МАТЕМАТИЧЕСКИЕ ТЕХНОЛОГИИ ОПЕРАТИВНОГО РЕГИОНАЛЬНОГО СПУТНИКОВОГО МОНИТОРИНГА ХАРАКТЕРИСТИК АТМОСФЕРЫ И ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ ЧАСТЬ 2. AIRS*

А. А. ЛАГУТИН, Ю. А. НИКУЛИН, АЛ. А. ЛАГУТИН, В. В. СИНИЦИН, И. А. ШМАКОВ Алтайский государственный университет, Барнаул, Россия e-mail: lagutin@theory.asu.ru

This paper summarizes the approaches and codes used at Altai State University to retrieve the atmospheric variables and the land surface parameters from the AIRS sounding suite radiances.

Введение

В первой части нашей работы [1] был дан обзор математических моделей, алгоритмов и вычислительных пакетов, используемых в центре космического мониторинга Алтайского госуниверситета и Главного управления МЧС по Алтайскому краю при проведении оперативного мониторинга Сибирского региона по данным центрального прибора исследовательской программы EOS (Earth Observing System)/NASA — 36-канального спектрорадиометра MODIS (MODerate resolution Imaging Spectroradiometer) [2]. Было показано, что передаваемые с платформ Terra и Aqua по каналам прямого вещания и принимаемые станцией центра в реальном времени данные этого прибора при современных технологиях обработки позволяют получать количественные оценки ключевых параметров атмосферы и подстилающей поверхности Земли. В табл. 5 [1] приведен перечень продуктов, которые создаются в рамках реализованной авторами технологии "прием данных—распаковка—геолоцирование—калибровка—обработка данных до уровня 2 (пиксельный уровень)—обработка данных до уровня 3 (перепроецированные на сетку 4-, 8- и 16-дневные данные)" в региональном центре.

^{*}Работа выполнена при частичной финансовой поддержке Федерального агентства по образованию, программы СО РАН "Информационно-телекоммуникационные ресурсы СО РАН" и междисциплинарной программы СО РАН 4.5.2 "Разработка научных основ распределенной информационноаналитической системы на основе ГИС и веб-технологий для междисциплинарных исследований".

[©] Институт вычислительных технологий Сибирского отделения Российской академии наук, 2007.

Продолжая обсуждение проблемы оперативного регионального мониторинга, в данной статье мы рассматриваем технологии, используемые нами при получении и обработке данных установленного на спутнике Aqua [3] уникального зондирующего комплекса AIRS (Atmospheric InfraRed Sounder) [4]. Этот комплекс с 1989 года [4] специально разрабатывался для решения ключевой проблемы спутниковой метеорологии — измерения вертикальных профилей температуры и влажности в нижнем слое атмосферы в глобальном масштабе с погрешностью меньшей, чем погрешность современных радиозондов. Планировалось, что при p < 100 мбар AIRS будет измерять температуру в слое 1 км со среднеквадратичной ошибкой 1 K, а профиль влажности в слое 2 км — с погрешностью 20%. Модельные оценки того времени также показывали, что включение таких данных в региональные и глобальные модели прогнозирования погоды приведет к существенному повышению качества среднесрочных прогнозов.

Сегодня этот комплекс включает собственно ИК-зондировщик AIRS [4], спектрорадиометр AIRS/VisNIR (AIRS/Visible Near InfraRed) [5], микроволновые радиометры AMSU-A1 (Advanced Microwave Sounding Unit-A1) и AMSU-A2 [6]. На начальном этапе работы Aqua на орбите, до выхода из строя 5 февраля 2003 года, в состав группы входил микроволновой радиометр HSB (Humidity Sounder for Brazil) [7].

Центральным прибором этого комплекса является, безусловно, AIRS — первый гиперспектральный прибор космического базирования, осуществляющий измерения уходящего излучения в диапазонах 3.74...4.61 мкм (2181...2665 см⁻¹), 6.20...8.22 (1217...1613), 8.8...15.4 мкм (650...1136 см⁻¹) с высоким спектральным разрешением ($\lambda/\Delta\lambda$) ~ 1200. Пример спектра 2378-канального AIRS, представленного в единицах яркостной температуры, показан на рис. 1. С сентября 2002 года AIRS поставляет ежедневно несколько миллионов таких спектров [8].

Использование данных микроволновых радиометров, обладающих низкой чувствительностью к основной части присутствующих в атмосфере облачных структур, при обработке показаний ИК-зондировщика AIRS высокого спектрального разрешения позволяет зондирующему комплексу AIRS осуществлять восстановление вертикальных профилей атмосферы с требуемой сегодня для прогнозирования погоды точностью даже при почти 80% закрытии зоны наблюдения облаками [9].

Здесь следует отметить, что первые эксперименты по измерению вертикальных профилей температуры атмосферы T(p) были выполнены в 1969 году с использованием данных ИК-радиометра SIRS (Satellite InfraRed Spectrometer) [10] и ИК-интерферометра IRIS (InfraRed Interferometer Spectrometer) [11], установленных на спутнике Nimbus-3 [12]. Реализованная в этих приборах технология измерений базировалась на идее [13] о возможности восстановления T(p) по структуре спектра уходящего теплового излучения. Физической основой этой технологии, которая и сегодня чрезвычайно важна при измерениях в надирной геометрии, является тот факт, что генерация уходящего из атмосферы ИК-излучения в участках полос поглощения–излучения атмосферных газов с различной оптической плотностью осуществляется различными слоями атмосферы. Это в свою очередь означает, что спектральное сканирование внутри конкретных полос поглощения газа на верхней границе атмосферы эквивалентно сканированию атмосферры в определенном диапазоне высот.

Понятно, что увеличение спектрального разрешения, с которым производится сканирование полосы, приводит к уменьшению диапазона высот, вносящих основной вклад в показание канала прибора, и, следовательно, к улучшению вертикального разрешения и точности измерения профилей атмосферы. В первом эксперименте радиометр SIRS,

Рис. 1. Пример зависимости яркостной температуры ИК-зондировщика AIRS от частоты для пикселя с координатами 58.3° с.ш., 79.3° в.д. для дневного витка 14 февраля 2007 года. Зоны углекислого газа, водяного пара, озона и окна прозрачности отмечены как CO₂, H₂O, O₃ и OII соответственно

например, сканировал полосу поглощения CO_2 в области 15 мкм со спектральным разрешением ($\lambda/\Delta\lambda$) = 100.

Включение в численные модели прогнозирования погоды этой новой спутниковой информации практически сразу оказало положительное влияние на качество прогнозов в Южном полушарии, где сеть стандартных метеорологических наблюдений была редкой [14]. В Северном полушарии длительное время не отмечалось влияния спутниковых данных на качество прогнозов. Низкое вертикальное разрешение радиометров и присутствие облачных образований в зоне наблюдения приборов были основными причинами, которые не позволяли измерять параметры атмосферы с высокой точностью. В монографиях [15, 16] можно найти детальный обзор работ, выполненных на первом этапе развития спутниковой метеорологии.

