of operations used for synthesis of the formulas is
NS = {+,−, ∗, /,√ , x2} for the both templates.

In the case of the first template the template-based evolutionary algorithm rediscovered
the following known formula: r1,2 = −b/2a±

√
b2 − 4ac/2a. In the case of the second template

the discovery algorithm found the following expression: xk+1 = xk − f(xk)/f
′(xk). This result

corresponds to the known formula of Newton’s method (method of tangents). The first result
has been found after 10216 iterations (for time 70 sec.) with a population of 200. The second
result has been found after 360 iterations (for time 10 sec.) with a population of 200.

6.2. Finding the recursive functions for Fibonacci and Tribonacci

numbers

The second example shows how the recursive function for Fibonacci numbers can be generated
from the given template and the first eight numbers with index 1 ≤ i ≤ 8. We use the following
template:

F (i) = f3 (F (f1(i)), F (f2(i))).

With the set of operations NS = {+,−, ∗, /} and set of terminals TS = {i, Cr} the template-
based evolutionary algorithm defined f1(i) = i− 1, f2(i) = i− 2 and f3(x1, x2) = x1 + x2 after
411 iterations (for time 12 sec.) with a population of 3000.

8 O. G. Monakhov, E. A. Monakhova

Tribonacci numbers can be generated from the following template:

F (i) = f4 (F (f1(i)), F (f2(i)), F (f3(i))).

The template-based evolutionary algorithm defined f1(i) = i − 1, f2(i) = i − 2, f3(i) = i − 3
and f4(x1, x2, x3) = x1 + x2 + x3 after 461 iterations (for time 209 sec.) with a population of
30000, with the set of operations NS = {+,−}, set of terminals TS = {i, Cr} and with the
given first ten numbers with index 1 ≤ i ≤ 10.

6.3. Finding the distance function of circulant graphs with degree 4

For this example, a distance function of circulant graphs with degree 4 is created. The class
of circulant networks [11 – 13] plays an important role in the design and implementation of
interconnection networks. A circulant graph, having the parametric description, is defined
as follows. A circulant is an undirected graph G(N ; s1, s2, . . . , sn) with set of nodes V =
0, 1, 2, . . . , N − 1, having i ± s1, i ± s2, . . . , i ± sn (modN) nodes, adjacent to each node i.

The numbers S = (si) (0 < s1 < . . . < sn < N/2) are generators of the finite Abelian
group of automorphisms connected to the graph. Circulant graphs G(N ; 1, s2, . . . , sn), with the
identity generator, are known as loop networks or chordal rings [11]. The degree of a node in
circulant graph G is 2n, where n is the dimension. We will consider loop networks with degree
4, i.e. circulant networks of the form G(N ; 1, s). For example, a circulant graph C(14; 1, 6) with
degree 4, N = 14, s1 = 1, s2 = 6 is shown in fig. 2.

The diameter of G is defined as d(N ; S) = maxu,v∈V D(u, v), where D (the distance function)
is the length of a shortest path between nodes u and v in G. Because of the symmetry in
circulants it is enough to consider the problem of finding a shortest path from 0 to an arbitrary
node v. The distance function for nodes 0 and v in circulant C(200; 1, s), N = 200, for 0 < s <
N/2 and 0 < v < N/2 is shown in fig. 3.

For finding the distance function D(0, v) we will consider the following consideration. For
any node w we define +s and −s links from node w depending on whether they are used to go
to node (w + s)modN (in clockwise direction) or (w− s)modN (in counterclockwise direction).
Similarly, we define +1 and −1 links. Note that in circulant graphs a shortest path from 0 to v
does not use both +s and −s links simultaneously (the same takes place for +1 and −1 links).
Therefore, a shortest path from 0 to v would be using at most either (+s, +1) or (+s,−1) or

Fig. 2. Circulant C(14; 1, 6).

EVOLUTION OF TEMPLATES FOR SYNTHESIS OF SCIENTIFIC ALGORITHMS 9

Fig. 3. Distance function of circulant C(200; 1, s).

(−s, +1) or (−s,−1) links. Therefore further we will consider such combinations of links only.
Let (+s, +1)-path be a path from 0 to v using +s and +1 links only. For other combinations
of links we define the analogous notations. In order to go to node v from 0 by means of four
possible ways we have to use:

1) (+s, +1)-path: using ⌊v/s⌋ number of +s links and v mod s number of +1 links;

2) (+s,−1)-path: using ⌊v/s⌋+ 1 number of +s links and s− v mod s number of −1 links;

3) (−s,−1)-path: using ⌊(N − v)/s⌋ number of −s links and (N − v) mod s number of −1
links;

4) (−s, +1)-path: using ⌊(N − v)/s⌋+1 number of −s links and s− (N − v) mod s number
of +1 links.

