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Аддитивные модели принадлежат к технике современного статистического по-
знания, они применяются для прогнозирония во многих областях, таких как фи-
нансовая математика, вычислительная биология, медицина, химия и защита окру-
жающей среды. Эти модели используются посредством алгоритма обратного фит-
тинга, основанного на методе частичных остатков, предложенном Friedman and
Stuetzle (1981). В этой статье мы сначала даем введение в проблему и обзор. За-
тем мы представляем моделирование сплайнами, основанное на новом кластерном
подходе для входных данных, плотности этих данных и изменении выходных дан-
ных. Наш вклад в метод регрессии с аддитивными моделями состоит в ограни-
чении членов, отвечающих за кривизну сплайна, что приводит к более надежной
аппроксимации. Мы предлагаем усовершенствованную модификацию и исследова-
ние алгоритма обратного фиттинга применительно к аддитивным моделям. Ис-
пользуя язык теории оптимизации, в частности, метод конического квадратичного
программирования, мы инициируем дальнейшие исследования и их практические
приложения для программирования.

1. Introduction

1.1. Learning and Models

In the last decades, learning from data has become very important in every field of science,
economy and technology, for problems concerning the public and the private life as well.
Modern learning challenges can for example be found in the fields of computational biology
and medicine, and in the financial sector. Learning enables for doing estimation and prediction.
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There are regression, mainly based on the idea of least squares or maximum likelihood
estimation, and classification. In statistical learning, we are beginning with deterministic
models and, then, we turn to the more general case of stochastic models where uncertainties,
noise or measurement errors are taken into account. For a closer information we refer to
the book Hastie, Tibshirani, Friedman [12]. In classical models, the approach to explain the
recorded data y consists of one unknown function only; the introduction of additive models

(Buja, Hastie, Tibshirani 1989 [5]) allowed an “ansatz” with a sum of functions which have
separated input variables. In our paper, we figure out clusters of input data points x (or
entire data points (x,y)), and assign an own function that additively contributes to the
understanding and learning from the measured data. These functions over domains (e. g.,
intervals) depending on the cluster knots are mostly assumed to be splines. We will introduce
an index useful for deciding about the spline degrees by density and variation properties of
the corresponding data in x and y components, respectively. In a further step of refinement,
aspects of stability and complexity of the problem are implied by keeping the curvatures of
the model functions under some chosen bounds. The corresponding constrained least squares
problem can, e. g., be treated as a penalized unconstrained minimization problem. In this
paper, we specify (modify) the backfitting algorithm which contains curvature term and
apply for additive models.

This paper contributes to both the m-dimensional case of input data separated by
the model functions and, as our new alternative, to 1-dimensional input data clustered.
Dimensional generalizations of the second interpretation and a combination of both interpretations
are possible and indicated. Applicability for data classification is noted. We point out
advantages and disadvantages of the concept of backfitting algorithm. By all of this, we
initiate future research with a strong employing of optimization theory.

1.2. A Motivation of Regression

This paper has been motivated by the approximation of finanical data points (x, y), e. g.,
coming from the stock market. Here, x represents the input constellation, while y stands for
the observed data. The discount function, denoted by δ(x), is the current price of a risk free,
zero coupon bond paying unit of money at time x. We use y(x) to denote the zero-coupon
yield curve and to f(x) to denote the instantaneous forward rate curve. These are related
to the discount function by

δ(x) = exp (−xy(x)) = exp



−
x

∫

0

f (s)ds



 . (1.1)

The term interest rate curve can be used to refer to any one of these three related curves.

In a world with complete markets and no taxes or transaction, absence of arbitrage
implies that the price of any coupon bond can be computed from an interest rate curve. In
particular, if the principal and interest payment of a bond is cj units of money at time xj

(j = 1, ...,m), then the pricing equation for the bond is

m
∑

j=1

cjδ (xj) =
m

∑

j=1

cj exp (−xjy (xj)) =
m

∑

j=1

cj exp



−
xj

∫

0

f (s)ds



 . (1.2)
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The interest rate curve can be estimated if given a set of bond prices. For this reason, let
(Bi)i=1,...,N comprise the bonds, X1 < X2 < ... < Xm be the set of dates at which principal
and interest payments occur, let cij be the principal and interest payment of the ith bond
on date Xj, and Pi be the observed price of the ith bond. The pricing equation is

Pi = P̂i + εi, (1.3)

where P̂i is defined by P̂i =
m
∑

j=1

cijδ (Xj) (Waggoner 1997 [22]). The curves of discount

δ(x), yield y(x) and forward rate f(x) can be extracted via linear regression, regression
with splines, smoothing splines, etc., using prices of coupon bond. For example, assuming
P := (P1, ..., PN )T and C := (cij)i=1,...,N ;j=1,...,m to be known, denoting the vector of errors or

residuals (i. e., noise, inaccuracies and data uncertainties) by ε := (ε1, ..., εN )T and writing
β := δ (X) = (δ(X1), ..., δ(Xm))T , then the pricing equation looks as follows:

P = Cβ + ε. (1.4)

Thus, the equation (1.4) can be seen as linear model with the unknown parameter
vector (δ(X1), ..., δ(Xm))T = β. If we use linear regression methods or maximum likelihood
estimation and, in many important cases, just least squares estimation, then we can extract
δ (X). For introductory and closer information about these methods from the viewpoints
of statistical learning or the theory of inverse problems, we refer to the books of Hastie,

Tibshirani, Friedman [12] and Aster, Borchers, Thurber [2], respectively.

1.3. Regression

1.3.1. Linear Regression

Linear regression models the relation between two variables by fitting a linear model to
observed data. One variable is considered to be an input (explanatory) variable x, and the
other is considered to be an output (dependent) variable y. Before attempting to do this
fitting, the modeller firstly decides whether at all there is a relationship between x and y.
This does not necessarily imply that one variable causes the other, but that there is some
significant association between the two variables. A scatterplot can be a helpful tool in
determining the strength of the relationship between two variables [7].