Первое влияние спутниковых данных на качество прогнозов погоды в Северном полушарии было отмечено лишь почти 30 лет спустя — после запуска на платформах NOAA-15 и NOAA-16 новых микроволновых радиометров AMSU-A и AMSU-B. Этот эффект, однако, был обеспечен не за счет принципиального увеличения вертикального разрешения и точности измерений профилей температуры и влажности в тропосфере. Он явился главным образом следствием того, что в моделях стали использоваться не восстановленные профили, а регистрируемые приборами на верхней границе атмосферы интенсивности излучения [14, 17]. Принципиально новый этап спутниковой метеорологии начался только после запуска 4 мая 2002 года на борту платформы Aqua зондирующего комплекса AIRS. Созданный на базе результатов последних разработок в области криогенной техники, выполненных специально для программы Aqua [3], центральный прибор комплекса — ИКзондировщик AIRS — должен прежде всего продемонстрировать достижения космического приборостроения, измеряя вертикальные профили температуры и влажности в глобальном масштабе с погрешностью меньшей, чем погрешность современных радиозондов.

Представленная программой EOS/NASA возможность принимать в режиме реального времени данные всех приборов Aqua позволила центру космического мониторинга Алтайского госуниверситета и Главного управления МЧС по Алтайскому краю также включиться в работы по измерению параметров атмосферы и подстилающей поверхности Сибирского региона по данным "почти всепогодного" зондирующего комплекса AIRS.

В настоящей работе обсуждаются технологии, используемые нами при обработке данных AIRS. Дается информация о вычислительных пакетах, позволяющих проводить восстановление параметров системы атмосфера—подстилающая поверхность Земли и визуализацию полученных результатов, а также об элементах алгоритма и о создаваемых продуктах.

1. Показание спутникового ИК-зондировщика

Интенсивность ИК-излучения частоты ν на верхней границе безоблачной нерассеивающей атмосферы $L(\nu, \vartheta)$ формируется излучением подстилающей поверхности (ПП) Земли, восходящим излучением атмосферы, а также процессами перерассеяния подстилающей поверхностью нисходящего атмосферного потока $F^{\downarrow}(\nu)$ и солнечного ИКизлучения (см., например, [15, 18, 19, 20]). Если для температуры и коэффициента излучения ПП использовать обозначения $T_{\rm s}$ и $\varepsilon(\nu)$, для функции Планка — $B(\nu, T(p))$, а под $\tau(\nu, p \to 0, \vartheta)$ понимать функцию пропускания атмосферой излучения с частотой ν на трассе "уровень атмосферы с давлением p — спутник", то интенсивность уходящего из системы под зенитным углом ϑ излучения $L(\nu, \vartheta)$ может быть представлена в виде

$$L(\nu,\vartheta) = \varepsilon(\nu)B(\nu,T_{\rm s})\tau(\nu,p_{\rm s}\to 0,\vartheta) + \int_{p_{\rm s}}^{0} B(\nu,T(p))\frac{d\tau(\nu,p\to 0,\vartheta)}{d\ln p}d\ln p + F^{\downarrow}(\nu)\rho_t(\nu)\tau(\nu,p_{\rm s}\to 0,\vartheta) + F_0(\nu)\mu_{\rm s}\tau(\nu,0\to p_{\rm s},\theta)\rho_{\rm s}(\nu)\tau(\nu,p_{\rm s}\to 0,\vartheta).$$
(1)

В этом уравнении $F_0(\nu)$ обозначает солнечную постоянную, $\rho_t(\nu)$ и $\rho_s(\nu)$ — коэффициенты отражения нисходящего теплового излучения атмосферы и солнечной радиации поверхностью Земли, μ_s — косинус зенитного угла Солнца ($\mu_s = \cos \theta$).

Функция пропускания $\tau(\nu, p \to 0, \vartheta)$, входящая в каждое слагаемое (1), характеризует степень прозрачности атмосферы для излучения частоты ν при его прохождении от уровня генерации до спутника. Значение τ определяется оптической толщиной на частоте ν каждого газового компонента g атмосферы $k_q(\nu, p, \vartheta)$:

$$\tau(\nu, p \to 0, \vartheta) = \prod_{g} \exp\left[-\int_{p}^{0} k_{g}(\nu, p, \vartheta) dp\right].$$

Отметим, что производную $d\tau/d\ln p$ в (1) принято называть весовой функцией. Этот термин также часто используется и для обозначения произведения планковской интенсивности $B(\nu, T(p))$ на $d\tau/d\ln p$.

Для расчета отклика спутникового прибора в канале с центральной частотой ν_i необходимо вычислить интеграл

$$L_i = \int_{\Delta\nu_i} L(\nu, \vartheta) \Psi_i(\nu) d\nu, \qquad (2)$$

где $\Psi_i(\nu)$ есть нормированная функция чувствительности (или аппаратная функция) канала.

Для канала ν_i гиперспектрального прибора дискретизованный вариант уравнения (1) на сетке p_l , $l = 1...l_s$ с учетом (2) имеет вид

$$L_{i} = \varepsilon(\nu_{i})B(\nu_{i}, T_{s})\mathcal{T}_{s}(\nu_{i}, \vartheta) + \sum_{l=1}^{l_{s}} B_{\nu}(T_{l})(\mathcal{T}_{l-1}(\nu_{i}, \vartheta) - \mathcal{T}_{l}^{i}(\nu_{i}, \vartheta)) + L^{\downarrow\uparrow}(\nu_{i}) + S^{\downarrow\uparrow}(\nu_{i}).$$
(3)

Здесь $L^{\downarrow\uparrow}$ и $S^{\downarrow\uparrow}$ обозначают, соответственно, вклады процессов перерассеяния подстилающей поверхностью нисходящего атмосферного потока и солнечного ИК-излучения, а

$$\mathcal{T}_l(\nu_i,\vartheta) = \int_{\Delta\nu_i} \tau(\nu, p_l \to 0,\vartheta) \Psi_i(\nu) d\nu \tag{4}$$

— функцию пропускания излучения в диапазоне $\Delta \nu_i$ при его прохождении от уровня p_l атмосферы до прибора спутника. Выражения для $L^{\downarrow\uparrow}$ и $S^{\downarrow\uparrow}$ можно найти, например, в работе [21].

При заданных параметрах атмосферы и подстилающей поверхности наиболее трудоемкой частью расчета показаний каналов L_i гиперспектрального зондировщика является определение функции пропускания $\mathcal{T}_l(\nu_i,\vartheta)$. Сегодня для расчета этой функции принято использовать метод прямого или полинейного счета (см., например, [22, 20]). Метод прямого счета, учитывающий вклад в поглощение каждой линии, теоретически позволяет рассчитывать функции поглощения для любого спектрального интервала. Практически же, с увеличением спектрального интервала, значительно возрастают вычислительные затраты, необходимые для выполнения расчетов характеристик прозрачности атмосферы. Это обусловлено, с одной стороны, увеличением числа линий, которые необходимо учитывать, с другой — увеличением интервала интегрирования. Поэтому прямой метод обычно используют при создании специализированных справочных таблиц, на базе которых создаются обладающие высоким быстродействием пакеты для расчета коэффициентов поглощения и функции пропускания. Именно эти пакеты затем включаются в вычислительные комплексы оперативной обработки ИК-зондировщиков. Например, в работах [23, 24, 21, 25] и в приведенных в них ссылках можно найти детали метода построения справочных таблиц, последующего определения коэффициентов поглощения и расчета функции пропускания каналов AIRS, а также описания используемых при оперативной обработке данных AIRS вычислительных пакетов.

2. Характеристики приборов зондирующего комплекса AIRS

Сегодня зондирующий комплекс AIRS на платформе Aqua включает четыре прибора: 2378-канальный ИК-зондировщик AIRS [4], 4-канальный спектрорадиометр AIRS/VisNIR (далее просто VIS) [5], а также 13-канальный микроволновой радиометр AMSU-A1 и 2-канальный AMSU-A2 [6], которые в работе обозначаются как AMSU. Данные этих приборов выделяются авторами из "сырого потока" Aqua, передаваемого со спутника по каналу прямого вещания и принимаемого в реальном времени станцией центра.

