ON THE NONLINEAR DIAMOND HEAT EQUATION RELATED TO THE SPECTRUM

G. Sritanratana
Department of Mathematics, Mahidol University, Bangkok, Thailand
A. Kananthai
Department of Mathematics, Chiang Mai University, Thailand e-mail: malamnka@science.cmu.ac.th

Рассматривается неоднородное эволюционное уравнение, содержащее первую производную по времени и оператор, образованный разностью двух бигармонических операторов разной размерности, который авторы называют Diamond-оператором. Правая часть есть липшиц-непрерывная функция решения. С помощью преобразования Фурье найдено фундаментальное решение рассматриваемого уравнения и исследованы его свойства. На этой основе дано явное решение этого уравнения в виде свертки функции правой части с фундаментальным решением, доказаны его единственность и ограниченность в равномерной норме.

Introduction

It is well known that for the heat equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=c^{2} \triangle u(x, t) \tag{0.1}
\end{equation*}
$$

with the initial condition

$$
u(x, 0)=f(x)
$$

where $\triangle=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplace operator and $(x, t)=\left(x_{1}, x_{2}, \ldots, x_{n}, t\right) \in \mathbb{R}^{n} \times(0, \infty)$, and f is a continuous function, we obtain the solution

$$
\begin{equation*}
u(x, t)=\frac{1}{\left(4 c^{2} \pi t\right)^{n / 2}} \int_{\mathbb{R}^{n}} \exp \left[-\frac{|x-y|^{2}}{4 c^{2} t}\right] f(y) d y \tag{0.2}
\end{equation*}
$$

as the solution of (0.1).
Now, (0.2) can be written as $u(x, t)=E(x, t) * f(x)$ where

$$
\begin{equation*}
E(x, t)=\frac{1}{\left(4 c^{2} \pi t\right)^{n / 2}} \exp \left[-\frac{|x|^{2}}{4 c^{2} t}\right] \tag{0.3}
\end{equation*}
$$

[^0]$E(x, t)$ is called the heat kernel, where $|x|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$ and $t>0$, see [2, p. 208-209].
Moreover, we obtain $E(x, t) \rightarrow \delta$ as $t \rightarrow 0$, where δ is the Dirac-delta distribution. We also have extended (0.1) to be the equation
\[

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=-c^{2} \triangle^{2} u(x, t) \tag{0.4}
\end{equation*}
$$

\]

with the initial condition

$$
u(x, 0)=f(x)
$$

where $\triangle^{2}=\triangle \triangle$ is the biharmonic operator, that is

$$
\triangle^{2}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right)^{2}
$$

We can find the solution of (0.4) by using the n-dimensional Fourier transform to apply. We obtain

$$
u(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{-c^{2}|\xi|^{4} t+i(\xi, x-y)} f(y) d y d \xi
$$

as a solution of (0.4), or $u(x, t)$ can be written in the convolution form

$$
u(x, t)=E(x, t) f(x)
$$

where

$$
\begin{equation*}
E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{-c^{2}|\xi|^{4} t+i(\xi, x)} d \xi \tag{0.5}
\end{equation*}
$$

$|\xi|^{4}=\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right)^{2}$ and $(\xi, x)=\xi_{1} x_{1}+\xi_{2} x_{2}+\cdots+\xi_{n} x_{n}$. The function $E(x, t)$ of (0.5) is the kernel of (0.4) and also $E(x, t) \rightarrow \delta$ as $t \rightarrow 0$, since

$$
\lim _{t \rightarrow 0} E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{(\xi, x) i} d \xi=\delta(x),
$$

see [3, p. 396, Eq. (10.2.19b)]. Now, the purpose of this work is to study the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)-c^{2} \diamond u(x, t)=f(x, t, u(x, t)) \tag{0.6}
\end{equation*}
$$

which is called the nonlinear diamond heat equation where $(x, t) \in \mathbb{R}^{n} \times(0, \infty)$ and the operator \diamond is first introduced by A. Kananthai [1, p. 27-37] and named the Diamond operator defined by

$$
\begin{equation*}
\diamond=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}\right)^{2}-\left(\frac{\partial^{2}}{\partial x_{p+1}^{2}}+\frac{\partial^{2}}{\partial x_{p+2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{2} \tag{0.7}
\end{equation*}
$$

$p+q=n$ is the dimension of space $\mathbb{R}^{n},\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and c is a positive constant.
We consider the equation (0.6) with the following conditions on u and f as follows.