Provided an input vector X = (X1, ..., Xm)T of (random) variables and an output variable
Y , our linear regression model has the form

Y = E(Y |X1, ..., Xm) + ε = f(X) + ε = β0 +
m

∑

j=1

Xjβj + ε. (1.5)

Here, βj are unknown parameters or coefficients, the error ε is a Gaussian random variable
with expectation 0 and variance σ2, in short: ε ∼ N(0, σ2), and the variables Xj can be from

different sources. We denote the estimation of f by f̂ . The most popular estimation method
is least squares approximation which determines the coefficient vector β = (β0, β1, ..., βm)T

to minimize the residual sum of squares via observation values (yi, xi),

RSS (β) :=
N

∑

i=1

(

yi − xT
i β

)2
(1.6)
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or, in matrix notation,

RSS (β) = (y − Xβ)T (y − Xβ) . (1.7)

Here, X is the N × (m + 1) matrix with each row being an input vector (with entries 1
in the first column), and y is the N vector of outputs in the training set. Equation (1.7) is a
quadratic function in m + 1 unknown parameters. If N ≥ m + 1 and X has full rank, then

our solution vector β which minimizes RSS is β̂ =
(

XT X
)−1

XT y. The fitted values at the

training inputs are ŷ = Xβ̂ = X
(

XT X
)−1

XT y, where ŷi = f̂(xi) = xT
i β̂.

1.3.2. Regression with Splines

In the above regression model, sometimes

f(X) = E(Y |X1, ..., Xm) (1.8)

can be nonlinear and nonadditive. Since, however, a linear model is easy to interpret, we
want to represent f(X) by a linear model. Therefore, an approximation by a first-order
Taylor approximation to f(X) can be used and sometimes even needs to be done. In fact, if
N is small or m large, a linear model might be all we are able to use for data fitting without
overfitting.

Regression with splines is a very popular method as for moving beyond linearity [12].
Here, we expand or replace the vector of inputs X with additional variables, which are
transformations of X and, then, we use linear models in this new space of derived input
features. Let X vector of inputs and hl : R

m → R be the jth transformation of X or basis
function (l = 1, . . .,M). Then, f(X) is modelled by

f(X) =
M

∑

l=1

βlhl(X), (1.9)

a linear basis expansion in X. Herewith, the model has become linear in these new variables
and the fitting proceeds as in the case of a linear model. In fact, the estimation of β is

β̂ =
(

HT (x)H(x)
)−1

HT (x) Y, (1.10)

where H(x) = (hl(xi))i=1,...,N ;
l=1,...,M

is the matrix of basis functions evaluated at the input data.

Hence, f̂ (X) becomes estimated by f̂(X) = hT (X)β̂. For the special case hl(X) = Xl

(l = 1, ...,M) the linear model is recovered. Generally, in one dimension (m = 1), an
order M spline with knots ξκ(κ = 1, . . ., K) is piecewise polynomial of degree M−1, and
has continuous derivatives up to order M − 2. A cubic spline has M = 4. Any piecewise
constant function is an order 1 spline, while the continuous piecewise linear function is
an order 2 spline. Likewise the general form for the truncated-power basis set would be
hl(X) = X l−1 (l = 1, ...,M) and hM+τ (X) = (X − ξτ )

M−1
+ (τ = 1, ..., K), where (t)+ stands

for the positive part of a value t [12].
Fixed-knot splines are also called regression splines. It is necessary to select the order of

the spline, the number of knots and their placement. One simple approach is to parameterize
a family of splines by the number of basis elements or degrees of freedom and let the
observations xi determine the positions of the knots. We shall follow the latter approach
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in Section 2; there, we shall define a special index for the selection of the spline degrees and,
herewith, their orders.

Since the space of spline functions of a particular order and knot sequence is a vector
space, there are many equivalent bases for representing them. Truncated power bases, being
so conceptually simple, are not attractive numerically, because they can allow big rounding
problems. The B-spline basis allows for efficient computations even when the number of
knots K is large. For basic information about higher and 1-dimensional splines, we refer
to [6].

1.4. Additive Models

1.4.1. Classical Additive Models

We stated that regression models, especially, linear ones, are very important in many applied
areas. However, the traditional linear models often fail in real life, since many effects are
generally nonlinear. Therefore, flexible statistical methods have to be used to characterize
nonlinear regression effects; among these methods is non-parametric regression (Fox 2002
[8]). But, if the number of independent variables is large in the models, many forms of
nonparametric regression do not perform well; in those cases, the number of them must be
diminished. This decreasing causes the variances of the estimates to be unacceptably large.
It is also difficult to interprete nonparametric regression depending on smoothing spline
estimates. To overcome these difficulties, Stone (1985) [21] proposed additive models. These
models estimate an additive approximation of the multivariate regression function. Here,
the estimation of the individual terms explains how the dependent variable changes with
the corresponding independent variables. We refer to Hastie and Tibshirani (1986) [10] for
basic elements of the theory of additive models.

If we have data consisting of N realizations of random variable Y at m design values,
enumerated by the index i, then the additive model takes the from

E (Yi| xi1, ..., xi m) = β0 +
m

∑

j=1

fj (xij). (1.11)

The functions fj are unknown arbitrary and smooth functions and they are mostly
considered to be splines, i. e., piecewise polynomial, since, e. g., polynomials themselves
have a too strong or early asymptotics to ±∞ and, by this, they may not be satisfying
for data fitting. As we shall explain, these functions are estimated by a smoothing on
single (“separated”) coordinates or clusters. A standard convention is to assume at xij :
E (fj (xij)) = 0 since, otherwise, there will be a free constant in each of the functions [13].
Here, xij is the jth coordinate of the ith input data vector; later on, in the backfitting
algorithm, these values also serve as the knots of the interpolating (or smoothing) splines
which appear there. The estimation of the fj is done by an algorithm which performs a
stepwise smoothing with respect to suitably chosen spline classes, to the points xij, and to
the differences rij between an average yi of the observed output data yij and the sum of our
functions evaluated at the interpolation knots xij.