Все приборы комплекса синхронно сканируют поверхность Земли и атмосферу в надирном варианте наблюдения в направлении, перпендикулярном вектору скорости спутника. Формирование сигналов в детекторах ИК-зондировщика AIRS и VIS осуществляется одним телескопом. На рис. 2 в качестве примера показана геометрия сканирования ИК-зондировщиком AIRS подстилающей поверхности и расположение девяти пикселей AIRS относительно пикселя AMSU. Отметим, что одному пикселю AIRS соответствует 72 пикселя cпектрорадиометра VIS, имеющего разрешение 2.3 км в надире.

ИК-зондировщик AIRS — центральный прибор комплекса. Гиперспектрометр регистрирует интенсивность уходящего теплового излучения в диапазоне длин волн 3.74...15.4 мкм (650...2665 см⁻¹) с разрешением ($\lambda/\Delta\lambda$) ~ 1200. Этот спектральный диапазон включает важные для восстановления температурного профиля атмосферы зоны поглощения углекислого газа (4.3 и 15 мкм), водяного пара (6.3 мкм) и озона (9.6 мкм). Эти зоны показаны на рис. 1. Детальная структура некоторых участков спектра AIRS, выраженная в единицах яркостной температуры, для пикселей на поверхности суши и океана представлена также на рис. 3. Данные AIRS для пикселя с координатами 10° ю.ш., 100° в.д. на поверхности океана, представленные на этом рисунке, получены с сайта GSFC/NASA [26].

На рис. 4 показано положение каналов AIRS, используемых для восстановления ха-

Рис. 2. Геометрия сканирования гиперспектрометром AIRS подстилающей поверхности (a) и расположение пикселей AIRS относительно зоны наблюдения AMSU (δ) (по данным [4])

Рис. 3. Пример зависимости яркостной температуры AIRS от частоты в зонах CO₂ (a, b), H₂O (e, z) и в зоне наибольшей прозрачности около 2616 см⁻¹ (∂ , e) для пикселей с координатами 58.3° с.ш., 79.3° в.д. (a, e, ∂ ; суша) и 10° ю.ш., 100° в.д. (b, z, e; океан) для дневного витка 14 февраля 2007 года

рактеристик атмосферы и температуры подстилающей поверхности. Наличие у прибора каналов, позволяющих проводить измерения в зоне *R*-ветви CO₂ около 4.18 мкм (2392 см⁻¹) с высокой радиометрической точностью, принципиально отличает AIRS от других действующих ИК-зондировщиков. Главная особенность *R*-ветви — резкое увеличение коэффициентов поглощения с увеличением температуры. В силу высокой чувствительности коэффициентов поглощения к изменению температуры, каналы, регистрирующие излучение в этой области спектра, имеют узкие весовые функции.

Представленные в табл. 1 данные [27] по зависимости от спектрального разрешения

Рис. 4. Положение каналов AIRS, используемых для восстановления профилей температуры (штрихпунктирная линия), влажности (сплошная линия), озона (штриховая линия с длинными штрихами) и температуры подстилающей поверхности (штриховая линия с короткими штрихами)

Таблица 1. Зависимость полуширины Δ весовой функции $B(\nu, T(p))d\tau/d\ln p$ (в единицах высоты однородной атмосферы) от спектрального разрешения спутникового прибора (по данным [27])

Слои	Спектральная	Спектральное	Полуширина Δ	Примечание
атмосферы	зона	разрешение $(\lambda/\Delta\lambda)$		
pa	14.5 мкм	100	2.4	$VTPR^a/HIRS^b$
ф.	15.0 мкм	1200	1.6	AIRS
JOC	15.0 мкм	10000	1.4	При измерениях
īpa				в крыльях линии
C ¹	60 ГГц	1000	1.3	AMSU
pa	15.0 мкм	100	1.6	VTPR
фе	60 ГГц	1000	1.5	AMSU
IOC	4,46 мкм	100	1.3	HIRS
Iod	4,18 мкм	1200	0.69	AIRS
(H	4,18 мкм	10000	0.60	При измерениях
				в крыльях линии

^aVTPR – Vertical Temperature Profile Radiometer.

^bHIRS — High resolution InfraRed Sounder.

спутникового прибора полуширины Δ весовой функции $B(\nu, T(p))d\tau/d\ln p$ (в единицах высоты однородной атмосферы) показывают, что при измерении профиля температуры в тропосфере в надирной геометрии наблюдений наилучшее вертикальное разрешение можно получить только по спектру ИК-излучения в области около 4.18 мкм.

Микроволновые радиометры AMSU регистрируют интенсивность теплового излучения в диапазоне 23.8...89.0 ГГц [6]. Этот диапазон включает полосу поглощения кислорода, линии водяного пара, а также окна прозрачности. Весовые функции всех каналов AMSU показаны на рис. 5.

Одна из наиболее важных функций AMSU в комплексе AIRS состоит в измерении параметров атмосферы при наличии облачного покрова. Поскольку показания этих приборов слабо искажаются основной частью присутствующих в атмосфере облачных структур, то лишь их использование при обработке данных ИК-зондировшика AIRS высокого спектрального разрешения позволяет зондирующему комплексу AIRS осуществлять восстановление вертикальных профилей атмосферы даже при почти 80 % закрытии зоны наблюдения облаками [9]. Измерение температурного профиля в стратосфере, где AMSU, как видно из табл. 1, имеет лучшее вертикальное разрешение, является другой важной задачей радиометра.

Прибор VIS, входящий в AIRS, является 4-канальным спектрорадиометром, регистрирующим излучение в диапазоне 0.40...0.94 мкм. Нормированные функции чувствительности каналов VIS показаны на рис. 6. Там же, для сравнения, приведены данные для соответствующих каналов MODIS. Основные задачи VIS — обнаружение облачных структур в нижней части тропосферы и установление степени неоднородности ПП в каждой зоне наблюдения AIRS. Главные исследовательские задачи VIS — отработка технологий измерений потока коротковолнового излучения в диапазоне 0.49...0.94 мкм на уровне ПП и восстановлений высоты облаков в нижней тропосфере [4, 5]. Подробное описание радиометров AIRS, VIS, AMSU, технологий их калибровки и геолоцирования, а также первые результаты валидационных экспериментов можно найти в работах [4, 6, 5, 8, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Некоторые характеристики

Рис. 5. Весовые функции $d\tau/d\ln p$ каналов AMSU (по данным [28])

Рис. 6. Нормированные функции чувствительности каналов VIS (A01, A02, A03, A04). M01, M02, ..., M19 обозначают нормированные функции чувствительности каналов 1, 2, ..., 19 спектрорадиометра MODIS (по данным [5])

1	Спектральный диапазон	3.744.61 мкм (21812665 см ⁻¹) 6.208.22 мкм (12171613 см ⁻¹) 8.815.4 мкм (6501136 см ⁻¹)
2	Спектральное разрешение $(\lambda/\Delta\lambda)$	10861570
3	Число каналов	2378
4	Угловой размер пикселя, град.	1.1
5	Разрешение в надире, км	13.5
6	Число регистрируемых пикселей при одном сканировании	90×1
7	Время одного сканирования, с	2.667
8	Полоса сканирования на экваторе, км	1650

Таблица 2. Характеристики ИК-зондировщика AIRS [34]

Таблица 3. Характеристики микроволновых радиометров AMSU-A1 и AMSU-A2 [4]

1	Спектральный диапазон (ГГц)/число каналов:	
	AMSU-A1	(50.389.0)/13
	AMSU-A2	(23.831.4)/2
2	Угловой размер пикселя, град.	3.3
3	Разрешение в надире, км	40.5
1	Число регистрируемых пикселей при	30×1
4	одном сканировании	50×1
5	Полоса сканирования на экваторе, км	1690

Таблица 4. Характеристики VIS/AIRS [5, 4]

1	Номер канала (спектральный диапазон,	1 (0.400.44) 2 (0.580.68)	
	мкм)	3 (0.710.92) 4 (0.490.94)	
2	Угловой размер пикселя, град.	0.2	
3	Разрешение в надире, км	2.3	
4	Число регистрируемых пикселей при	720×8	
	одном сканировании	120×8	
5	Полоса сканирования на экваторе, км	1650	

этих приборов приведены также в табл. 2–4. Информация о зонах покрытия этими приборами территории России и соседних государств при приеме данных в Барнауле была представлена в первой части работы [1].