This corresponds to one loop travelled in clockwise direction and one loop travelled in
counterclockwise direction (t = 0). Generalizing this process for t ≥ 0, we obtain for node v:

1) all (+s, +1)-paths: using ⌊(v + tN)/s⌋ number of +s links and (v + tN) mod s number
of +1 links;

2) all (+s,−1)-paths: using ⌊(v + tN)/s⌋ + 1 number of +s links and s − (v + tN) mod s
number of −1 links;

3) all (−s,−1)-paths: using ⌊((t+1)N −v)/s⌋ number of −s links and ((t+1)N −v) mod s
number of −1 links;

4) all (−s, +1)-paths: using ⌊((t+1)N −v)/s⌋+1 number of −s links and s− ((t+1)N −v)
mod s number of +1 links.

10 O. G. Monakhov, E. A. Monakhova

Note that because of the symmetry of circulants the (−s, +1) and (−s,−1)-paths from 0
to (v + tN)modN can be changed to the (+s,−1) and (+s, +1)-paths, respectively, from 0 to
node ((t + 1)N − v)modN , t ≥ 0.

It is necessary to find the shortest paths of all the four types and the shortest of the four will
give us a global shortest path between 0 and v. The number of loops t < s because v mod s < s
for any 0 ≤ v < N .

Based on the above considerations and background knowledge of circulant properties the
following template T for distance function dist = D(0, v) of circulant C(N ; 1, s) is used:

1) int t, k, k2, r, r2, d, d1, d2, dist = N ;

2) for(t = 0; t < s; t = t + 1)

3) {k = (v + t ∗ N)/s; r = (v + t ∗ N)%s;

4) k2 = ((t + 1) ∗ N − v)/s; r2 = ((t + 1) ∗ N − v)%s;

5) d1 = f1(k, r, s) ; d2 = f1(k2, r2, s) ;

6) d = min(d1, d2); if (dist > d) dist = d; }
7) return dist.

Here x/s = ⌊x/s⌋, x%s = x mod s. In the line 1 of the template the needed local variables
are defined. In the line 2 we have the operator for with the limited number of loops t < s. In
the lines 3 and 4 the variables k and r define the numbers of +s and +1 links, respectively,
for path from 0 to v in clockwise direction, and, similarly, the variables k2 and r2 define the
numbers of −s and +1 links for path from 0 to v in counterclockwise direction. In the line
5, for the current loop t, the undefined function f1(k, r, s) has to calculate the length d1 of
the shortest path from 0 to v in clockwise direction, and, similarly, f1(k2, r2, s) calculates the
length d2 of the shortest path in counterclockwise direction. In the line 6 the length d (dist) of
the shortest path from 0 to v for the current loop t (for all loops t′ < t) is defined. In the line
7 we have the result: dist = D(0, v).

The terminal nodes for the undefined function f1(x1, x2, x3) are local variables {k, k2, r, r2},
a global {s} and {Cr} (a set of random natural constants). The set of operations used for the
synthesis of the formula f1 is NS = {+,−, min, ⌊x⌋}.

For this template the template-based evolutionary algorithm found the following expression:
f1(x1, x2, x3) = min((x1 + x2), (x1 + 1 + x3 − x2)). The function f1(k, r, s) calculates the length
of the shortest path from 0 to v in clockwise direction as the minimum of the lengths (k + r)
and ((k + 1) + (s − r)) of the (+s, +1)- and (+s,−1)-paths, respectively, and, similarly, the
function f1(k2, r2, s) calculates the length of the shortest path from 0 to v in counterclockwise
direction (both for the current loop t). The result has been found for the given 99 input-output
pairs {v,D(0, v)}, 1 ≤ v ≤ 99, for graph C(200; 1, s) after 127 iterations (for time 270 sec.)
with a population of 500. The correctness for computation of the distance function D(u, v) of
circulant based on template T and formula f1 was proved experimentally and theoretically.

The upper estimate of t (equal to s in the line 2 of the above template) can be decreased.

Lemma 1. The number of loops in the algorithm defining the distance function (the line 2
of the above template) may not exceed the following value: ⌊⌈s/2⌉/⌊N/s⌋⌋ + 1.

Proof. Let 0 ≤ v < N be a node and t = 0. Let d1 (d2) be the length of the shortest
from (+s, +1)- and (+s,−1)-paths (from (−s,−1)- and (−s, +1)-paths) from 0 to v. We have
d1 = min{⌊v/s⌋+v mod s, ⌊v/s⌋+1+s−v mod s} = ⌊v/s⌋+min{v mod s, s+1−v mod s} ≤
⌊v/s⌋ + ⌈s/2⌉. Analogously, d2 ≤ ⌊(N − v)/s⌋ + ⌈s/2⌉.

