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Оптимальное ядро матрицы регрессии рассчитано методом полуопределенного
программирования с использованием трех базисных матриц. В работе представле-
ны предварительные результаты, использующие стандартные реперные данные, для
которых выявлены оптимальные параметры линейной комбинации трех базисных ма-
триц ядра.

Introduction

The problem of identifying an optimal kernel for a specific class of data has recently found
increasing attention in the machine learning community. Chapelle et al. [6] have investigated
the selection of optimal parameters using a traditional steepest descent method. Their approach
locates a local minimum in the space of parameters. Cristianini et al. [8] have suggested
an approach which finds the kernel matrix that best describes the labels of the training set
(kernel target alignment). Lanckriet et al. [9] employed ideas from semidefinite programming for
computing the optimal kernel matrix for pattern classification problems. Bach, Lanckriet and
Jordan [1] use sequential minimal optimization techniques to improve computational efficiency
for solving support vector machine classification problems, which are based on a combination of
kernel matrices. Trafalis and Malyscheff [16] computed the optimal kernel matrix for regression
analysis problems using semidefinite programming excluding basis matrices. In this paper we
extend these ideas computing the optimal parameters for a linear combination of three basis
regression kernel matrices using semidefinite programming techniques [10, 11, 17]. We illustrate
our findings with some examples and apply them to standard benchmark data.

The paper is organized as follows: in section 1 we will provide a brief introduction to support
vector machine learning and describe the primal and dual versions for regression analysis
problems. Based on the dual formulation we will then compute the dual of the dual support
vector regression problem, since this formulation has some computational advantages for our
purposes. Section 2 introduces the semidefinite programming framework and incorporates the
results from the previous section resulting in two formulations, which were used for experimen-
tation. In section 3 we will compute a few simple examples illustrating our formulation and
then present results using standard benchmark data.
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c© Институт вычислительных технологий Сибирского отделения Российской академии наук, 2006.
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1. Support Vector Machine Learning for Regression

Analysis

Support vector machine (SVM) learning and other kernel-based learning algorithms can be
implemented either as a classification or regression analysis problem. This discussion will focus
on the regression analysis environment, for further information on the subject, in particular
on support vector machines in classification, we refer the reader to the texts [5, 7, 13, 18].
Regression analysis problems focus on the computation of a linear scalar based on one or more
input values (attributes). Mathematically, let the training data consist of l vectors xj ∈ ℜd

with an a priori known output value yj ∈ ℜ, where j = 1, ..., l. Hence, the training set can be

written as T = {(xj, yj)
l

j=1
} ⊂ ℜd+1. Vapnik [19] has shown that in the case of linear support

vector machine regression the following primal optimization problem must be solved:

(P) min
1

2
‖w‖2 , (1)

subject to

yj − wTxj − b ≤ ǫ ∀j = 1, ..., l, (λj) ,

wTxj + b − yj ≤ ǫ ∀j = 1, ..., l,
(

λ∗

j

)

,

where w ∈ ℜd is the slope of the regression function and b ∈ ℜ the offset with respect to the
origin. Note that for d-dimensional input data w ∈ ℜd. The parameter ǫ can be interpreted as
the precision that is required from the regression function. Geometrically, it creates a tube of
width 2ǫ around the regression function, within which all measured data samples (xj, yj) must
be contained.

Let λj be the Lagrangian multiplier corresponding to the first set of constraints and λ∗

j

be the Lagrangian multiplier corresponding to the second set (j = 1, ..., l). Define the vectors
Λ̃T = ΛT−Λ∗T = (λ1−λ∗

1, λ2−λ∗

2, ..., λl−λ∗

l ), 1
T = (1, 1, ..., 1), and yT = (y1, y2, ..., yl) as well as

the matrix Kij = xT
i xj in the linear case and Kij = k (xi,xj) in the general case, where k (xi,xj)

is the kernel function. Popular kernel functions include a d-degree polynomial kernel k (xi,xj) =
(

xT
i xj + 1

)d
or a radial-basis function kernel k (xi,xj) = exp

(

−0.5 (xi − xj)
T (xi − xj) /σ2

)

.

The dual problem can then be written in closed form as:

(D) W (Ktr) = max −
1

2
Λ̃TKtrΛ̃ − ǫ

(

ΛT1 + Λ∗T
1
)

+ ytr
T Λ̃, (2)

subject to

Λ̃T1 = 0 (π) ,

(Λ)j ≥ 0 ∀j = 1, ..., l (Γ)j,

(Λ∗)j ≥ 0 ∀j = 1, ..., l (Γ∗)j.