3. Пакеты обработки данных комплекса AIRS

Основой программных комплексов, использованных в работе при восстановлении характеристик атмосферы и подстилающей поверхности Земли по данным AIRS, является вычислительный пакет AIRS/AMSU/HSB. Он создан на базе операционного комплекса NASA версии 4.0.9 в Инженерно-космическом центре Висконсинского университета (Space Science and Engineering Center, University of Wisconsin-Madison, Madison WI) [40].

Рис. 7. Последовательность обработки данных зондирующего комплекса AIRS

Пакет, имеющий версию 4.0.9.102, получен центром космического мониторинга Алтайского госуниверситета в [40] под лицензией GSFC/NASA.

Необходимая для работы пакета входная информация — данные приборов в формате PDS (Production Data Set). PDS-файлы создаются в центре после распаковки принятого полного "сырого" потока Aqua и выделения с использованием пакета RT-STPS [41] данных каждого прибора зондирующего комплекса.

Пакет AIRS/AMSU/HSB v.4.0.9.102, состоящий из нескольких PGE (Product Generation Executive), осуществляет обработку этих данных до уровня 1В (геолоцированные калиброванные интенсивности) и затем до уровня 2 (восстановленные геофизические параметры). Последовательность обработки данных и получаемые после обработки на разных уравнях результаты показаны на рис. 7.

4. Элементы алгоритма

Алгоритм восстановления характеристик атмосферы и подстилающей поверхности по данным зондирующего комплекса AIRS подробно описан в ATBD (Algorithm Theoretical Basis Document) [27] и статьях [4, 42, 43, 5, 44, 45, 9, 17]. Ниже, следуя этим работам, обсуждаются лишь некоторые элементы этого алгоритма: коррекция вклада облачности, постановка обратной задачи и последовательность обработки данных AIRS.

4.1. Коррекция вклада облачности

Ключевым элементом алгоритма [9] является процедура исключения из показаний ИКзондировщика AIRS вклада облаков. После проведения этой "облачной" коррекции, называемой в англоязычной литературе "cloud-clearing" [9], показания AIRS соответствуют той части сцены, для которой облачный покров отсутствует.

Интенсивности, получаемые после процедуры коррекции, будут обозначаться далее как СС-интенсивности. Именно СС-интенсивности используются на всех этапах решения обратной задачи восстановления геофизических параметров системы.

В работе [46] было показано, что в случае K-1 облачных структур, присутствующих в области восстановления параметров атмосферы, наблюдения в K соседних пикселях позволяют определить СС-интенсивность L_i в *i*-м канале прибора с использованием равенства

$$L_{i} = R_{i,1} + \sum_{k=1}^{K-1} \eta_{k} (R_{i,1} - R_{i,K+1-k}), \qquad (5)$$

где $R_{i,k}$, k = 1...K — интенсивность в k-м пикселе. В реализованном для AIRS подходе [9] это утверждение записывается с использованием средней интенсивности i-го канала в рассматриваемых K пикселях \bar{R}_i :

$$L_{i} = \bar{R}_{i} + \sum_{k=1}^{K} \eta_{k} (\bar{R}_{i} - R_{i,K}).$$
(6)

Понятно, что при оптимальном выборе коэффициентов η_k равенства (6) позволяют находить СС-интенсивности во всех каналах прибора.

Если предположить, что получены значения СС-интенсивностей \hat{L}_i для некоторого небольшого множества I каналов зондировщика, то из (6) можно получить систему из I уравнений, позволяющую построить оптимальные оценки для η_k , k = 1...K, и затем вычислить \hat{L}_i для всех каналов. Поскольку \hat{L}_i восстанавливаются с некоторой погрешностью ε_i , то систему для нахождения η_k следует записывать в виде

$$\Delta L_i = \sum_{k=1}^{K} \eta_k \Delta R_{i,k} + \varepsilon_i, \quad i = 1...I,$$
(7)

где $\Delta L_i = \hat{L}_i - \bar{R}_i, \ \Delta R_{i,k} = \bar{R}_i - R_{i,k}.$

Решение этой системы в рамках метода наименьших квадратов дается следующим равенством (см., например, [47]):

$$\eta_{K\times 1} = \left[\Delta R^T N^{-1} \Delta R\right]_{K\times K}^{-1} \Delta R^T N^{-1} \Delta L, \tag{8}$$

где N обозначает ковариационную матрицу ошибок, связанных с восстановлением \hat{L} , а T — операцию транспонирования матрицы.

Получение оценок СС-интенсивностей — сложная задача. В предложенном для AIRS алгоритме они находятся для каждого пикселя AMSU с использованием данных 76 каналов (I = 76) в девяти пикселях ИК-зондировщика AIRS (K = 9) в рамках многоэтапного итерационного процесса. Он запускается после восстановления параметров системы атмосфера—подстилающая поверхность Земли по данным микроволнового радиометра AMSU и интенсивностей AIRS в каналах, чувствительных к изменению температуры в верхней части атмосферы. Если полученные по этим данным характеристики системы назвать начальным состоянием, то итерационный процесс есть последовательность шагов "начальное состояние системы —определение η^1 —расчет СС-интенсивностей \hat{L}_i^1 — восстановление параметров системы для состояния 1—...—определение η^n —СС-интенсивности \hat{L}_i^n —итоговые геофизические параметры системы". В версии 4.0.9 алгоритма делается четыре итерации, т.е. n = 4.