In our paper, we will introduce a new interpretation: We consider Xj consisting of m
variates (coordinates of X) as a value of the jth one of m disjoint clusters of input data which
we achieve; the cluster elements are enumerated by xij. That is, there is the understanding
of ith data in the jth component of the input variable (classical separation of variable
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approach), and there is the new understanding of the ith points of the jth cluster (Ij) of
input data. If these clusters have the same cardinality, which we shall assume without loss
of generality, we denote it by N . With this new interpretation we will find and refer to
structures, e. g., regularly in time repeating input constellations. We will “separate” them by
clusters which we call intervals (maybe in higher-dimensional sense). Here, “regular” means
that we can see or without of generality assume correspondences between the sample times in
these time intervals, e. g., there are mondays, tuesdays, ... We recall that the output values
corresponding to the inputs are denoted by yij. Averaging over these values with respect

to j, delivering yi :=
m
∑

j=1

yij (i = 1, ..., N), will then represent, e. g., an observation mean over

the mondays, tuesdays, etc., respectively. Since our explanations hold for the understanding
in the sense of “separation of variables” and the one of “(separated) clusters” as well, we may
keep both of them in mind and refer to these two ones in the following.

Additive models have a strong motivation as a useful data analytic tool. Each variable
is represented separately in (1.11) and the model has an important interpretation feature of
some “linear model”: Each of the variables separately effects the response surface and that
effect does not depend on the other variables. Each function fj is estimated by an algorithm
proposed by Friedman and Stuetzle (1981) [9] and called backfitting algorithm . As the
estimator for β̂0, the arithmetic mean (average) of the output data is used: ave(yi | i =

1, ..., N) := (1/N)
N
∑

i=1

yi. This procedure depends on the partial residual against xij:

rij = yi − β0 −
∑

k 6=j

f̂k (xik) , (1.12)

and consists of estimating each smooth function by holding all the other ones fixed. In a
framework of cycling from one to the next iteration, this means the following [11]:

initialization : β̂0 = ave(yi | i = 1, ..., N), f̂j(xij) ≡ 0 ∀i, j;
cycle j = 1, 2, ...,m, 1, 2, ...,m, 1, 2, ...,m, ...,

rij = yi − β̂0 −
m

∑

k 6=j

f̂k (xik), i = 1, ..., N,

f̂k is updated by smoothing the partials residuals,

rij = yi − β̂0 −
m
∑

k 6=j

f̂k (xik), i = 1, ..., N, against xij until the functions almost do not

change.
The backfitting procedure is also called Gauss — Seidel algorithm. To prove its con-

vergence, Buja and Hastie [5] reduced the problem to the solution of a corresponding
homogeneous system, analyzed by a linear fixed point equation of the form T̂f = f . In fact,
to represent the effect on the homogeneous equations of updating the jth component under
Gauss — Seidel algorithm, the authors introduced the linear transformation

T̂j : IRNm → IRNm f 7→





















f1
...

Sj

(

− ∑

k 6=j

fk

)

...
fm





















. (1.13)
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A full cycle of this algorithm is determined by T̂ = T̂mT̂m−1...T̂1; then, T̂l correspond l
full cycles. Here, Sj is a smoothing spline operator which performs the interpolation at the
knots xij. In the case where all smoothing Sj are symmetric and have eigenvalues in [0, 1],
then the backfitting algorithm always converges. In Subsection 2.5, we will come back closer
to the algorithm and the denotation used here.

1.4.2. Additive Models Revisited

In our paper, we allow a different and new motivation: In addition to the approach given
by a separation of the variables xj done by the functions fj, now we perform a clustering

of the input data of the variable x by a partitioning of the domain into higher dimensional
Qj or, in the 1-dimensional case: intervals Ij, and a determination of fj with reference
to the knots lying in Qj (or Ij), respectively. In any such a case, a cube or interval is
taking the place of a dimension or coordinate axis. We will mostly refer to the case of one
dimension; the higher dimensional case can then be treated by a combination of separation
and clustering. That clustering can incorporate any kind of periods of seasons assumed, any
comparability or correspondence of successive time intervals, etc. Herewith, the functions fj

are more considered as allocated to sets Ij (or Qj) rather than depending on some special,
sometimes arbitrary elements of those sets (input data) or output values associated. This
new interpretation and usage of additive models (or generalized ones, introduced next) is a
key step of this paper.

1.5. A Note on Generalized Additive Models

1.5.1. Introduction

To extend the additive model to a wide range of distribution families, Hastie and Tibshirani

(1990) [13] proposed generalized additive models (GAM ) which are among the most practically
used modern statistical techniques. Many often used statistical models belong to this general
class, e. g., additive models for Gaussian data, nonparametric logistic models for binary data,
and nonparametric log-linear models for Poisson data.