By writing Ktr we emphasize that for the solution of this problem we entirely rely on the
training set excluding kernel products from the test set for the computation of W (Ktr). We
will elaborate on Ktr in section 2. We also denote the vector of the training labels by ytr, again,
in order to show that this variable is solely based on training data. Note that the regression
function can be expressed as

f (xj) =
l

∑

i=1

(

Λ̃
)

i
k (xi,xj) + b ∀j = 1, ..., l (3)
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for the training data. In this paper we identify during optimization also the k (xi,xj) for the
test data, thus, the prediction regression function for the test set can be found from

f (xj) =
l

∑

i=1

(

Λ̃
)

i
k (xi,xj) + b ∀j = l + 1, ..., l + nts, (4)

where nts indicates the number of samples in the test set. The bias b can be computed by
solving the complementary slackness conditions [12, 13]. We will further discuss b in section 2.

In the next step we will compute the dual problem of the dual support vector regression
formulation in (2), as this will facilitate the computational analysis. Using the variables Γ =
(γ1, ..., γl), Γ∗ = (γ∗

1 , ..., γ
∗

l ), Λ = (λ1, ..., λl), Λ∗ = (λ∗

1, ..., λ
∗

l ), and Λ̃ = Λ−Λ∗ the Lagrangian
of the (dual) support vector machine regression problem can be written as:

L
(

λj, λ
∗

j , π, γj, γ
∗

j

)

= ytr
TΛ − ytr

TΛ∗ −
1

2
(Λ − Λ∗)T

Ktr (Λ − Λ∗) − ǫ (Λ + Λ∗)T
1 +

+ΓTΛ + (Γ∗)T
Λ∗ + π (Λ − Λ∗)T

1. (5)

From duality theory [2, 4] we know:

W (Ktr) =
max

λj ≥ 0, λ∗

j ≥ 0

{

min
γj ≥ 0, γ∗

j ≥ 0, π

{

L
(

λj, λ
∗

j , γj, γ
∗

j , π
)}

}

, (6)

W (Ktr) =
min

γj ≥ 0, γ∗

j ≥ 0, π

{

max
λj ≥ 0, λ∗

j ≥ 0

{

L
(

λj, λ
∗

j , γj, γ
∗

j , π
)}

}

.

Computing the gradients ∇ΛL and ∇Λ∗L results in:

∇ΛL = ytr − Ktr (Λ − Λ∗) − ǫ1 + Γ + π1 = 0; (7)

∇Λ∗L = −ytr + Ktr (Λ − Λ∗) − ǫ1 + Γ∗ − π1 = 0. (8)

Upon combining equations (7) and (8) one finds:

Γ + Γ∗ = 2ǫ1. (9)

Since Ktr is positive definite, expression (7) can be solved for Λ:

Λ = K−1

tr (ytr − ǫ1 + π1 + Γ) + Λ∗. (10)

We can recompute the Lagrangian by using the results from (9) and (10):

L(λj, λ
∗

j , π, γj, γ
∗

j ) =

= ytr
TK−1

tr (ytr − ǫ1 + π1 + Γ) − ǫ1T
[

K−1
tr (ytr − ǫ1 + π1 + Γ) + 2Λ∗

]

+

+π1TK−1
tr (ytr − ǫ1 + π1 + Γ) + ΓT

[

K−1
tr (ytr − ǫ1 + π1 + Γ) + Λ∗

]

+

+ (Γ∗)T
Λ∗ −

1

2

[

K−1

tr (ytr − ǫ1 + π1 + Γ)
]T

KtrK
−1

tr (ytr − ǫ1 + π1 + Γ)

and after simplifying we obtain:

L
(

λj,opt, λ
∗

j,opt, π, γj, γ
∗

j

)

=
1

2
(ytr − ǫ1 + π1 + Γ)T

K−1

tr (ytr − ǫ1 + π1 + Γ) . (11)
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Therefore, the “dual of the dual” for support vector machine regression reduces to:

W (Ktr, πopt,Γopt) = min
1

2
(ytr − ǫ1 + π1 + Γ)T

K−1

tr (ytr − ǫ1 + π1 + Γ) (12)

subject to

2ǫ1 − Γ ≥ 0,

Γ ≥ 0,

π unrestricted.