Thus, D(0, v) ≤ min{d1, d2} ≤ min{⌊v/s⌋, ⌊(N − v)/s⌋} + ⌈s/2⌉, 0 ≤ v < N . Because the
values ⌊(v + tN)/s⌋ and ⌊((t+1)N − v)/s⌋ on each loop (t > 0) increase at least by ⌊N/s⌋, the

EVOLUTION OF TEMPLATES FOR SYNTHESIS OF SCIENTIFIC ALGORITHMS 11

number of loops t for determining D(0, v) may not exceed the value t0 = ⌊⌈s/2⌉/⌊N/s⌋⌋ + 1.
Thus, a global shortest path between 0 and v will be found for 0 ≤ t < t0. Q.E.D.

As a result we have
Lemma 2. The computation of the distance function D(0, v), 0 ≤ v < N , for loop network

C(N ; 1, s) based on template T , formula f1 and with the number of loops defined by Lemma 1
is correct.

This algorithm can be used to solve other problems in loop networks of degree 4, such as
the routing problem of finding a shortest path between two nodes, or finding the diameter of a
graph. For solving the first problem it is sufficient to store numbers of steps and signs of two
generators giving a shortest path if the operation dist = d is realized in the line 6 of the above
template T .

In [14 – 16], the algorithms of finding a shortest path between any pair of nodes in circulant
networks with degree 4 are given. The above algorithm generated by the template-based
evolutionary algorithm differs from all the known algorithms and its estimate is not worse.

Conclusions

The represented template-based evolutionary approach has been used successfully to automatically
invent computational algorithms and for discovery of mathematical formulas for the given data
sets and for the given algorithm’s templates (e.g. iterations, recursions, loops and cycles), which
describe the scanning of the complex data structures (matrixes, arrays, graphs, trees) and which
contain the formula templates in the body. This approach can be used for synthesis of new
algorithms, functions, models and solutions, which afterwards can be theoretically investigated
and justified.

References

[1] Cole, M. (1989). Algorithmic Skeletons: Structured Management of Parallel Computation. The
MIT Press.

[2] Mirenkov, N., Mirenkova, T. (1996). Multimedia Skeletons and "Filmification"of Methods. Proc.
of The First International Conference on Visual Information Systems (pp. 58–67). Victoria
University, Melbourne, Australia.

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA.

[4] Goldberg, D.E. (1989). Genetic Algorithms, in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA.

[5] Koza, J. (1992). Genetic Programming. Cambridge, The MIT Press.

[6] Andre, D. (1994). Automatically defined features: The simultaneous evolution of 2-dimensional
feature detectors and algorithm for using them. In K. Kinnear (Ed.), Advances in Genetic
Programming (pp. 477–494). MIT Press/Bradford Books.

[7] Nguyen, T., Huang, T. (1994). Evolvable 3D modeling for model-based object recognition systems.
In K. Kinnear (Ed.), Advances in Genetic Programming (pp. 459–475). MIT Press/Bradford
Books.

12 O. G. Monakhov, E. A. Monakhova

[8] Lee, W.-P., Hallam, J., Lund, H.H. (1996). A Hybrid GP/GA Approach for Co-evolving
Controllers and Robot Bodies to Achieve Fitness-Specified Tasks. Proc. of IEEE International
Conf. on Evolutionary Computation. IEEE Press.

[9] Olsson, J.R. (1998). Population management for automatic design of algorithms through
evolution, Proc. of IEEE International Conference on Evolutionary Computation, IEEE Press.

[10] Monakhov, O., Monakhova, E. (2003). An Algorithm for Discovery of New Families of Optimal
Regular Networks. Proc. of 6th Inter. Conf. on Discovery Science (DS 2003), Oct. 17–20, 2003,
Sapporo, Japan, Lecture Notes in Artificial Intelligence, vol. 2843, (pp. 244–254). Springer-Verlag,
Berlin, Heidelberg.

[11] Bermond, J.-C., Comellas, F., Hsu, D.F. (1995). Distributed loop computer networks: a survey,
J. Parallel Distributed Comput., 24, 2–10.

[12] Monakhov, O., Monakhova, E. (2000). Parallel Systems with Distributed Memory: Structures
and Organization of Interactions, Novosibirsk, SB RAS Publ. (in Russian).

[13] Hwang, F.K. (2003). A survey on multi-loop networks. Theoretical Computer Science, 2003, 299,
107–121.

[14] Mukhopadhyaya, K., Sinha, B.P. (1995). Fault-tolerant routing in distributed loop networks.
IEEE Trans. Comput., 44(12), 1452–1456.

[15] Narayanan, L., Opatrny, J. (1997). Compact routing on chordal rings of degree four. In D. Krizanc
and P. Widmayer, (Ed.), Sirocco 97, Carleton Scientific, 125–137.

[16] Robic, B., Zerovnik, J. (2000). Minimum 2-terminal routing in 2-jump circulant graphs.

Computers and Artificial Intelligence, 19(1), 37–46.

Received for publication April 14, 2005