1. $u(x, t) \in \mathcal{C}^{(4)}\left(\mathbb{R}^{n}\right)$ for any $t>0$ where $\mathcal{C}^{(4)}\left(\mathbb{R}^{n}\right)$ is the space of continuous function with 4-derivatives.
2. f satisfies the Lipchitz condition, that is $|f(x, t, u)-f(x, t, w)| \leq A|u-w|$ where A is constant with $0<A<1$.
3.

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}|f(x, t, u(x, t))| d x d t<\infty
$$

for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, 0<t<\infty$ and $u(x, t)$ is continuous function on $\mathbb{R}^{n} \times(0, \infty)$.
Under such conditions of f, u and for the spectrum of $E(x, t)$, we obtain the convolution

$$
u(x, t)=E(x, t) f(x, t, u(x, t))
$$

as a unique solution in the compact subset of $\mathbb{R}^{n} \times(0, \infty)$ where $E(x, t)$ is an elementary solution defined by (1.5) and is called the Diamond heat kernel.

1. Preliminaries

Definition 1.1. Let $f(x) \in \mathbb{L}_{1}\left(\mathbb{R}^{n}\right)$ - the space of integrable function in \mathbb{R}^{n}. The Fourier transform of $f(x)$ is defined by

$$
\begin{equation*}
\widehat{f}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i(\xi, x)} f(x) d x \tag{1.1}
\end{equation*}
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right), x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n},(\xi, x)=\xi_{1} x_{1}+\xi_{2} x_{2}+\cdots+\xi_{n} x_{n}$ is the usual inner product in \mathbb{R}^{n} and $d x=d x_{1} d x_{2} \ldots d x_{n}$.

Also, the inverse of Fourier transform is defined by

$$
\begin{equation*}
f(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i(\xi, x)} \widehat{f}(\xi) d \xi . \tag{1.2}
\end{equation*}
$$

Definition 1.2. Let $E(x, t)$ be defined by (1.5) which is called the diamond heat kernel. The spectrum of $E(x, t)$ is the bounded support of the Fourier transform $\widehat{E(\xi, t)}$ for any fixed $t>0$. Definition 1.3. Let $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ be a point in \mathbb{R}^{n} and we write

$$
u=\xi_{1}^{2}+\xi_{2}^{2}+\ldots+\xi_{p}^{2}-\xi_{p+1}^{2}-\xi_{p+2}^{2}-\ldots-\xi_{p+q}^{2}, \quad p+q=n .
$$

Denote by $\Gamma_{+}=\left\{\xi \in \mathbb{R}^{n}: \xi_{1}>0\right.$ and $\left.u>0\right\}$ the set of an interior of the forward cone, and $\bar{\Gamma}_{+}$denotes the closure of Γ_{+}.

Let Ω be spectrum of $E(x, t)$ defined by definition 1.2 for any fixed $t>0$ and $\Omega \subset \bar{\Gamma}_{+}$. Let $\widehat{E(\xi, t)}$ be the Fourier transform of $E(x, t)$ and define

$$
\widehat{E(\xi, t)}= \begin{cases}\frac{1}{(2 \pi)^{n / 2}} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)\right] & \text { for } \xi \in \Gamma_{+} \tag{1.3}\\ 0 & \text { for } \xi \notin \Gamma_{+}\end{cases}
$$

Lemma 1.1. Let L be the operator defined by

$$
\begin{equation*}
\mathrm{L}=\frac{\partial}{\partial t}-c^{2} \diamond \tag{1.4}
\end{equation*}
$$

where \diamond is the Diamond operator defined by

$$
\diamond=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}\right)^{2}-\left(\frac{\partial^{2}}{\partial x_{p+1}^{2}}+\frac{\partial^{2}}{\partial x_{p+2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{2}
$$

$p+q=n$ is the dimension of $\mathbb{R}^{n},\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, t \in(0, \infty)$ and c is a positive constant. Then we obtain

$$
\begin{equation*}
E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)+i(\xi, x)\right] d \xi \tag{1.5}
\end{equation*}
$$

as an elementary solution of (1.4) which is called the diamond heat kernel in the spectrum $\Omega \subset \mathbb{R}^{n}$ for $t>0$.