1.5.2. Definition of a Generalized Additive Model

If we have m covariates (or values of clusters) X1, X2, ..., Xm, comprised by the m-tuple
X = (X1, ..., Xm)T , and a response Y to the input X assumed to the have exponential
family density hY (y, α,̟) with the mean µ = E (Y |X1, ..., Xm) linked to the predictors
through a link function G. Here, α is called the natural parameter and ̟ is the dispersion
parameter. Then, in our regression setting, a generalized additive model takes the form

G(µ(X)) = ψ (X) = β0 +
m

∑

j=1

fj (Xj). (1.14)

Here, the function fj are unspecified (“nonparametric”) and θ = (β0, f1, ..., fm)T is the
unknown parameter to be estimated; G is the link function. The incorporation β0 as some
average outcome allows us to assume E (fj (Xj)) = 0 (j = 1, ...,m). Often, the unknown
functions fj are elements of a finite dimensional space consisting, e. g., of splines and these
functions depending on the cluster knots are mostly assumed to be splines; the spline orders
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(or degrees) are suitably choosen depending on the density and variation properties of the
corresponding data in x and y components, respectively. Then, our problem of specifying θ
becomes a finite-dimensional parameter estimation problem. In future research, we will
extend the new methods of this paper to generalized additive models.

2. Investigation of the Additive Model

In this section, we analytically and numerically investigate the additive model. Before we
introduce and study our modified backfitting algorithm, we approach the input and output
data and address the aspect of stability.

2.1. Clustering of Input Data

2.1.1. Introduction

Clustering is the process of organizing objects into groups I1, I2, ..., Im or, higher dimensionally:
Q1, Q2, ..., Qm, whose elements are similar in some way. A cluster is therefore a collection
of objects which are “similar” between them and are “dissimilar” to the objects belonging
to other clusters. We put two or more objects belonging to the same cluster if they are
“close” according to a given distance (in this case, geometrical distance) [2, 14]. In this
paper, differently from the classical understanding, we always interpret clustering as being
accompanied by a partitioning of the (input) space, including space coverage. In other words,
it will mean a classification in the absense of different labels or categories. The aim of
clustering is to determine the intrinsic grouping in a set of unlabeled data. Therefore, we
decide about clustering methods which depend on a criterion. This criterion must be supplied
by the user, in such a way that the result of the clustering will suit his needs [16]. Clustering
algorithms can be applied in many fields like marketing, biology, libraries, book ordering,
insurance, city-planning or earthquake studies. For further information we refer to [3].

For each clusters, namely, Ij (or Qj), we denote the elements by xij. This interpretation
is new, since according to the classical understanding of additive models, there is a separation
of variables made by the model functions added and xij is just the jth coordinate of the ith
input data vector.

2.1.2. Clustering for Additive Models

Financial markets have different kinds of trading activities. These activities work with con-
siderably long horizons, ranging from days and weeks to months and years. For this reason,
we may have any kind of data. These data can sometimes be problematic for being used at
the models, for example, given a longer horizon with sometimes less frequent data recorded,
but to other times highly frequent measurements. In those cases, by the differences in data
density and, possibly, data variation, the underlying reality and the following model will
be too unstable or inhomogeneous. The process may be depending on unpredictable market
behaviour or external events like naturally calamity. Sometimes, the structure of data is has
particular properties. These may be a larger variability or a handful of outliers. Sometimes
we do not have any meaningful data. For instance, share price changes will not be available
when stock markets are closed at weekends or holidays.
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The models used need to be able to cope with such values, inventing values to fill such
gaps is not a good way to proceed. Government and private research groups moved from
sampling and analyzing financial data annually to monthly, to weekly, to daily, and, now,
intradaily. One could choose to aggregate the financial data to fixed intervals of time,
justifying this action by the large number of recording errors and the transient reactions
to news that occur during intense trading periods. Naturally, some information would be
lost due to aggregation. Too large or small an aggregating interval, or the changing of the
interval when it should remain constant, could cause information to be lost or distorted.
Methods which address the irregularity of ultra-high frequency financial data are needed.

The following three parts of Fig. 1 are showing some important cases of input data
distribution and clustering: the equidistant case (cf. (a)) where all points can be put into
one cluster (or interval) I1, the equidistant case with regular breaks (weekends, holidays, etc.;
cf. (b) where the regularly neighbouring points and the free days could be put in separate
cluster intervals Ij, and the general case (cf. (c)) where there are many interval Ij of different

a

b

c

Fig. 1. Three important cases of input data distribution and its clustering: equidistance (a),
equidistance with breaks (b), and general case (c).

Fig. 2. Example of a data (scatterplot); here, we refer to case (c) of Fig. 1.
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interval lengths and densities. We remark that we could also include properties of the output
data y into this clustering; for the ease of exposition, however, we disregard this aspect.

In the following, we will take into account the data variation; to get and impression of
this, please have a look at Fig. 2.

For the sake of simplicity, we assume from now on that the number Nj of input data
points xij in each cluster Ij is the same, say, Nj ≡ N (j = 1, ...,m). Otherwise there will be
no approximation need at data points missing and the residuals of our approximation were 0
there. Furthermore, given the output data yij we denote the aggregated value over the all
the ith output values of the clusters by

yi :=
m

∑

j=1

yij (i = 1, ..., N).

In the example of case (1, b), this data summation refers to all the days i from monday
to friday. Herewith, the cluster can also have a chronolocial meaning. By definition, up to
the division by m, the values yi are averages of the output values yij.

Before we come to a closer understanding of data density and variation, we proceed with
our introduction of splines. In fact, the selection of the splines orders, degrees and classes
will essentially be influenced by indices based on densities and variations (Subsection 2.3).

2.2. Interpolating Splines

Let x1j, x2j, ..., xNj be N distinct knots of [a, b], where a < x1j < x2j < ... < xNj < b. The
function fk(x) on the interval [a, b] (or in R) is a spline of some degree k relative to the
knotsxij if [18]

(1) fk|[xij, xi+1 j] ∈ IPk (polynomial of degree ≤ k; i = 1, ..., N − 1),
(2) fk ∈ Ck−1 [a, b].
Here, Ck−1 [a, b] is the set of functions defined on the interval [a, b] which can be extended

on an open neighbourhood of the interval such that it is (k−1)-times continuously differentiable
at each element of the neighbourhood. To characterize a spline of degree k, fk,i := fk|[xij, xi+1 j]
can be represented by

fk,i(x) =
k

∑

l=0

gli(x − xij)
l (x ∈ [xij, xi+1j]).

