Неавтомодельное безударное сжатие симметричного объема газа

А. Л. КАЗАКОВ

Уральский государственный университет путей сообщения, Екатеринбург, Россия e-mail: AKazakov@math.usurt.ru

Some time-dependent flows of a normal gas are investigated. A wave of compression is focused at the axis or the center of symmetry when it is created due to a smooth motion of an impenetrable piston in a gas at rest. The shock wave reflected from the axis or the center of symmetry has the finite variable velocity. A solution of this problem represents an extension of the Sedov's self-similar solutions in the case of two independent variables.

Введение

Рассматривается задача о неавтомодельном безударном сжатии цилиндрически- или сферически-симметричного объема газа, когда на ось или в центр симметрии фокусируется волна сжатия, вызванная плавным вдвижением в идеальный покоящийся газ непроницаемого поршня, после чего возникает ударная волна (УВ), движущаяся с конечной скоростью от оси или центра симметрии. Течения газа перед фронтом ударной волны стыкуются с течением за фронтом с выполнением условий Гюгонио. Построенное решение обобщает известное автомодельное решение Седова [1, 2] на случай двух независимых переменных. С.П. Баутиным [3, § 4] для цилиндрически- и сферическисимметричных течений была рассмотрена задача о фокусировке на ось или в центр симметрии волны сжатия, однако не были построены ни траектория движения расходящейся УВ, ни течение газа за фронтом УВ.

При построении течения в области между фронтом ударной волны (рис. 1, линия OC) и осью (центром) симметрии (рис. 1, область Ω_2) необходимо решить обобщенную задачу Коши (O3K) [4]. Отличие O3K от задачи Коши в традиционной постановке состоит в том, что данные для разных функций ставятся на разных поверхностях; от смешанной задачи O3K отличается тем, что число граничных условий равно числу неизвестных функций [5]. С обобщенной задачей Коши приходится иметь дело в газовой динамике при описании течений газа с ударными волнами. Кусочно-аналитические течения газа с ударными волнами строятся в работах В.М. Тешукова [6–8]. Течения с ударными волнами с использованием техники интегралов энергии исследованы А.М. Блохиным [9].

[©] Институт вычислительных технологий Сибирского отделения Российской академии наук, 2008.

1. Построение полей течений газа перед фронтом ударной волны

Рассматривается система уравнений газовой динамики для идеального политропного газа с уравнением состояния $p = A^2(S)\rho^{\gamma}/\gamma$; где p — давление; S — энтропия (далее символом s обозначена функция A(S)); ρ — плотность; $\gamma = \text{const} > 1$ — показатель политропы газа. Будут исследоваться цилиндрически- ($\nu = 1$) или сферически-симметричные ($\nu = 2$) течения, зависящие от времени t и расстояния до оси или центра симметрии $r = (x_1^2 + ... + x_{\nu+1}^2)^{1/2}$ (x_1, x_2, x_3 — пространственные координаты). В качестве искомых функций $\mathbf{U} = \mathbf{U}(t, r)$ берутся $\mathbf{U} = (\sigma, u, s)$, где $\sigma = \rho^{(\gamma-1)/2}$, u — скорость газа. Скорость звука в газе тогда задается соотношением $c = \sigma s$, а система уравнений газовой динамики имеет вид

$$\begin{cases} \sigma_t + u\sigma_r + \frac{\gamma - 1}{2}\sigma\left(u_r + \nu\frac{u}{r}\right) = 0, \\ u_t + \frac{2}{\gamma - 1}\sigma s^2\sigma_r + uu_r + \frac{2}{\gamma}\sigma^2 ss_r = 0, \\ s_t + us_r = 0. \end{cases}$$
(1)

Для системы (1) рассматривается задача о плавном вдвижении поршня в газ, что порождает фокусирующуюся волну сжатия. Конфигурация соответствующих течений в плоскости переменных t, r показана на рис. 1.

В момент $t = t_0$ при $0 \le r \le r_0$ однородный газ покоится и в него из точки A $(t = t_0, r = r_0)$ начинает плавно вдвигаться непроницаемый поршень (рис. 1, линия AB — траектория движения поршня). По однородному покоящемуся в области Ω_0 газу с постоянной скоростью минус c_0 $(c_0$ — скорость звука в газе в области Ω_0) начинает распространяться звуковая характеристика (рис. 1, прямая AO), отделяющая область волны сжатия Ω_1 от области покоя Ω_0 . Момент фокусировки характеристики AO берется за t = 0. При аналитическом законе движения поршня в некоторой окрестности точки A в области Ω_1 существует единственное аналитическое решение задачи о поршне, которое соответствует изоэнтропическому течению. Вне этой окрестности в области Ω_1 могут возникнуть особенности типа градиентной катастрофы. Но даже если градиентная катастрофа до момента фокусировки слабого разрыва на ось или в центр симметрии не наступит, все равно область существования аналитического решения задачи о поршне не включает точку (t = 0, r = 0).