На каждом шаге определения η^k и \hat{L}_i^k строится новая ковариационная матрица ошибок N^k , элементы которой отражают оценки погрешностей в $\hat{L}_i - \bar{R}_i$. В работе [9] диагональные элементы матрицы N_{ii}^k моделируются выражением

$$N_{ii}^{k} = NE\Delta N_{i}^{2} + \left[\frac{\partial R_{i}}{\partial T_{S}}\delta T_{S}^{k}\right]^{2} + \left[\frac{\partial R_{i}}{\partial \varepsilon_{\nu i}}\delta \varepsilon_{\nu i}^{k}\right]^{2} + \left[\frac{\partial R_{i}}{\partial \rho_{\nu i}}\delta \rho_{\nu i}^{k}\right]^{2} + \left[\frac{\partial R_{i}}{\partial T(P)}\delta T(P)^{k}\right]^{2} + \left[\frac{\partial R_{i}}{\partial q(P)/q}\frac{\delta q(P)^{k}}{q}\right]^{2}.$$
 (9)

Первое слагаемое в этом выражении $NE\Delta N_i^2$ описывает шумы в канале *i*-го прибора. Другие слагаемые определяют вклады в погрешность \hat{L}_i^k , обусловленные ошибками в оценках температуры, коэффициета излучения и коэффициента спектральной яркости ПП, а также профилей температуры и влажности. Недиагональные элементы находятся почти аналогичным образом [9]:

$$N_{ij}^{k} = \frac{\partial R_{i}}{\partial T_{S}} \frac{\partial R_{j}}{\partial T_{S}} (\delta T_{S}^{k})^{2} + \frac{\partial R_{i}}{\partial \varepsilon_{\nu}} \frac{\partial R_{j}}{\partial \varepsilon_{\nu}} (\delta \varepsilon_{\nu i}^{k} \delta \varepsilon_{\nu j}^{k}) + \dots$$
(10)

Детали вычислений производных в (9) и (10), а также используемые при расчетах η^k по (8) дополнительные ограничения, позволяющие регуляризировать задачу, можно найти в ATBD [27] и работе [9].

4.2. Решение обратной задачи

После получения оценок СС-интенсивностей \hat{L}_i^k на k-м шаге отмеченного выше итерационного процесса восстанавливаются характеристики атмосферы и подстилающей поверхности. Это делается в такой последовательности:

а) температура, коэффициенты излучения и отражения подстилающей поверхности;

- б) температурный профиль атмосферы;
- в) профиль влажности атмосферы;
- г) вертикальный профиль озона;
- д) параметры облаков.

Решение возникающей на этом этапе нелинейной некорректной задачи находят также с использованием итерационного алгоритма (детальный обзор проблемы — в работе [48]). В алгоритме [9] каждая из восстанавливаемых характеристик представляется в виде

$$X^{m} = X^{m-1} + \sum_{l=1}^{l_{0}} F_{l} \Delta A_{l}^{m} = X^{0} + \sum_{l=1}^{l_{0}} F_{l} A_{l}^{m},$$
(11)

где X^m есть значение восстанавливаемой величины на *m*-м итерационном шаге, F_l — известные функции, а ΔA_l^m определяется равенством

$$A_l^m = A_l^{m-1} + \Delta A_l^m. \tag{12}$$

Для нахождения ΔA_l^m используется невязка

$$\Delta \Theta_i^m = \left(\hat{L}_i^k - L_i^m\right) \left(\frac{dB_i}{dT}\right)_{\Theta_i^m}^{-1}.$$
(13)

В этом выражении \hat{L}_{i}^{k} обозначает оценку СС-интенсивности, L_{i}^{m} — интенсивность, вычисленную по (3) для принятых на *m*-м итерационном шаге параметрах системы, а Θ_{i}^{m} есть яркостная температура, соответствующая L_{i}^{m} .

При расчете ΔA_l^m используется линеаризованная форма (13). С учетом погрешности $\hat{\Theta}_i$, выражение (13) записывается в виде

$$\Delta \Theta_i^m = \sum_l S_{il} \Delta A_l^m + \hat{\Theta}_i, \tag{14}$$

где

$$S_{il}^{m} = \frac{\partial L_{i}^{m}}{\partial A_{l}} \left(\frac{dB_{i}}{dT}\right)_{\Theta_{i}^{m}}^{-1}$$
(15)

есть коэффициенты чувствительности.

Регуляризованное решение задачи (14), минимизирующее невязку (13), записывается обычно в следующем виде (см. [49]):

$$\Delta A^{m} = [(S^{m})^{T} (M^{m})^{-1} S^{m} + H^{m}]^{-1} (S^{m})^{T} (M^{m})^{-1} \Delta \Theta^{m}, \qquad (16)$$

где H^m — стабилизирующая матрица, а M^m — ковариационная матрица погрешностей $\hat{\Theta}_i$. Детали построения матриц H^m и M^m можно найти в работе [9].

4.3. Последовательность обработки данных AIRS

Этап 1. Производятся восстановление характеристик системы по данным микроволнового радиометра AMSU и затем уточнение температурного профиля при совместном использовании данных AMSU и интенсивностей AIRS в каналах, чувствительных к изменению температуры в верхней части атмосферы. Восстановленный профиль температуры используется для уточнения профиля влажности, температуры и коэффициентов излучения ПП в CBЧ-диапазоне при повторной обработке данных AMSU.

Этап 2. Осуществляется первое восстановление η^1 , находятся СС-интенсивности \hat{L}_i^1 , восстанавливаются параметры облаков.

Этап 3. Восстанавливаются параметры атмосферы и ПП по СС-интенсивностям AIRS с использованием регрессионного алгоритма [17].

Этап 4. Уточняются температурный профиль и коэффициенты излучения ПП в микроволновом диапазоне с использованием данных AMSU, интенсивностей AIRS в каналах, чувствительных к изменению температуры в верхней части атмосферы, и характеристик атмосферы и ПП этапа 3. Температура ПП не корректируется, так как полученная на этапе 3 оценка по данным ИК-диапазона AIRS лучше, чем оценка по данным микроволнового радиометра.

Этап 5. Находится η^2 с использованием уточненных на этапе 4 данных по характеристикам атмосферы и ПП, определяются СС-интенсивности \hat{L}_i^2 , уточняются характеристики облаков. Получаемая на данном этапе оценка \hat{L}_i^2 является более точной в силу того, что при восстановлении используются параметры атмосферы и ПП, установленные по данным в ИК-диапазоне.

Этап 6. Восстанавливаются характеристики ПП (температура ПП, коэффициенты излучения ПП в ИК- и СВЧ-диапазонах, коэффициент спектральной яркости ПП в ИКдиапазоне) с использованием предназначенных для этого 53 каналов AIRS (см. рис. 4) и данных каналов AMSU из окна прозрачности.

Этап 7. Находится η^3 с использованием уточненных на этапе 6 данных по характеристикам ПП, определяются СС-интенсивности \hat{L}_i^3 , получаются новые оценки характеристик облаков.

Этап 8. Восстанавливаются параметры ПП, а также профили температуры, влажности и озона по данным \hat{L}_i^3 в 289 каналах.

Этап 9. Производится восстановление профиля температуры по \hat{L}_i^3 с использованием новых данных по характеристикам атмосферы и ПП.

Этап 10. Производится восстановление профиля влажности по \hat{L}_i^3 с использованием новых данных по характеристикам атмосферы и ПП.

Этап 11. Производится восстановление профиля озона по \hat{L}_i^3 с использованием новых данных по характеристикам атмосферы и ПП.

Этап 12. Уточняется профиль температуры по данным AMSU и интенсивностям AIRS в каналах, чувствительных к изменению температуры в верхней части атмосферы, при использовании в качестве характеристик системы результатов этапов 8...11.

Этап 13. Находится η^4 с использованием данных этапов 8 и 9. Определяемые на этом этапе СС-интенсивности \hat{L}_i^4 и характеристики облаков — итоговые продукты комплекса обработки.

Этап 14. Восстанавливаются параметры ПП и профиль температуры. Определенные по СС-интенсивностям \hat{L}_i^4 характеристики — итоговые продукты.

Этап 15. Проводится проверка качества восстановления с использованием четырех тестов.

Этап 16. Определяются поток уходящей длинноволновой радиации и поток уходящей радиации из области сцены, свободной от облачности.

Следует еще раз отметить, что алгоритм восстановления геофизических параметров по данным зондирующего комплекса AIRS подробно описан в ATBD [27] и статьях [42, 43, 5, 44, 45, 9, 17].