Note that the regression parameters can be obtained from Λ̃ = Λ−Λ∗. Taking into account
equation (10) one finds for the regression parameters:

Λ̃ = Λ − Λ∗ = K−1

tr (ytr − ǫ1 + π1 + Γ) . (13)

2. Formulation using Semidefinite Programming

In the previous section we briefly discussed support vector machine learning in regression
analysis and presented the dual of the dual formulation. We will now introduce the semidefinite
programming (SDP) framework in which problem (12) will be embedded.

Let us begin by first decomposing the kernel matrix K. This matrix contains mappings of
scalar products of the input data for both the training and the test set. Since a part of the
analysis extracts information solely contained in the training set, while other parts will require
information of test set input data, we will write the kernel matrix K as:

K =

[

Ktr Ktr,t

KT
tr,t Kt

]

. (14)

The matrix Ktr reflects information of the training data, Ktr,t describes mappings of scalar
products between training and test set, while Kt represents mappings solely of test set input
vectors. The expression in equation (2) for example operates only on scalar product mappings
Ktr from the training inputs:

W (Ktr) = max−
1

2
(Λ − Λ∗)T

Ktr (Λ − Λ∗) − ǫ
(

ΛT1 + Λ∗T
1
)

+ ytr
T (Λ − Λ∗) :

(Λ − Λ∗)T
1 = 0,Λ ≥ 0,Λ∗ ≥ 0.

It can be observed that W (Ktr) is convex in Ktr. Moreover, since regression analysis
problems can be interpreted as a classification problem [3], we can use the concept of the margin
and apply it in this context. Thus, since W (Ktr) is the inverse of the margin for classification
problems, we can follow the same reasoning minimizing W (Ktr) under the assumption that
K º 0 and trace (K) = const [8]. Thus, we require semidefiniteness for all data samples, while
optimality is enforced on the training data:

min W (Ktr) (15)

subject to

K º 0,

trace (K) = c.
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By introducing the variable t the above problem can be formulated in terms of Ktr and K

as follows:

min t (16)

subject to

K º 0,

t ≥ W (Ktr) ,

trace (K) = c.

Moreover, considering both equations (12) and (16) one can write:

min t (17)

subject to

K º 0,

t ≥ min

{

1

2
(ytr − ǫ1 + π1 + Γ)T

K−1

tr (ytr − ǫ1 + π1 + Γ) : 2ǫ1 − Γ ≥ 0,Γ ≥ 0

}

,

trace (K) = c.

The constraint imposed on Γ can be shifted from the subproblem to the global problem:

min t (18)

subject to

K º 0,

t ≥ min

{

1

2
(ytr − ǫ1 + π1 + Γ)T

K−1

tr (ytr − ǫ1 + π1 + Γ)

}

,

2ǫ1 − Γ ≥ 0,

Γ ≥ 0,

trace (K) = c.

From Schur’s complement we know that for the symmetric matrix

X = XT =

[

A B

BT C

]

(19)

holds that if A ≻ 0, then X º 0, if and only if S = C − BTA−1B º 0.
Using this additional information equation (18) can be written as:

min t
K, t, π,Γ

(20)

subject to

trace (K) = c,

K º 0,
[

Ktr ytr − ǫ1 + π1 + Γ

(ytr − ǫ1 + π1 + Γ)T 2t

]

º 0,

2ǫ1 − Γ ≥ 0,

Γ ≥ 0.
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The matrices Ktr and K contain as elements input vector scalar products or mappings
thereof. Various different mappings exist (polynomial, radial-basis function) and one aspect
of research in support vector machine learning addresses the issue of selecting an efficient
parameter for these mappings. Here, these parameters will be preselected for three basis kernel
matrices, which are subsequently optimally combined using a set of multipliers µi ∈ ℜ. Mathe-
matically, consider

K = µ1K1 + µ2K2 + µ3K3. (21)

Here, K1 describes a polynomial kernel with entries

k1 (xi,xj) =
(

xT
i xj + 1

)d
. (22)

For experiments in this paper a value of d = 2 was selected. Next, K2 implements a radial-
basis function kernel with entries

k2 (xi,xj) = exp
(

−0.5 (xi − xj)
T (xi − xj) /σ2

)

. (23)