Рис. 1

Если закон движения поршня выбрать специальным образом, то течение в области Ω_1 будет автомодельным. Точнее: для системы обыкновенных дифференциальных уравнений (СОДУ), описывающей автомодельные течения $\mathbf{U} = \mathbf{U}(\lambda)$, $\lambda = r/t$, строится конкретная интегральная кривая, проходящая через соответствующие особые точки. Тем самым в области Ω_1 выбирается конкретная волна сжатия. По ней однозначно восстанавливаются линии AO, AB, OC — траектория движения отраженной УВ (рис. 1). Для этих автомодельных течений OC будет прямой, а в области Ω_2 между отраженной ударной волной OC и осью r = 0 сжатый газ снова покоится и является однородным. В области Ω_1 параметры газа постоянны на прямых $\lambda = \text{const}$, в том числе $\sigma(0, r) = \text{const} > 0, u(0, r) = \text{const} < 0$. Ясно, что автомодельными течениями $\mathbf{U} = \mathbf{U}(\lambda)$ не передать в момент t = 0 произвольные профили газодинамических параметров

$$\sigma(0,r) = \sigma_0(r), \ \ \sigma_0(0) > 0, \ \ u(0,r) = u_0(r), \ \ u_0(0) < 0.$$

Если предположить, что при произвольных $\sigma_0(r)$, $u_0(r)$ в области Ω_1 при $t \ge 0$ существует решение системы (1), то отраженная ударная волна *OC* уже не будет прямой, а для течения газа в области Ω_2 уже не будут постоянными σ , u, s.

Автомодельные решения $U(\lambda)$ также описывают процесс фокусировки волны разрежения, у которой постоянна скорость движения свободной границы. Распределения газодинамических параметров в фиксированный момент времени являются специальными и однозначно определяются выбором конкретного автомодельного течения $U(\lambda)$.

Решение "прямой" задачи о поршне — когда поршень движется по априорно заданному закону — имеет особенность в точке (t = 0, r = 0). Для того чтобы раскрыть эту особенность, предлагается следующий способ рассуждения. Сначала, исходя из начальных условий $\mathbf{U}(0, r) = \mathbf{U}_0(r)$,

$$\sigma(0,r) = \sigma_0(r), \ \sigma_0(0) > 0; \ u(0,r) = u_0(r), \ u_0(0) < 0; \ s(0,r) = s_0 > 0,$$
(2)

где $s_0 = \text{const}$, строится решение системы (1) в области Ω_1 и увязывается с задачей о фокусировке волны сжатия:

1) однозначно восстановим характеристику AO (рис. 1) и плотность однородного покоящегося между AO и осью r = 0 газа;

2) в области Ω_1 однозначно определим (как при t < 0, так и при t > 0) траекторию движения частицы газа, занимающей при t = 0 положение $r = r_0$. Эту траекторию и можно будет взять за траекторию движения непроницаемого поршня, порождающего данную волну сжатия.

Потом в области Ω_2 строится другое решение системы (1), у которого u(t,0) = 0. Одновременно с построением решения в Ω_2 строится неизвестная ударная волна OC, на которой построенное в Ω_1 и искомое в Ω_2 течения связаны соотношениями Гюгонио.

Так как течение в области Ω_1 изоэнтропическое, не теряя общности рассмотрения, можно считать, что $s_0 = 1$, а значит, $\sigma = c$ в области Ω_1 .

Если данные (2) в некоторой окрестности точки r = 0 являются аналитическими функциями, то решение задачи Коши (1), (2) однозначно строится в виде формального степенного ряда

$$\mathbf{U}(t,r) = \sum_{k=0}^{\infty} \frac{\mathbf{U}_k(r)t^k}{k!}.$$

При этом индукцией по k устанавливается, что $\mathbf{U}_k(r) = \mathbf{U}_{k0}(r)/r^k$, $k \ge 1$. Функции $\mathbf{U}_{k0}(r)$ — аналитические в той же окрестности точки r = 0, что и функции $\mathbf{U}_0(r)$ из (2).