5. Продукты, создаваемые по данным AIRS

В результате обработки данных зондирующего комплекса AIRS пакетом AIRS/AMSU/HSB v.4.0.9.102 создаются HDF-файлы, идентичные операционным продуктам GSFC/NASA [26].

Продукт	Обозначение		
Стандартные продукты L2.RetStd.v4.0.9.102			
Температура скин-слоя ПП, К	TSurfStd		
Температура воздуха на уровне ПП, К	TSurfAir		
Температура воздуха на 28 уровнях атмосферы, К	TAirStd		
Температура воздуха на 28 уровнях атмосферы, К, по данным	TAirMWOnly		
AMSU	0		
Отношение смеси Н2О, г/кг	H2OMMRStd		
Общее влагосодержание атмосферы, кг/м ²	totH2OStd		
Общее влагосодержание атмосферы, $\kappa r/m^2$, по данным AMSU	totH2OMWOnlyStd		
Вертикальный профиль озона	O3VMRStd		
Общее содержание озона, в единицах Добсона	totO3Std		
Коэффициенты излучения ПП в ИК-диапазоне	emisIRStd		
Коэффициенты спектральной яркости ПП в ИК-диапазоне	rhoIRStd		
Яркостная температура ПП в СВЧ-диапазоне, К	sfcTbMWStd		
Коэффициенты излучения ПП в СВЧ-диапазоне	EmisMWStd		
Водозапас облаков, кг/м ²	totCldH2OStd		
Температура облака на верхней границе, К	TCldTopStd		
Давление на верхней границе облака, мбар	PCldTopStd		
Доля пикселя AMSU, закрытая облаками	CldFrcStd		
Высота тропопаузы, мбар	PTropopause		
Геопотенциальная высота 28 стандартных уровней, в метрах	GP_Height		
над уровнем моря			
Геопотенциальная высота 28 стандартных уровней, в метрах	GP_Height_MWOnly		
над уровнем моря, по данным AMSU			
Геопотенциальная высота ПП, в метрах над уровнем моря	GP_Surface		
Поток уходящей длинноволновой радиации в диапазоне 22800 ${\rm cm^{-1},Br/m^2}$	olr		
Поток уходящей длинноволновой радиации в диапазоне	clrolr		
$22800~{\rm cm^{-1}}$ в области, свободной от облачности, ${\rm Bt/m^2}$			
Исследовательские продукты L2.RetSup.v4.0	0.9.102		
Интенсивность осадков, мм/ч	$rain_rate_50 km$		
Температура воздуха на 100 уровнях, К	TAirSup		
Влагосодержание атмосферы в слое, мол/см 2	H2OCDSup		
Водозапас облака в слое, мол/см ²	lwCDSup		
Фазовое строение облака в слое, вода/лед	cIWSup		
Количество озона в слое, мол/см ²	O3CDSup		
Количество СО в слое, мол/см ²	COCDSup		
Объемное отношение смеси CO в слое 300600 мбар, млрд ^{-1}	CO_PPBV		
Объемное отношение смеси CO_2 , млн ⁻¹	CO2ppmv		
Влагосодержание атмосферы в слое, мол/см ² , по данным	H2OCDMWOnly		
AMISU			

Таблица 5. Основные продукты зондирующего комплекса AIRS

Например, файлы

AIRS.2007.02.20.066.L1B.AMSU_Rad.v4.0.9.102.D07051161551.hdf,

AIRS.2007.02.20.066.L1B.VIS_Rad.v4.0.9.102.D07051161629.hdf,

AIRS.2007.02.20.066.L1B.AIRS_Rad.v4.0.9.102.D07051161831.hdf

содержат геолоцированные калиброванные данные уровня 1В каждого прибора. В файле

```
AIRS.2007.02.20.066.L2.CC.v4.0.9.102.D07051164226.hdf
```

представлены усредненные для каждого пикселя AMSU интенсивности ИК-зондировщика AIRS, полученные после проведения процедуры коррекции, т. е. СС-интенсивности.

Параметры атмосферы и подстилающей поверхности — продукты уровня 2 — представлены в файлах

AIRS.2007.02.20.066.L2.RetStd.v4.0.9.102.D07051164226.hdf,

AIRS.2007.02.20.066.L2.RetSup.v4.0.9.102.D07051164226.hdf.

Первый файл содержит стандартные продукты, второй, в дополнение к стандартным, включает также и исследовательские продукты.

Полное описание всех переменных HDF-файлов L2.RetStd.v4.0.9 и L2.RetSup.v4.0.9 можно найти в документах, представленных на сайте [32]. Перечень основных продуктов приведен в табл. 5.

6. Визуализация данных

На рис. 8 в качестве примера показаны продукты TSurfStd, totH2OStd, totCldH2OStd, PTropopause, CO_PPBV, clrolr. Эти рисунки были подготовлены по данным центра мониторинга с использованием средств, предоставляемых ГИС GRASS [50, 51]. Благодаря использованию GDAL [52] в GRASS обеспечена поддержка большого количества растровых форматов данных, в том числе и форматов HDF4 [53] и HDF-EOS [54]. Несмотря на это, непосредственное усвоение GRASS данных уровня 2 (L2) с сохранением географической привязки оказалось непредусмотрено, по крайней мере в используемой авторами версии GRASS v6.0.2. Это обусловлено несоответствием координатной сетки данных (заданной массивами Longitude и Latitude в HDF-файле) какой-либо из картографических проекций, поддерживаемых используемой GRASS библиотекой PROJ.4 [55].

Перенести L2-данные AIRS после их усвоения в локацию GRASS, лишенную географической привязки, на картографическую сетку возможно и средствами GRASS (i.rectify). Однако это приводит к значительной пространственной ошибке для пикселов, лежащих у границ изображения.

Альтернативой является использование пакета MS2GT [56]. Пакет ориентирован на обработку данных MODIS, представленных в виде последовательности (накладывающихся) сканов, однако его оказывается возможным применить и для данных AIRS. Такой режим, однако, не предусмотрен программой fornav, являющейся центральной в решении данной задачи. В связи с этим, использование MS2GT в отношении данных AIRS для целей, отличных от визуализации, по-видимому, нецелесообразно.

При использовании MS2GT перепроецирование происходит в два этапа: создание соответствия координатной сетки данных и целевой сетки и, собственно, перепроецирование данных. Этапы реализуются использованием программ 112cr и fornav. Параметры целевой сетки задаются текстовым .gpd-файлом [57]. Прочие программы, входящие в пакет, не требуются.

Рис. 8. Характеристики атмосферы и подстилающей поверхности, по данным комплекса AIRS для дневного витка 20 февраля 2007 года: *a* — температура ПП, К; *б* — общее влагосодержание атмосферы, кг/м²; *e* — водозапас облаков, кг/м²; *e* — высота тропопаузы, мбар; *д* — объемное отношение смеси СО в слое 300...600 мбар, млрд⁻¹; *e* — поток уходящей длинноволновой радиации в диапазоне 2...2800 см⁻¹ в области, свободной от облачности, Вт/м². Белым цветом отмечены области, для которых данные отсутствуют

Определенный смысл представляет переход от используемой в MS2GT библиотеки Mapx [58] к библиотеке PROJ.4. Последняя используется, в частности, самим GRASS. Для этого вызов 112cr следует заменить вызовом программы proj пакета PROJ.4; проекция задается стандартным для PROJ.4 способом. Согласование форматов можно выполнить при помощи программ пакета Rawtools [59] и программы hdfdump [60].