There are (k + 1)(N − 1) coefficients gli to be determined. Furthermore, it has to hold

f
(l)
k,i−1,(xij) = f

(l)
k,i(xij) (i = 1, ..., N − 2; l = 0, ..., k− 1). Then, there are k(N − 2) conditions,

and the remaining degrees of freedom are (k + 1)(N − 1) − k(N − 2) = k + N − 1 [18].

2.3. Variation and Density

Density is a measure of mass per unit of volume. The higher an object’s density, the higher
its mass per volume. Let us assume that we have I1, ..., Im intervals; then, the density of the
input data xij in the jth interval Ij is defined by

Dj :=
number of point xij in Ij

length of Ij

.
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This definitions can be directly generalized to the higher dimensional interval rather than
intervals Ij, by referring to the higher dimensional volumes.

Variation is a quantifiable difference between individual measurements. Every repeatable
process exhibits variation. If over the interval Ij we have the data (x1j, y1j), ..., (xNj , yNj),
then the variation of these data refers to the output dimension y and it is defined as

Vj :=
N−1
∑

i=1

|yi+1j − yij|.

Since we do the spline interpolation in the course of the algorithm with respect to
the residuals rij, we can also in every iteration separately refer to a variation, defined by

Vj :=
N−1
∑

i=1

|ri+1j − rij|; for simplicity, we suppressed the iteration index. The change of the

reference outputs could be made after some iterations. We point out that this policy and the
determination of the spline degrees discussed in Subsection 2.4 are left to the practitioner
who is looking at the given data and follows the algorithm or, if a closed model is preferred
rather than adaptive elements, they can be decided based on thresholds.

If the variation is big, at many data points the rate of change of the angle between
any approximating curve and its tangent would be big, i. e., its curvature could be big.
Otherwise, the curvature could be expected to be small. In this sense, high curvature over
an interval can mean a highly oscillating behaviour. The occurrence of outliers yij (of rij)
may contribute to this very much and mean instability of the model.

2.4. Index of Data Variation

Still we assume that I1, ..., Im (or Q1, ..., Qm) are the intervals (or cubes) according to the
data grouped. For each interval Ij (cube Qj), we define the associated index of data variation
by

Indj := DjVj

or, more generally,

Indj := dj(Dj)vj(Vj),

where dj, vj are some positive, strongly monotonically increasing functions selected by the
modeller. In fact, from both the viewpoints of data fitting and complexity (or stability), cases
with a high variation distributed over a very long intervall are very much less problematic
than cases with a high variation over a short intervall. The multiplication of variation terms
with density terms due to each interval found by clustering is representing this difference.

We determine the degree of the splines fj with the help of the numbers Indj. If such
an index is low, then we can choose the spline degree (or order) to be small. In this case,
the spline may have a few coefficients to be determined and we can find these coefficients
easily using any appropriate solution method for the corresponding spline equations. If the
number Indj is big, then we must choose a high degree of the spline. In this case, the spline
may have a more complex structure and many coefficients have to be determined; i. e., we
may have many system equations or a high dimensional vector of unknows; to solve this
could become very difficult. Also, a high degree of splines f1, f2, ..., fm, respectively, causes
high curvatures or oscillations, i. e., there is a high “energy” implied; this means a higher
(co)variance or instability under data perturbations. As the extremal case of high curvature
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we consider nonsmoothness meaning an instantaneous movement at a point which does not
obey to any tangent.

The previous words introduced a model-free element into our explanations. Indeed, as
indicated in Subsection 2.3, the concrete determining of the spline degree can be done
adaptively by the implementer who writes the code. From a close mathematical perspective
we propose to introduce discrete thresholds γν and to assign to all the intervals of indices
Ind ∈ [γν , γν+1) the same specific spline degrees. This determination and allocation has to
base on the above reflections and data (or residuals) given.

For the above reasons, we want to impose some control on the oscillation. To make the
oscillation smaller, the curvature of each spline must be bounded by the penalty parameter.
We introduce a penalty parameter into the criterion of minimizing RSS, called penalized

sum or squares PRRS now:

PRSS(β0, f1, ..., fm) :=
N

∑

i=1

{

yi − β0 −
m

∑

j=1

fj(xij)

}2

+
m

∑

j=1

ϕj

b
∫

a

[

f ′′
j (tj)

]2
dtj. (2.1)

The first term measures the goodness of data fitting, while the second term is a penalty
term and defined by means of the functions’ curvatures. Here, the interval [a, b] is the union
of all the intervals Ij. In the case of separation of variables, the interval bounds may also
depend on j, i. e., they are [aj, bj]. For the sake of simplicity, we sometimes just write “

∫

”
and refer to the interval limits given by the context. There are also further refined curvature
measures, especially, one with the input knot distribution implied by Gaussian bell-shaped
density functions; these appear as additional factors in the integrals and have a cutting-off
effect. For the sake of simplicity, we shall focus on the given standard one now and turn to
the sophisticated model in a later study.

We also note that the definition of PRSS in (2.1) can be extended to the higher dimensional
case by using the corresponding higher dimensional integrals. However, one basic idea of the
(generalized) additive models just consists in the separation of the variables.

In (2.1), ϕj ≥ 0 are tuning or smoothing parameters and they represent a tradeoff
between first and second term. Large values of ϕj yield smoother curves, smaller values
result in more fluctuation. It can be shown that the minimizer of PRRS is an additive
spline model: Each of the functions fj is a spline in the component Xj, with knots at xij

(i =1,...,N). However, without further restrictions on the model, the solution is not unique.
The constant β0 is not identifiable since we can add or substract any constants to each of the
functions fj, and adjust β0 accordingly. For example, one standard convention is to assume

that
m
∑

j=1

fj(xij) = 0 ∀i, the function average being zero over the corresponding data (e. g., of

mondays, tuesdays, ..., fridays, respectively). In this case, β̂0 = ave(yi|i=1,...,N), as can be
seen easily.