Proof. Let $\mathrm{L} E(x, t)=\delta(x, t)$ where $E(x, t)$ is the kernel or the elementary solution of operator L and δ is the Dirac-delta distribution. Thus

$$
\frac{\partial}{\partial t} E(x, t)-c^{2} \diamond E(x, t)=\delta(x) \delta(t)
$$

Apply the Fourier transform defined by (1.1) to the both sides of the equation, we obtain

$$
\frac{\partial}{\partial t} \widehat{E(\xi, t)}-c^{2}\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right) \widehat{E(\xi, t)}=\frac{1}{(2 \pi)^{n / 2}} \delta(t)
$$

Thus

$$
\widehat{E(\xi, t)}=\frac{H(t)}{(2 \pi)^{n / 2}} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)\right]
$$

where $H(t)$ is the Heaviside function. Since $H(t)=1$ for $t>0$. Therefore,

$$
\widehat{E(\xi, t)}=\frac{1}{(2 \pi)^{n / 2}} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)\right]
$$

which has been already defined by (1.3). Thus

$$
E(x, t)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i(\xi, x)} \widehat{E(\xi, t)} d \xi=\frac{1}{(2 \pi)^{n / 2}} \int_{\Omega} e^{i(\xi, x)} \widehat{E(\xi, t)} d \xi
$$

where Ω is the spectrum of $E(x, t)$. Thus from (1.3)

$$
E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)+i(\xi, x)\right] d \xi
$$

for $t>0$.
Definition 1.4. Let us extend $E(x, t)$ to $\mathbb{R}^{n} \times \mathbb{R}$ by setting

$$
E(x, t)= \begin{cases}\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)+i(\xi, x)\right] d \xi & \text { for } t>0 \\ 0 & \text { for } t \leq 0\end{cases}
$$

2. Main Results

Theorem 2.1. The kernel $E(x, t)$ defined by (1.5) have the following properties:

1) $E(x, t) \in \mathcal{C}^{\infty}$ - the space of continuous function for $x \in \mathbb{R}^{n}, t>0$ with infinitely differentiable;
2) $\left(\frac{\partial}{\partial t}-c^{2} \diamond\right) E(x, t)=0$ for $t>0$;
3)

$$
|E(x, t)| \leq \frac{2^{2-n}}{\pi^{n / 2}} \frac{M(t)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)},
$$

for $t>0$ where $M(t)$ is a function of t in the spectrum Ω and Γ denote the Gamma function. Thus $E(x, t)$ is bounded for any fixed $t>0$;
4) $\lim _{t \rightarrow 0} E(x, t)=\delta$.

Proof.

1. From (1.5), since

$$
\frac{\partial^{n}}{\partial x^{n}} E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \frac{\partial^{n}}{\partial x^{n}} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)+i(\xi, x)\right] d \xi
$$

Thus $E(x, t) \in \mathcal{C}^{\infty}$ for $x \in \mathbb{R}^{n}, t>0$.
2. By computing directly, we obtain

$$
\left(\frac{\partial}{\partial t}-c^{2} \diamond\right) E(x, t)=0
$$

3. We have

$$
\begin{gathered}
E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)+i(\xi, x)\right] d \xi \\
|E(x, t)| \leq \frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)\right] d \xi
\end{gathered}
$$

By changing to bipolar coordinates

$$
\xi_{1}=r \omega_{1}, \xi_{2}=r \omega_{2}, \ldots, \xi_{p}=r \omega_{p} \quad \text { and } \quad \xi_{p+1}=s \omega_{p+1}, \xi_{p+2}=s \omega_{p+2}, \ldots, \xi_{p+q}=s \omega_{p+q}
$$

where $\sum_{i=1}^{p} \omega_{i}^{2}=1$ and $\sum_{j=p+1}^{p+q} \omega_{j}^{2}=1$. Thus

$$
|E(x, t)| \leq \frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(s^{4}-r^{4}\right)\right] r^{p-1} s^{q-1} d r d s d \Omega_{p} d \Omega_{q}
$$