На этапе усвоениия в ГИС GRASS данных, являющихся основой приведенных в работе изображений, было решено отказаться от использования fornav. Вместо fornav совместно с программой proj был использован специально разработанный для этого код перепроецирования данных. Общий ход обработки данных, однако, остался прежним.

Для построения простых изображений в автоматическом режиме можно ограничиться использованием MS2GT и PROJ.4. Результатом работы **fornav** является двоичный файл. Его несложно преобразовать в файл одного из распространенных графических форматов (PNG, JPEG и др.), применяя такой пакет, как ImageMagick [61] или Netpbm [62]. Преобразование двоичных форматов можно выполнить с использованием программы **rawxform** пакета Rawtools.

7. Валидация

Для проверки правильности функционирования всей технологической цепочки "прием данных–распаковка–геолоцирование–калибровка–обработка данных до уровня 2" на этом этапе исследований были проведены сопоставления данных авторов с результатами GSFC/NASA, представленными на сайте [26]. Распределения отклонений "данные GSFC/NASA минус данные настоящей работы" для шести продуктов показаны на рис. 9. Нетрудно видеть, что полученные в работе результаты практически совпадают с данными GSFC/NASA.

Заключение

Главная цель второй части работы — обсуждение технологий, используемых авторами при получении и обработке данных установленного на платформе Aqua/EOS-NASA [3] зондирующего комплекса AIRS [4]. Этот комплекс специально разрабатывался NASA для решения ключевой проблемы спутниковой метеорологии — измерения вертикальных профилей температуры и влажности атмосферы в глобальном масштабе с погрешностью меньшей, чем погрешность современных радиозондов.

Сегодня на базе 2378-канального зондировщика AIRS создается новый прибор — CrIS (Cross-track Infrared Sounder), предназначенный для работы уже на операционном уровне в рамках многолетней Национальной программы США по глобальному космическому мониторингу NPOESS (National Polar-orbiting Operational Environmental Satellite System) и NPP (NPOESS Preparatory Project). В начале следующего десятилетия CrIS должен заменить ИК-зондировщик HIRS/3, действующий в настоящее время на спутниках серии NOAA [63, 64, 65]. Это обстоятельство обусловливает дополнительный интерес к изучению возможностей, открываемых гиперспектрометром AIRS при решении региональных задач.

Представленная программой EOS/NASA возможность принимать в режиме реального времени данные всех приборов Aqua позволила центру космического мониторинга

Алтайского госуниверситета и ГУ МЧС по Алтайскому краю также включиться в работы по измерению параметров атмосферы и подстилающей поверхности Сибирского региона по данным "почти всепогодного" зондирующего комплекса AIRS/VIS/AMSU.

В работе обсуждаются вычислительные пакеты, позволяющие проводить восстановление параметров системы атмосфера—подстилающая поверхность Земли и визуали-

Рис. 9. Сопоставление данных GSFC/NASA [26] с результатами настоящей работы: *a* — температура подстилающей поверхности; *б* — температура воздуха на уровне подстилающей поверхности; *в* — общее содержание озона; *г* — высота тропопаузы; *д* — объемное отношение смеси СО в слое 300...600 мбар; *e* — поток уходящей длинноволновой радиации в области, свободной от облачности

зацию полученных результатов, а также элементы алгоритма и создаваемые продукты. Показывается, что восстановленные с использованием пакета AIRS/AMSU/HSB v.4.0.9.102 в рамках реализованной авторами технологии "прием данных—распаковка геолоцирование—калибровка—обработка данных" параметры системы практически совпадают с данными GSFC/NASA [26].

По мнению авторов, двухлетний архив и поступающая ежедневно оперативная информация вместе с реализованными технологиями обработки данных представляют собой важный информационный ресурс для современных исследований климатических изменений в Сибири.

Авторы выражают благодарность академику РАН Ю. И. Шокину за предложение подготовить обзорную работу по математическим технологиям спутникового мониторинга и обсуждение ряда вопросов, затронутых в статье. Данные AIRS, используемые при сравнениях в этой работе (рис. 9), получены с сайта GSFC/NASA [26].

Список литературы

- ЛАГУТИН А.А., НИКУЛИН Ю.А., ЖУКОВ А.П. И ДР. Математические технологии оперативного регионального спутникового мониторинга характеристик атмосферы и подстилающей поверхности. Ч. 1. MODIS // Вычисл. технологии. 2007. Т. 12, № 2. С. 67–89.
- [2] SALOMONSON V.V., BARNES W.L., MAYMON P.W. ET AL. MODIS: Advanced facility instrument for studies of the Earth as a system // IEEE Trans. Geosci. Remote Sens. 1989. Vol. 27, N 2. P. 145–153.
- [3] PARKINSON C. L. Aqua: an earth-observing satellite mission to examine water and other climate variables // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 173–183.
- [4] AUMANN H.H., CHAHINE M.T., GAUTIER C. ET AL. AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 253–264.
- [5] GAUTIER C., SHIREN Y., HOFSTADTER M.D. AIRS/Vis Near IR instrument // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 330–342.
- [6] LAMBRIGTSEN B.H. Calibration of the AIRS microwave instruments // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 369–378.
- [7] LAMBRIGTSEN B.H., CALHEIROS R.V. The Humidity Sounder for Brazil an international partnership // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 352–361.
- [8] AUMANN H.H., BROBERG S., ELLIOTT D. ET AL. Three years of Atmospheric Infrared Sounder radiometric calibration validation using sea surface temperatures // J. Geophys. Res. 2006. Vol. 111, N D16S90. doi:10.1029/2005JD006822.
- [9] SUSKIND J., BARNET C.D., BLAISDELL J.M. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 390–409.
- [10] WARK D.Q., HILLEARY D.T. Atmospheric temperature: Successful test of remote probing // Science. 1969. Vol. 165. P. 1256–1258.