We firstly want to have

N
∑

i=1

{

yi − β0 −
m

∑

j=1

fj(xij)

}2

≈ 0

and, secondly,
m

∑

j=1

∫

[

f ′′
j (tj)

]2
dtj ≈ 0
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or being sufficiently small, at least bounded. In the backfitting algorithm, these approximations,
considered as equations, will give rise to expected or update formulas. For these requests,
let us introduce

F (β0, f) :=
N

∑

i=1

{

yi − β0 −
m

∑

j=1

fj(xij)

}2

and gj(f) :=

∫

[

f ′′
j (tj)

]2
dtj − Mj,

where f = (f1, ..., fm)T . The terms gj(f) can be interpreted as curvature integral values
minus some prescribed upper bounds Mj > 0. Now, the combined standard form of our
regression problem subject to the constrained curvature condition

Minimize F (β0, f)
subject to gj(f) ≤ 0 (j = 1, ...,m).

(2.2)

Now, PRSS can be interpreted in Lagrangian form as follows:

L ((β0, f) , ϕ) =
N

∑

i=1

{

yi − β0 −
m

∑

j=1

fj(xij)

}2

+
m

∑

j=1

ϕj

(∫

[

f ′′
j (tj)

]2
dtj − Mj

)

, (2.3)

where ϕ := (ϕ1, ..., ϕm)T . Here, ϕj ≥ 0 are auxilary penalty parameters introduced in [4].
In the light of our optimization problem, they can now be seen as Lagrange multipliers

associated with the constraints gj ≤ 0. The Lagrangian dual problem takes the form

max
ϕ≥0

min
(β0,f)

L ((β, f), ϕ) . (2.4)

The solution of this optimization problem (2.4) will help us for determining the smoothing
parameters ϕj and, in particular, the functions fj will be found, likewise their bounded

curvatures
∫ [

f ′′
j (tj)

]2
dtj. Herewith, a lot of future research is initialized which can become

an alternative to the backfitting algorithm concept. In this paper, we go on with refining
and discussing the backfitting concept for the additive model.

2.5. Modified Backfitting Algorithm for Additive Model

2.5.1. Additive Model Revisited

For the additive model (cf. Subsection 1.4), we will modify the backfitting algorithm used
before for fitting additive model. For this reason, we will use the following theoretical setting
in term of conditional expectation (Buja, Hastie and Tibshirani (1989) [5]), where j =
1, 2, ...,m:

fj(Xj) = Pj

(

Y − β0 −
∑

k 6=j

fk(Xk)

)

:= E

(

Y − β0 −
∑

k 6=j

fk(Xk)|Xj

)

. (2.5)

Now, to find more robust estimation for fj(Xj) in our additive model, let us add the term

−
m
∑

k=1

ϕk

∫

[f ′′
k (tk)]

2dtk to equation (2.5). In this case, (2.5) will become the update formula

fj(Xj) ← Pj

(

Y − β0 −
∑

k 6=j

fk(Xk)

)

−
(

m
∑

k=1

ϕk

∫

[f ′′
k (tk)]

2
dtk

)

=
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= E

(

Y − β0 −
∑

k 6=j

fk(Xk)|Xj

)

−
(

m
∑

k=1

ϕk

∫

[f ′′
k (tk)]

2
dtk

)

(2.6)

or

fj(Xj) + ϕk

∫

[f ′′
k (tk)]

2
dtj ← Pj

(

Y − β0 −
∑

k 6=j

fk(Xk)

)

−
(

m
∑

k 6=j

ϕk

∫

[f ′′
k (tk)]

2
dtk

)

=

= E

(

Y − β0 −
∑

k 6=j

fk(Xk)|Xj

)

−
(

m
∑

k 6=j

ϕk

∫

[f ′′
k (tk)]

2
dtk

)

,

where
m
∑

k 6=j

ϕk

∫

[

f̂ ′′
k (tk)

]2

dtk =: cj (constant, i. e., not depending on the knots); the functions f̂j

are unknown and to be determined in the considered iteration. By using the notation cj,
we underline that the weighted sum of integrals which cj denotes is just a scalar value and,
herewith, introducing a constant shift in the following. Therefore, we can write equation
(2.6) as

fj(Xj) + ϕk

∫

[f ′′
k (tj)]

2
dtj ← E

(

Y − β0 −
∑

k 6=j

(

fk(Xk) + ϕk

∫

[f ′′
k (tk)]

2
dtk

) ∣

∣

∣

∣

Xj

)

.

If we denote Zk(Xk) := fk(Xk) + ϕk

∫

[f ′′
k (tk)]

2dtk (the same for j), then we get the
update formula

Zj(Xj) ← E

(

Y − β0 −
∑

k 6=j

Zk (Xk)|Xj

)

. (2.7)

For random variables (Y,X), the conditional expectation f(x) = E (Y |X = x) minimizes
E (Y − f (X))2 over all L2 functions f [5]. If this idea is applied to additive model η(X), then
the minimizer of E (Y − η(X))2 will give the closest additive approximation to E (Y |X).
Equivalently, the following system of normal equations is necessary and sufficient for
Z = (Z1, ..., Zm)T to minimize E (Y − η(X))2 (for the formula without intercept β0, we
refer to [5]):













I P1 . . P1

P2 I . . P2

. . . . .

. . . . .
Pm Pm . . I

























Z1 (X1)
Z2 (X2)

.

.
Zm (Xm)













=













P1 (Y − β0e)
P2 (Y − β0e)

.