For this analysis we chose σ = 0.5. Finally, K3 realizes a linear kernel with entries

k3 (xi,xj) = xT
i xj. (24)

Taking into account the decompostion as described in equations (21)–(24) we can rewrite
problem (20):

min t
µ1, µ2, µ3, t, π,Γ

(25)

subject to

trace (µ1K1 + µ2K2 + µ3K3) = c,

µ1K1 + µ2K2 + µ3K3 º 0,
[

µ1K1,tr + µ2K2,tr + µ3K3,tr ytr − ǫ1 + π1 + Γ

(ytr − ǫ1 + π1 + Γ)T 2t

]

º 0,

2ǫ1 − Γ ≥ 0,

Γ ≥ 0,

µ1, µ2, µ3 free.

The semidefinite programming problem in (25) leaves the parameters µi unrestricted and
one set of experiments on standard benchmark data was conducted using this formulation. In
addition we also formulated a kernel-based learning algorithm with the additional requirement
of the µi to be nonnegative. This optimization problem is spelled out in (26) and benchmark
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tests were also performed using this formulation.

min t
µ1, µ2, µ3, t, π,Γ

(26)

subject to

trace (µ1K1 + µ2K2 + µ3K3) = c,

µ1K1 + µ2K2 + µ3K3 º 0,
[

µ1K1,tr + µ2K2,tr + µ3K3,tr ytr − ǫ1 + π1 + Γ

(ytr − ǫ1 + π1 + Γ)T 2t

]

º 0,

2ǫ1 − Γ ≥ 0,

Γ ≥ 0,

µ1, µ2, µ3 ≥ 0.

In order to compute the predicted output f (xj) for both training and test set we require

the
(

Λ̃
)

i
, which can be computed from equations (13), (14), and (21). For the computation of

the bias b in equation (3) complementary slackness imposes:

γjλj = 0 ∀j = 1, ..., l, (27)

and

γ∗

j λ
∗

j = 0 ∀j = 1, ..., l. (28)

In addition, we know from (9) that Γ + Γ∗ = 2ǫ1. Therefore, if γ∗

j = 0, we conclude that
γj 6= 0 requiring λj = 0. Finally, going back to the original problem in (1) we can postulate
that b = yj −wTxj − ǫ, if λj 6= 0. A similar analysis can be conducted for γj = 0, which yields
overall:

γj = 0 → λj 6= 0 → b = yj − wTxj − ǫ (29)

and

γ∗

j = 0 → λ∗

j 6= 0 → b = yj − wTxj + ǫ. (30)

The scalar product of wTxj can be replaced by
l

∑

i=1

(

Λ̃
)

i
k (xi,xj). Note that it is possible

to have both, γj 6= 0 and γ∗

j 6= 0, resulting in data points which are located entirely inside the
regression tube.

3. Computational Results

3.1. Examples

In this section we will employ the semidefinite programming problem from (25) to compute the
optimal kernel matrix for several simple regression problems. For our computations we used
SeDuMi 1.05 [14] and Yalmip [15].

In the first experiment consider the quadratic function f (x) = x2. The training set spanned
xT

tr = (−2,−1, 0, 1, 2) with the test set consisting of xT
ts = (1.5). Thus, the training output
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assumed the values of ytr
T = (4, 1, 0, 1, 4), while the predicted output yT

ts,pr was compared
to the value yT

ts = (2.25). For this experiment we selected ǫ = 0.01 and c = 1 requiring
thus trace (K) = 1. Solving problem (25) for these values yields the following result for the
parameters µ:

µ =





µ1

µ2

µ3



 =





0.0222
0.0000
−0.0444



 . (31)

Keeping in mind that K1 corresponds to a polynomial kernel of degree 2, K2 to a radial-basis
function kernel of degree 0.5, and K3 to a linear kernel the overall training matrix becomes:

Ktr = µ1K1,tr + µ2K2,tr + µ3K3,tr =













0.3773 0.1110 0.0222 0.1110 0.3773
0.1110 0.0444 0.0222 0.0444 0.1110
0.0222 0.0222 0.0222 0.0222 0.0222
0.1110 0.0444 0.0222 0.0444 0.1110
0.3773 0.1110 0.0222 0.1110 0.3773













. (32)

The overall matrix includes also the test set, for this simple example the test set contained
only one pattern, therefore K ∈ ℜ6×6 carrying the values:

K =

















0.3773 0.1110 0.0222 0.1110 0.3773 0.2219
0.1110 0.0444 0.0222 0.0444 0.1110 0.0721
0.0222 0.0222 0.0222 0.0222 0.0222 0.0222
0.1110 0.0444 0.0222 0.0444 0.1110 0.0721
0.3773 0.1110 0.0222 0.1110 0.3773 0.2219
0.2219 0.0721 0.0222 0.0721 0.2219 0.1345

















. (33)

Indeed, the trace of this matrix adds up to one. Moreover, for the value of the objective
function one finds t = 22.31. The unrestricted Lagrangian multiplier assumes a value of
π = −0.01. For Γ and Γ∗ the following vectors are calculated respectively:

Γ =













0.0000
0.0150
0.0200
0.0150
0.0000













and Γ∗ =













0.0200
0.0050
0.0000
0.0050
0.0200













. (34)

The vector of Λ̃’s is obtained using the following identity:

Λ̃ = K−1

tr (y − ǫ1 + π1 + Γ) =













5.0953
2.0405

−14.2701
2.0405
5.0953













(35)

and the predicted training outputs ytr,pr can be computed from

ytr,pr = KtrΛ̃ + b1 =













3.9967
1.0117
0.0167
1.0117
3.9967













, (36)
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where b = 0.0167 was derived using the complementary slackness conditions in (29) and (30).
In order to identify the predicted test output introduce the matrix Kts = [Ktr,Ktr,t]

T with

Kts =

[

Ktr

Ktr,t

]

=

















0.3773 0.1110 0.0222 0.1110 0.3773
0.1110 0.0444 0.0222 0.0444 0.1110
0.0222 0.0222 0.0222 0.0222 0.0222
0.1110 0.0444 0.0222 0.0444 0.1110
0.3773 0.1110 0.0222 0.1110 0.3773
0.2219 0.0721 0.0222 0.0721 0.2219

















, (37)

where the last row corresponds to the matrix Ktr,t in equation (14). Indeed, the expression
KtsΛ̃ + b becomes now

KtsΛ̃ + b1 =

[

ytr,pr

yts,pr

]

=

















3.9967
1.0117
0.0167
1.0117
3.9967
2.2554

















, (38)

where the last value is the predicted value for yT
ts = (2.25). Equation (38) can also be interpreted

as the closed form version of equations (3) and (4).
Next, let us discuss an approximation of the function f(x) = exp(x). We computed f(x)

for values from −5 to +5 at increments of 1.0. We chose ǫ = 0.5 and c = 1. The semidefinite
programming approach identified a feasible optimal solution with an objective function value
of t = 76100. For the Lagrangian multiplier we found π = −5.5912. For the bias we calculated
b = 5.5903, while the parameters for the basis matrices attained the values:

µ =





µ1

µ2

µ3



 =





0.0001
0.0558
0.0016



 . (39)

Fig. 1. Comparison f(x) = exp(x). Fig. 2. Comparison f(x) = sin(x).
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Figure 1 shows the graphs for the labels ytr and the predicted values ypr computed by
SeDuMi.

Note that in this experiment the predicted training labels are almost identical to the true
training labels, as the two curves are very close to each other.

For the third experiment the function f(x) = sin(x) was examined. Here, we computed
labels from 0 to 6.28 at increments of 0.4. Once more, we chose ǫ = 0.5 and c = 1. The solution
of the semidefinite programming problem yielded an objective function value of t = 3.5102
and a Lagrangian multiplier of π = −0.0132. For the sinusoidal function the bias assumes a
significantly smaller value of b = 0.0086 than was the case for the exponential function. For
the parameters for the basis matrices we retrieve the values:

µ =





µ1

µ2

µ3



 =





0.0002
0.0634
−0.0041



 . (40)

Figure 2 shows the two graphs for labels ytr and the predicted values ypr.
Notice that for both the exponential and the sinusoidal function most of the weight of the

µi is placed on the radial-basis function kernel, while for the quadratic function in the first
experiment the polynomial kernel is disproportionately favored.