where $d \xi=r^{p-1} s^{q-1} d r d s d \Omega_{p} d \Omega_{q}, d \Omega_{p}$ and $d \Omega_{q}$ are the elements of surface area of the unit sphere in \mathbb{R}^{p} and \mathbb{R}^{q} respectively. Since $\Omega \subset \mathbb{R}^{n}$ is the spectrum of $E(x, t)$ and we suppose $0 \leq r \leq R$ and $0 \leq s \leq L$ where R and L are constants. Thus we obtain

$$
|E(x, t)| \leq \frac{\Omega_{p} \Omega_{q}}{(2 \pi)^{n}} \int_{0}^{R} \int_{0}^{L} \exp \left[c^{2} t\left(s^{4}-r^{4}\right)\right] r^{p-1} s^{q-1} d s d r=\frac{\Omega_{p} \Omega_{q}}{(2 \pi)^{n}} M(t)
$$

for any fixed $t>0$ in the spectrum

$$
\begin{equation*}
\Omega=\frac{2^{2-n}}{\pi^{n / 2}} \frac{M(t)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
M(t)=\int_{0}^{R} \int_{0}^{L} \exp \left[c^{2} t\left(s^{4}-r^{4}\right)\right] r^{p-1} s^{q-1} d s d r \tag{2.2}
\end{equation*}
$$

is a function of $t>0, \Omega_{p}=\frac{2 \pi^{p / 2}}{\Gamma\left(\frac{p}{2}\right)}$ and $\Omega_{q}=\frac{2 \pi^{q / 2}}{\Gamma\left(\frac{q}{2}\right)}$. Thus, for any fixed $t>0, E(x, t)$ is bounded.
4. By (1.5), we have

$$
E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} \exp \left[c^{2} t\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)+i(\xi, x)\right] d \xi
$$

Since $E(x, t)$ exists, then

$$
\lim _{t \rightarrow 0} E(x, t)=\frac{1}{(2 \pi)^{n}} \int_{\Omega} e^{i(\xi, x)} d \xi=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i(\xi, x)} d \xi=\delta(x), \text { for } x \in \mathbb{R}^{n}
$$

See [3, p. 396, Eq. (10.2.19b)].
Theorem 2.2. Given the nonlinear equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)-c^{2} \diamond u(x, t)=f(x, t, u(x, t)) \tag{2.3}
\end{equation*}
$$

for $(x, t) \in \mathbb{R}^{n} \times(0, \infty)$ and with the following conditions on u and f as follows:

1) $u(x, t) \in \mathcal{C}^{(4)}\left(\mathbb{R}^{n}\right)$ for any $t>0$ where $\mathcal{C}^{(4)}\left(\mathbb{R}^{n}\right)$ is the space of continuous function with 4-derivatives;
2) f satisfies the Lipchitz condition, that is $|f(x, t, u)-f(x, t, w)| \leq A|u-w|$ where A is constant and $0<A<1$;
3)

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}|f(x, t, u(x, t))| d x d t<\infty
$$

for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, t \in(0, \infty)$ and $u(x, t)$ is continuous function on $\mathbb{R}^{n} \times(0, \infty)$.

Then we obtain the convolution

$$
\begin{equation*}
u(x, t)=E(x, t) f(x, t, u(x, t)) \tag{2.4}
\end{equation*}
$$

as a unique solution of (2.3) for $x \in \Omega_{0}$ where Ω_{0} is an compact subset of $\mathbb{R}^{n}, 0 \leq t \leq T$ with T is constant and $E(x, t)$ is an elementary solution defined by (1.5) and also $u(x, t)$ is bounded.

In particular, if we put $p=0$ in (2.3) then (2.3) reduces to the nonlinear equation

$$
\frac{\partial}{\partial t} u(x, t)-c^{2} \triangle^{2} u(x, t)=f(x, t, u(x, t))
$$

which is related to the heat equation.
Proof. Convolving both sides of (2.3) with $E(x, t)$ and then we obtain the solution

$$
u(x, t)=E(x, t) f(x, t, u(x, t))
$$

or

$$
u(x, t)=\int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}} E(r, s) f(x-r, t-s, u(x-r, t-s)) d r d s
$$