.
Pm (Y − β0e)













, (2.8)

where e is the N -vector or entries 1; or, in short,

PZ = Q (Y − β0) .

Here, P and Q represent the matrix and vector of operators, respectively. If we want to
apply normal equation to any given discrete experimental data, we must change the variables
(Y,X) in the (2.8) by their realizations (yi,xi), xi = (xi1, ..., xim), and the conditional
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expectations Pj = E ( · |Xj) by smoothers Sj on xj,













I S1 . . S1

S2 I . . S2

. . . . .

. . . . .
Sm Sm . . I
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z2

.

.
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=













S1(y − β̂0e)

S2(y − β̂0e)
.
.

Sm(y − β̂0e)













. (2.9)

For (2.9) we briefly write (in our estimation notation used from now on):

P̂z = Q̂
(

y − β̂0

)

=: Q̂y1.

Here, referring to the base spline representation (cf. (1.9)) over Ij, Sj = (hjl(xi))i=1,...,N
l=1,...,N

are smoothing matrices of type N × N (i is the row index and l the column index), zj are

N -vectors representing the spline function f̂j +ϕj

∫

[

f̂ ′′
j(tj)

]2

dtj in a canonical form (1.12),

i. e.,
N
∑

l=1

θjlhjl(X) (with the number of unknown equal to the number of conditions). In this

notation, without loss of generality we already changed from lower spline degrees dj to a
maximal one d, and to the order N .

Furthermore, (2.9) is an (Nm×Nm)-system of normal equations. The solutions to (2.9)
satisfy zj ∈ ℜ(Sj), where ℜ(Sj) is the range of the linear mapping Sj, since we update by

zj ← Sj

(

y − β̂0e − ∑

k 6=j

zk

)

.

In case, we want to emphasize β̂0 among the unknowns, i. e.,
(

β̂
T

0 , zT
1 , ..., zT

m

)T

, then

equation (2.9) can equivalently be represented in the following quadratic form:
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S2y
.
.

Smy

















, (2.10)

where O is the N × N matrix with zero entries. There is a variety of efficient methods for
solving the system (2.9), which depend on both the number and types of smoother used.
If the smoother matrix Sj is a N × N nonsingular matrix, then the matrix P̂ will be a

nonsingular (Nm×Nm)-matrix; in this case, the system P̂z = Q̂y1 has a unique solution. If
the smoother matrices Sj are not guaranteed to be invertible (nonsingular) symmetric, but
just arbitrary (N × N)-matrices, we can use a generalized inverses S−

j (i. e., SjS
−
j Sj = Sj)

and P̂−. For closer information about generalized solution and matrix calculus we refer
to [17].

2.5.2. Modified Backfitting Algorithm

Gauss — Seidel method, applied to blocks consisting of vectorial component z1, z2, ..., zm,
exploits the special structure of (2.9). It coincides with the backfitting algorithm. If in the
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algorithm we write ẑj = f̂j + ϕj

∫

[

f̂ ′′
j (tj)

]2

dtj (in fact, the functions f̂j are unknowns),

then, the pth iteration in the backfitting or Gauss — Seidel includes the additional penalized
curvature term. Not forgetting the step-wise update of the penalty parameterϕj but not
mentioning it explicitely, then the framework of the procedure looks as follows:

1) initialize β̂0 =
1

N

N
∑

i=1

yi, f̂j ≡ 0 ⇒ ẑj ≡ 0, ∀j;

2) cycle j = 1, 2, ...,m, 1, 2, ...,m, 1, 2, ...,m, ...

ẑj ← Sj





{

yi − β̂0 −
∑

k 6=j

ẑk (xik)

}N

i=1



 .

This iteration is done until the individual functions do not change: Here, in each iterate,
ẑj is by the spline with reference to the knots xij found by the values yi − β̂0 −

∑

k 6=j

ẑk (xik)

(i = 1, ..., N), i. e., by the other functions ẑk and, finally, by the functions f̂k and the penalty

(smoothing) parameter ϕk. Actually, since by definition it holds ẑj = f̂j +ϕj

∫

[

f̂ ′′
j(tj)

]2

dtj,

throughout the algorithm we must have a book keeping about both f̂j and the curvature

effect ϕj

∫

[

f̂ ′′
j(tj)

]2

dtj controlled by the penalty parameter ϕj which we can update from

step to step. This book keeping is guaranteed since f̂j and the curvature
∫

[

f̂ ′′
j(tj)

]2

dtj

can be determined via ẑj. Since the value of ϕj

∫

[

f̂ ′′
j(tj)

]2

dtj is constant, the second order

derivative of ẑj is

ẑ′′j (tj) = f̂ ′′
j(tj);

this yields

ϕj

∫

[

f̂ ′′
j(tj)

]2

dtj := ϕj

∫

[

ẑ′′j (tj)
]2

dtj

and, herewith,

f̂j := ẑj − ϕj

∫

[

f̂ ′′
j(tj)

]2

dtj.

2.5.3. Discussion about Modified Backfitting Algorithm

If we consider our optimization problem on (2.1) (cf. also (2.4)) as fixed with respect to ϕj,
then we can carry over the convergence theory about backfitting (see Section 1.3) to the
present modified backfitting, replacing the functions f̂j by ẑj.

However, at least approximatively, we have to guarantee feasibility also, i. e.,

∫

[

f̂ ′′
j(tj)

]2

dtj ≤ Mj (j = 1, ...,m).

If
∫

[

f̂ ′′
j(tj)

]2

dtj ≤ Mj, then we preserve the value of ϕj for l ← l+1; otherwise, we increase

ϕj. But this update changes the values of ẑj and, herewith, the convergence behaviour of
the algorithm. What is more, the modified backfitting algorithm bases on both terms in the
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objective function to be approximated by 0; too large an increase of ϕj can shift too far away
from 0 the corresponding penalized curvature value in the second term.