Следовательно, решение задачи (1), (2) однозначно представлено в виде формального ряда

$$u(t,r) = \sum_{k=0}^{\infty} \mathbf{U}_{k0}(r) \frac{(t/r)^k}{k!},$$
(3)

где $\mathbf{U}_{00}(r) = \mathbf{U}_0(r)$. Чтобы исследовать область сходимости (а следовательно, и область применимости) ряда (3), в системе (1) делается замена переменных

$$\zeta = t/r, \quad \chi = r \tag{4}$$

с якобианом J = 1/r. Замена (4) является вырожденной при r = 0. Система (1) для изоэнтропического течения в переменных ζ, χ с учетом формул

$$\frac{\partial}{\partial r} = \frac{1}{\chi} \left(\chi \frac{\partial}{\partial \chi} - \zeta \frac{\partial}{\partial \zeta} \right), \quad \frac{\partial}{\partial t} = \frac{1}{\chi} \frac{\partial}{\partial \zeta}$$

записывается в следующем виде:

$$\begin{cases} (1-\zeta u)\sigma_{\zeta} - \frac{\gamma-1}{2}\zeta\sigma u_{\zeta} + \chi \left[u\sigma_{\chi} + \frac{\gamma-1}{2}\sigma u_{\chi}\right] + \nu \frac{\gamma-1}{2}\sigma u = 0, \\ -\frac{2}{\gamma-1}\zeta\sigma s^{2}\sigma_{\zeta} + (1-\zeta u)u_{\zeta} - \frac{2}{\gamma}\zeta\sigma^{2}ss_{\zeta} + \chi \left[\frac{2}{\gamma-1}\sigma s^{2}\sigma_{\chi} + uu_{\chi}\right] = 0. \end{cases}$$

Если разрешить эту систему относительно производных $u_{\zeta}, \sigma_{\zeta}$, то, учитывая, что в области $\Omega_1 \ s = 1, c = \sigma$, получится

$$\begin{cases} u_{\zeta} = -\frac{\chi \left\{ \frac{2}{\gamma - 1} cc_{\chi} + [u + \zeta(c^2 - u^2)]u_{\chi} \right\}}{(1 - \zeta u)^2 - \zeta^2 c^2} - \frac{\nu \zeta u c^2}{(1 - \zeta u)^2 - \zeta^2 c^2}, \\ c_{\zeta} = -\frac{\chi \left\{ [u + \zeta(c^2 - u^2)]c_{\chi} + \frac{\gamma - 1}{2} cu_{\chi} \right\}}{(1 - \zeta u)^2 - \zeta^2 c^2} - \frac{\nu(\gamma - 1)}{2} \frac{(1 - \zeta u)uc}{(1 - \zeta u)^2 - \zeta^2 c^2}. \end{cases}$$
(5)

Особенность в системе (5) отсутствует.

Если в системе (5) положить $\partial/\partial \chi = 0$, то получится система обыкновенных дифференциальных уравнений, описывающая автомодельные течения, которые зависят только от ζ .

Из вида замены (4) следует, что прямой t = 0 в плоскости переменных t, r соответствует прямая $\zeta = 0$ в плоскости переменных ζ, χ , а начальные условия (2) переходят в начальные условия

$$\mathbf{U}(\zeta, \chi)|_{\zeta=0} = \mathbf{U}_0(\chi). \tag{6}$$

Здесь и далее $\mathbf{U} = (u, c)$.

Теорема 1.1. Если $U_0(\chi) - функции, аналитические в некоторой окрестности точки <math>\chi = 0$, то задача Коши (5), (6) имеет в некоторой окрестности точки ($\zeta = 0$, $\chi = 0$) единственное аналитическое решение, задаваемое сходящимся рядом

$$\mathbf{U}(\zeta,\chi) = \sum_{k=0}^{\infty} \mathbf{U}_{k1}(\chi) \frac{\zeta^k}{k!}, \quad \mathbf{U}_{01}(\chi) = \mathbf{U}_0(\chi).$$
(7)

Поскольку система (5) записана в нормальном виде (разрешена относительно производных $\partial/\partial\zeta$), правые части системы (5) и начальные условия (6) есть аналитические функции от ζ , χ , u, c в некоторой окрестности точки ($\zeta = 0, \chi = 0, u = u_0(0), c = c_0(0)$), то теорема 1.1 является следствием теоремы Ковалевской.

При доказательстве теоремы 1.1 изоэнтропичность течения в области Ω_1 существенно не используется и теорема справедлива также в случае переменной энтропии.