3.2. Benchmark tests

Hereafter, generalization performance for the semidefinite programming approach was computed
using problems (25) and (26). Subsets with 100 samples of the publicly available datasets
abalone

1, add102, and boston
3 were selected as benchmark datasets. All datasets were randomly

split into a training and a test set with a training to test set ratio of 80 % : 20 %. For each
dataset 30 different scenarios were created and results are presented as an average over these
30 scenarios. As a reference the best radial-basis function kernel support vector machine is
also displayed. The kernel parameter was tuned using cross-validation over 30 training set
scenarios. The abalone dataset was first preprocessed converting nonnumeric information and
subsequently normalizing inputs and target. The goal is to predict the age of abalone from
physical measurements. The value ǫ was set to ǫ = 0.05. Performance was also evaluated on
the first of the three synthetic Friedman-functions (add10), which are all popular benchmark
datasets in regression analysis [20]. The first Friedman model has 10 attributes, however,
the output value is computed by using only the first five inputs and by including normally
distributed noise ξ. More specifically, the function y = 10 sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 +
5x5+ξ is to be examined. The 10 input variables are uniformly distributed in [0, 1]. A regression
tube of ǫ = 5 was selected. The dataset boston with 13 attributes describing various input
characteristics (e. g. crime rate, pupil-teacher ratio, highway accessibility) predicts as output
the value of a home. The samples are normalized and ǫ = 0.1 was selected.

Table displays the mean square generalization error and the standard deviation for the
semidefinite programming formulations (25) and (26). The table also lists the mean square
error for the best radial-basis function support vector regression tuned using cross-validation.
The second column shows the ǫ-values for which the experiments were conducted. Also, the
corresponding values for the µi are displayed. Performance of the two SDP formulations is

1ftp://ftp.ics.uci.edu/pub/machine-learning-databases/abalone
2http://www.cs.toronto.edu/ delve/data/add10/desc.html
3http://lib.stat.cmu.edu/datasets/boston
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Mean Square Error on Standard Benchmark Data

Dataset ǫ MSE(SDP) MSE(SDP µi ≥ 0) MSE(RBF-SVM)

µ1 / µ2 / µ3 µ1 / µ2 / µ3

−0.0014 / 0.0111 / 0.0043 0 / 0.01 / 0
abalone 0.05 (10.400 ± 1.923) · 10−4 (10.387 ± 1.921) · 10−4 (10.456 ± 1.923) · 10−4

µ1 / µ2 / µ3 µ1 / µ2 / µ3

0.0009 / 0.0057 / −0.0040 0.0003 / 0.0046 / 0
add10 5 15.111 ± 3.594 15.453 ± 4.906 11.170 ± 2.314

µ1 / µ2 / µ3 µ1 / µ2 / µ3

0.0041 / 0.0121 / −0.0186 0 / 0.01 / 0
boston 0.1 (44.013 ± 6.483) · 10−4 (44.061 ± 6.441) · 10−4 (40.897 ± 9.601) · 10−4

comparable, the difference between MSE(SDP) and MSE(SDP µi ≥ 0) is rather marginal for
all three datasets. For the dataset abalone nonnegative µi’s lead to a slight improvement of the
mean square error. Furthermore, for the datasets abalone and boston nonnegative µi’s result
in a pure radial-basis function solution with µ1 = µ3 = 0 for both datasets. For unrestricted
multipliers the dataset abalone shows a negative coefficient for the polynomial kernel, while
the datasets add10 and boston display a negative coefficient for the linear kernel. Compared to
the best support vector machine the SDP approach is competitive for the datasets abalone and
boston. Nonetheless one needs to keep in mind that the computational effort for evaluating
problems (25) and (26) is significantly smaller when compared to support vector machine
learning tuned using cross-validation. The solution for the dataset abalone for SDP (µi ≥ 0)
is governed by a pure radial-basis function solution (µ1 and µ3 are zero). The mean square
error for the corresponding support vector machine solution is very similar (10.387 ·10−4 versus
10.456 · 10−4), since tuning for the dataset abalone resulted in an optimal radial-basis function
parameter of σ = 0.5, which is identical to the σ used for K2.

Conclusion and Outlook

In this paper we have presented a new method for calculating the regression kernel matrix as a
linear combination of three basis kernel matrices using semidefinite programming techniques.
The coefficients for the three matrices were first left unconstrained and subsequently constrained
to be nonnegative. The parameter selection problem is equivalent to a convex optimization
problem guaranteeing that this algorithm identifies the global optimum. Preliminary experimentation
on standard benchmark data show promising results for these techniques when compared to
the best radial-basis function support vector machine.
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