where $E(r, s)$ is given by Definition 1.4.
We next show that $u(x, t)$ is bounded on $\mathbb{R}^{n} \times(0, \infty)$. We have

$$
|u(x, t)| \leq \int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}}|E(r, s)||f(x-r, t-s, u(x-r, t-s))| d r d s \leq \frac{2^{2-n}}{\pi^{n / 2}} \frac{N M(t)}{\Gamma\left(\frac{p}{2}\right) \Gamma\left(\frac{q}{2}\right)}
$$

by the condition 3 and (2.1) where

$$
N=\int_{0}^{\infty} \int_{\mathbb{R}^{n}}|f(x, t, u(x, t))| d x d t
$$

Thus $u(x, t)$ is bounded on $\mathbb{R}^{n} \times(0, \infty)$.
To show that $u(x, t)$ is unique, suppose there is another solution $w(x, t)$ of equation (2.3). Let the operator

$$
\mathrm{L}=\frac{\partial}{\partial t}-c^{2} \diamond
$$

then (2.3) can be written in the form

$$
\mathrm{L} u(x, t)=f(x, t, u(x, t)) .
$$

Thus

$$
\mathrm{L} u(x, t)-\mathrm{L} w(x, t)=f(x, t, u(x, t))-f(x, t, w(x, t)) .
$$

By the condition 2 of the Theorem,

$$
\begin{equation*}
|\mathrm{L} u(x, t)-\mathrm{L} w(x, t)| \leq A|u(x, t)-w(x, t)| . \tag{2.5}
\end{equation*}
$$

Let $\Omega_{0} \times(0, T]$ be compact subset of $\mathbb{R}^{n} \times(0, \infty)$ and $\mathrm{L}: \mathcal{C}^{(4)}\left(\Omega_{0}\right) \longrightarrow \mathcal{C}^{(4)}\left(\Omega_{0}\right)$ for $0 \leq t \leq T$.

Now $\left(\mathcal{C}^{(4)}\left(\Omega_{0}\right),\|\cdot\|\right)$ is a Banach space where $u(x, t) \in \mathcal{C}^{(4)}\left(\Omega_{0}\right)$ for $0 \leq t \leq T,\|\cdot\|$ given by

$$
\|u(x, t)\|=\sup _{x \in \Omega_{0}}|u(x, t)| .
$$

Then, from (2.5) with $0<A<1$, the operator L is a contraction mapping on $\mathcal{C}^{(4)}\left(\Omega_{0}\right)$. Since $\left(\mathcal{C}^{(4)}\left(\Omega_{0}\right),\|\cdot\|\right)$ is a Banach space and $\mathrm{L}: \mathcal{C}^{(4)}\left(\Omega_{0}\right) \rightarrow \mathcal{C}^{(4)}\left(\Omega_{0}\right)$ is a contraction mapping on $\mathcal{C}^{(4)}\left(\Omega_{0}\right)$, by Contraction Theorem, see [4, p. 300], we obtain the operator L has a fixed point and has uniqueness property. Thus $u(x, t)=w(x, t)$. It follows that the solution $u(x, t)$ of (2.3) is unique for $(x, t) \in \Omega_{0} \times(0, T]$ where $u(x, t)$ is defined by (2.4).

In particular, if we put $p=0$ in (2.3) then (2.3) reduces to the nonlinear equation

$$
\frac{\partial}{\partial t} u(x, t)-c^{2} \triangle^{2} u(x, t)=f(x, t, u(x, t))
$$

which has solution

$$
u(x, t)=E(x, t) f(x, t, u(x, t))
$$

where $E(x, t)$ is defined by (1.5) with $p=0$. That is complete of proof.
The authors would like to thank The Thailand Research Fund for financial support.

References

[1] Kananthai A. On the solution of the n-dimensional Diamond operator // Appl. Math. and Comp. 1997. Vol. 88. P. 27-37.
[2] John F. Partial Differential Equations. N.Y.: Springer-Verlag, 1982.
[3] Haberman R. Elementary Applied Partial Differential Equations. Prentice-Hall International, Inc., 1983.
[4] Kreyszig E. Introductory Functional Analysis with Applications. N.Y.: John Wiley \& Sons Inc., 1978.

[^0]: © Институт вычислительных технологий Сибирского отделения Российской академии наук, 2006.