The iteration stops if the functions fj become stationary, i. e., not changing very much

and, if we request it, if
N
∑

i=1

{

yi − β0 −
m
∑

j=1

fj(xij)

}2

becomes sufficiently small, i. e., lying

under some error threshold ε, and, in particular,
∫

[

f̂ ′′
j(tj)

]2

dtj ≤ Mj (j = 1, ...,m).

2.5.4. Alternative Approaches

If we have I1, ..., Im interval and we chosen penalty terms with the distribution of the knots
taken into account by bell-shaped density functions multiplied at the squared second-order

derivatives
[

f̂ ′′
j(tj)

]2

, then our problem PRSS takes the form

PRSS(β0, f1, ..., fm) :=
N

∑

i=1

{

yi − β0 −
m

∑

j=1

fj(xij)

}2

+

+
m

∑

j=1

ϕj

∫

exp

[

−(xij − x̄j)
2

σ2
j

]

[

f̂ ′′
j(tj)

]2

dtj

(cf. (2.1) and (2.3)), where i and j have the same meaning as before, namely, for enumerating
the data and spline functions, respectively. Herewith, there would be a “cut-off effect” outside
of the intervals Ij and the modified penalty terms even more forced to be closer to zero
(Fig. 3). Here x̄j and σ2

j are respectively average value and variance for xij knots which is
in the Ij interval and they are defined respectively,

x̄j =
1

Nj

Nj
∑

i=1

xij , σ2
j =

1

Nj − 1

Nj
∑

i=1

(xij − x̄j)
2.

Besides of this and further improvements of the additive model and the corresponding
modified backfitting algorithm being possible, the previous discussions teach us that the de-
veloped methods of continuous optimization theory will become an important complementary

Fig. 3. Cutting-off in data approximation.
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concept and alternative to the concept of backfitting algorithm. This will be subject of future
research.

2.6. On a Numerical Example

Numerical applications arise in many areas of science, technology, social life and economy
with, in general, very huge and firstly unstructured data sets; in particular, they may base
on data from financial mathematics. These data can be got, e. g., from Bank of Canada

(http://www.bankofcanada.ca/en/rates/interest-look.html) as daily, weekly and monthly;
they can be regularly partioned, which leads to a partitioning (clustering) of the (input)
space, and indices of data variation can be assigned accordingly. Then, we decide about the
degrees of the spline depending of the location of the indices between thresholds γν . In this
entire process, the practitioner has to study the structure of the data. In particular, the
choice on the cluster approach at all, or of the approach on separation of variables, or of a
combination of both, has to be made at an early stage and in close collaboration between
the financial analyst, the optimizer and the computer engineer. At Institute of Applied
Mathematics of METU, we are in exchange with the experts of its Department of Financial
Mathematics, and this application is initiated. Using the splines which we determine by
the modified backfitting algorithm, an approximation for the unknown functions of the
additive model can be iteratively found. There is one adaptive element remaining in this
iterative process: the update the penalty parameter, in connection with the observation of
the convergence behaviour. Here, we propose the use and implementation of our algorithm as
well as an interior point algorithm related with a closed approach to our problems and real-
world applications by conic quadratic programming. In the following last section, will will
sketch this second approach. A comparison and possible combination of these two algorithmic
strategies is what we recommend in this pioneering paper.

3. Concluding Remarks and Outlook

This paper has given a contribution to the discrete approximation or regression of data in
1- and multivariate cases. The additive models have been investigated, input data grouped
by clustering, its density measured, data variation quantified, spline classes selected by
indices and thresholds, and their curvatures bounded with the help of penalization. Then,
the backfitting algorithm which is also applicable for data classification has become modified.
This modified backfitting algorithm which we present in our pioneering paper gives a new
tool in the arsenal of approximating the unknown functions f̂j while governing the instability
caused. What is more, our paper offers to the colleagues from the practical areas of real-
world examples a number of refined versions and improvements. But, this algorithm has
some disadvantage in the iterative update of the penalty parameter. Indeed, this update
changes the convergence behaviour of the algorithm. For this reason, a further utilization
of modern optimization has been recommended [20], diminishing the adaptive and model-
free elements of the algorithm. For this, if we turn to optimization problem (2.2), we can
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equivalently write this optimization problem in the following form:

min
t,β0,f

t,

where
N

∑

i=1

{

yi − β0 −
m

∑

j=1

fj(xij)

}2

≤ t2, t ≥ 0,

∫

[

f ′′
j (tj)

]2
dtj ≤ Mj (j = 1, 2, ...,m).

As mentioned previously, the functions fj are elements in a corresponding spline spaces.

Instead of the integrals
∫ [

f ′′
j (tj)

]2
dtj we may use the approximative discretized form of

Riemann sums, e. g., by evaluating the base splines f ′′
j (·) at the knots xij. Then, we can

write our optimization problem equivalently as

min
t,β0,θ

t,

where ‖W (β0, θ)‖2
2 ≤ t2,

‖Vj(β0, θ)‖2
2 ≤ Mj (j = 1, 2, ...,m),

0 ≤ t,

where ωi :=
√

xi+1j − xij (i = 1, 2, ..., N − 1), V T
j =

(

f ′′
j (x1j)ω1, ..., (xN−1j)ωN−1

)

and

W (β0, θ) := (y1 − β0 −
m

∑

j=1

fj(x1j), ... , yN − β0 −
m

∑

j=1

fj(xNj))
T .

Herewith, our optimization program has turned to a conic quadratic programming problem
[14] which can be solved by interior point algorithms [15, 19]. In future, this approach and
the main one presented in our paper will be further compared and combined by us, and
applied on real-word data. By all of this we give a contribution to a better understanding
of data from the financial world and many other practical areas, and to a more refined
instrument of prediction.
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