- [11] HANEL R., CONRATH B. Interferometer experiment on Nimbus 3: Preliminary results // Science. 1969. Vol. 165. P. 1258–1260.
- [12] WICK G.L. Nimbus weather satellites: Remote sounding of the atmosphere // Science. 1971. Vol. 172. P. 1222–1223.
- [13] KAPLAN L.D. Inference of atmospheric structures from satellite remote radiation measurements // J. Opt. Soc. Amer. 1959. Vol. 49. P. 1004–1007.
- [14] OHRING G., LORD S., DERBER J. ET AL. Applications of satellite remote sensing in numerical weather and climate prediction // Adv. Space Res. 2002. Vol. 30, N 11. P. 2433–2439.
- [15] КОНДРАТЬЕВ К.Я., ТИМОФЕЕВ Ю.М. Термическое зондирование атмосферы со спутников. Л.: Гидрометеоиздат, 1970. 410 с.
- [16] КОНДРАТЬЕВ К.Я., ТИМОФЕЕВ Ю.М. Метеорологическое зондирование атмосферы из космоса. Л.: Гидрометеоиздат, 1978. 280 с.
- [17] GOLDBERG M.D., QU Y., MCMILLIN L.M. ET AL. AIRS near-real-time products and algorithms in support of operational numerical weather prediction // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 379–389.
- [18] МИНИН И.Н. Теория переноса излучения в атмосферах планет. М.: Наука, 1988. 264 с.
- [19] ШАНДА Э. Физические основы дистанционного зондирования. М.: Недра, 1990. 208 с.
- [20] МИЦЕЛЬ А.А., ФИРСОВ К.М., ФОМИН Б.А. Перенос оптического излучения в молекулярной атмосфере / Под ред. И. И. Ипполитова. Томск: Изд-во ТГУ, 2002. 420 с.
- [21] STROW L.L., HANNON S.E., SOUZA-MACHADO S.D. ET AL. An overview of the AIRS radiative transfer model // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 303–313.
- [22] МИЦЕЛЬ А.А., ФИРСОВ К.М. Развитие моделей молекулярного поглощения в задачах переноса излучения в атмосфере Земли // Оптика атмосферы и океана. 2000. Т. 13, № 2. С. 179–197.
- [23] STROW L.L., MOTTELER H.E., BENSON R.G. ET AL. Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables // J. Quant. Spectrosc. Radiat. Transfer. 1998. Vol. 59, N 3-5. P. 481–493.
- [24] STROW L.L., TOBIN D.C., MCMILLAN W.W. ET AL. Impact of a new water vapor continuum and line shape model on observed high resolution infrared radiances // J. Quant. Spectrosc. Radiat. Transfer. 1998. Vol. 59, N 3-5. P. 303–317.
- [25] STROW L.L., HANNON S.E., MACHADO S.D.-S. ET AL. Validation of the Atmospheric Infrared Sounder radiative transfer algorithm // J. Geophys. Res. 2006. Vol. 111, N D09S06. doi:10.1029/2005JD006146.
- [26] EARTH Observing System Data Gateway. http://delenn.gsfc.nasa.gov/~imswww/3.6.5/imswelcome/
- [27] CHAHINE M.T., AUMANN H.H., GOLDBERG M. ET AL. AIRS Level 2 Algorithm Theoretical Basis Document (ATBD). Version 2.2. NASA. http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/AIRS/atbd-airs-L2.pdf

- [28] LI J., WOLF W.W., MENZEL W.P. ET AL. Global soundings of the atmosphere from ATOVS measurements; the algorithm and validation // J. Appl. Meteor. 2000. Vol. 39. P. 1248–1268.
- [29] AUMANN H.H., GREGORICH D.T., GAISER S.L. ET AL. AIRS Level 1B Algorithm Theoretical Basis Document (ATBD). Part 1 (IR). – NASA. http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/index.php
- [30] HOFSTADTER M., AUMANN H.H., MANNING E. ET AL. AIRS Level 1B Algorithm Theoretical Basis Document (ATBD). Part 2 (VIS/NIR). – NASA. http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/index.php
- [31] AIRS Level 1B Algorithm Theoretical Basis Document (ATBD). Part 3 (microwave). NASA. http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/index.php
- [32] ATMOSPHERIC InfraRed Sounder documentation. NASA. http://disc.sci.gsfc.nasa.gov/AIRS/documentation.shtml
- [33] PAGANO T.S., AUMANN H.H., HAGAN D.E., OVEROYE K. Prelaunch and in-flight radiometric calibration of the Atmospheric Infrared Sounder (AIRS) // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 265–273.
- [34] GAISER S.L., AUMANN H.H., STROW L.L. ET AL. In-flight spectral calibration of the Atmospheric Infrared Sounder // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 287–297.
- [35] STROW L.L., HANNON S.E., WEILER M. ET AL. Prelaunch spectral calibration of the Atmospheric Infrared Sounder (AIRS) // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 274–286.
- [36] LAMBRIGTSEN B.H., LEE S.-Y. Coalignment and synchronization of the AIRS instrument suite // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 343–351.
- [37] FETZER E., MCMILLIN L.M., TOBIN D. ET AL. AIRS/AMSU/HSB validation // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 418–431.
- [38] AUMANN H.H., GREGORICH D., GAISER S. AIRS hyper-spectral measurements for climate research: Carbon dioxide and nitrous oxide effects // Geophys. Res. Lett. 2005. Vol. 32, N L05806. doi:10,1029/2004GL021784.
- [39] TOBIN D.C., REVERCOMB H.E., KNUTESON R.O. ET AL. Radiometric and spectral validation of Atmospheric Infrared Sounder observations with the aircraft-based Scanning High-Resolution Interferometer Sounder // J. Geophys. Res. 2006. Vol. 111, N D09S02. doi:10.1029/2005JD006094.
- [40] http://cimss.ssec.wisc.edu/~gumley/IMAPP/AIRS/
- [41] RT-STPS. http://directreadout.gsfc.nasa.gov/index.cfm?section=downloads&page=software& softwareID=43
- [42] SUSSKIND J., BARNET C., BLAISDELL J. Determination of atmospheric and surface parameters from simulated AIRS/AMSU/HSB sounding data: retrieval and cloud clearing methodology // Adv. Space Res. 1998. Vol. 21, N 3. P. 369–384.
- [43] ROSENKRANZ P.W. Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 39, N 11. P. 2429–2435.

- [44] ROSENKRANZ P.W. Rapid radiative transfer model for AMSU/HSB channels // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 362–368.
- [45] CHEN F.W., STAELIN D.H. AIRS/AMSU/HSB precipitation estimates // IEEE Trans. Geosci. Remote Sens. 2003. Vol. 41, N 2. P. 410–417.
- [46] CHAHINE M.T. Remote sounding of cloudy atmospheres. II. Multiple cloud formations // J. Atmos. Sci. 1977. Vol. 34. P. 744–757.
- [47] ТИХОНОВ А.Н., УФИМЦЕВ М.В. Статистическая обработка результатов экспериментов. М.: Изд-во МГУ, 1988. 174 с.
- [48] RODGERS C.D. Inverse methods for atmospheric sounding: Theory and practice. N. J.: World Sci., 2000. 238 p.
- [49] ТИХОНОВ А.Н., АРСЕНИН В.Я. Методы решения некорректных задач. М.: Наука, 1979. 288 с.
- [50] NETELER M., MITASOVA H. Open source GIS: A GRASS GIS approach. Boston: Springer, 2004. 424 p.
- [51] GEOGRAPHIC Resources Analysis Support System. http://grass.itc.it/
- [52] GDAL Geospatial Data Abstraction Library. http://www.gdal.org/
- [53] THE HDF Group Home Page. http://www.hdfgroup.org/
- [54] HDF EOS. http://www.hdfeos.org/
- [55] PROJ.4 Cartographic Projections Library. http://www.remotesensing.org/proj/
- [56] MS2GT: The MODIS Swath-to-Grid Toolbox. http://nsidc.org/data/modis/ms2gt/
- [57] POINTS, Pixels, Grids, and Cells. http://cires.colorado.edu/~knowlesk/ppgc.html
- [58] MAPX: Map Transformations Library. http://geospatialmethods.org/mapx/
- [59] RAWTOOLS. http://theory.asu.ru/~ivan/devel/rawtools/
- [60] HDFDUMP. http://theory.asu.ru/~ivan/devel/hdfdump/
- [61] INTRODUCTION to ImageMagick. http://www.imagemagick.org/script/index.php
- [62] NETPBM Source Package. http://netpbm.sourceforge.net/
- [63] TOWNSHEND J.R.G., JUSTICE C.O. Towards operational monitoring of terrestrial systems by moderate-resolution remote sensing // Remote Sens. Environ. 2002. Vol. 83. P. 351–359.
- [64] DB Meeting 2005. http://dbmeeting.gsfc.nasa.gov/posters_presentations.cfm
- [65] CORONADO P., KANNENBERG B. International EOS/NPP direct redout meeting 2005 // The Earth Observer. 2006. Vol. 18. P. 16–17.

Поступила в редакцию 26 апреля 2007 г.