Решение задачи Коши (5), (6) определяется вне зависимости от знаков компонент вектора $\mathbf{U}_0(\chi)$ — в некоторой полной окрестности точки ($\zeta = 0, \chi = 0$). Исходя из физического смысла задачи Коши (5), (6), надо рассматривать решения при $\chi \ge 0$, у которых $c \ge 0$.

Вдоль оси $O\chi$ область существования решения 3K(5), (6) дотягивается до точки $\chi = \chi_*$, где имеется особенность у функций $U_0(\chi)$ (в том числе может быть, что $\chi_* = \infty$): при $\chi \to \chi_*$ радиус сходимости ряда (7) стремится к нулю как некоторая положительная степень разности $\chi - \chi_*$ (или дроби $1/\chi$, если $\chi_* = \infty$). Чтобы найти на оси $O\zeta$ граничные точки области сходимости ряда (7), представим решение 3K(5), (6) в виде

$$\mathbf{U}(\zeta,\chi) = \sum_{k=0}^{\infty} \mathbf{U}_{k2}(\zeta)\chi^k/k!.$$
(8)

Тогда $U_{02}(\zeta)$ является решением нижеследующей ЗК для СОДУ:

$$\begin{cases} u_{\zeta} = -\frac{\nu \zeta u c^2}{(1-\zeta u)^2 - \zeta^2 c^2}, \quad u(\zeta)|_{\zeta=0} = u_0(0), \\ c_{\zeta} = -\frac{\nu (\gamma - 1)}{2} \frac{(1-\zeta u) u c}{(1-\zeta u)^2 - \zeta^2 c^2}, \quad c(\zeta)|_{\zeta=0} = c_0(0), \end{cases}$$
(9)

которая получится, если в ЗК (5), (6) положить $\chi = 0$. Из-за вырожденности преобразования (4) система (5) при $\chi = 0$ принимает тот же вид, что и при $\partial/\partial \chi = 0$, т. е. СОДУ из задачи (9) эквивалентна СОДУ описывающей автомодельные решения $\mathbf{U}(t,r) = \mathbf{U}(r/t)$ системы уравнений газовой динамики.

Функции $\sigma_{02}(\zeta)$, $u_{02}(\zeta)$ в общем случае через квадратуры не выписываются. Однако у этой СОДУ решения и все их особенности известны. В том числе известны $\zeta = \zeta_* < 0$ и $\zeta = \zeta^* > 0$ — граничные точки области существования аналитического решения ЗК (9). Конфигурация течения газа в осях ζ, χ изображена на рис. 2.

Рис. 2

При этом в случае фокусировки волны сжатия значение $\zeta = \zeta_*$ (рис. 2, прямая AO_0) соответствует звуковой характеристике AO (см. рис. 1): $c(\zeta_*, \chi) = \text{const} > 0, u(\zeta_*, \chi) = 0,$ $c(\zeta_*, \chi) = -1/\zeta_*$. В случае фокусировки волны разрежения значение $\zeta = \zeta_*$ (рис. 2, прямая AO_0) соответствует свободной границе (см. рис. 1, прямая AO): $c(\zeta_*, \chi) = 0,$ $u(\zeta_*, \chi) = \text{const} = 1/\zeta_*$.

Значение $\zeta = \zeta^*$ в обоих случаях оказывается больше, чем значение $\zeta = \zeta_1$: $\zeta^* > \zeta_1 > 0$, где $1/\zeta_1$ есть скорость отраженной ударной волны *OC* в случае автомодельных течений (метод определения $\zeta = \zeta_1$ описан ниже).

Переходом в задаче (9) к безразмерным переменным легко показать, что, не теряя общности рассмотрения, можно принять равным единице одно из значений $c_{02}(0)$ или $|u_{02}(0)|$. Поэтому при заданных γ и ν значение $\mu = c_{02}(0)/|u_{02}(0)|$ определяет, какая из величин (*c* или *u*) обратится в точке ($\zeta = \zeta_*, \chi = 0$) в нуль, т. е. какая волна (сжатия или разрежения) фокусируется. Из результатов, полученных Л.И. Седовым [1], следует, что справедлива лемма.

Лемма 1.1. Для $\nu = 1, 2$ и любых $\mu > 0$ найдутся $\gamma^*(\nu)$ такие, что:

1) если $1 < \gamma < \gamma^{*}(\nu)$, то $u(\zeta_{*}, 0) = 0, \sigma(\zeta_{*}, 0) > 0$ (фокусируется волна сжатия);

2) если $\gamma^*(\nu) < \gamma$, то $u(\zeta_*, 0) < 0, \sigma(\zeta_*, 0) = 0$ (фокусируется волна разрежения).

Численное решение задачи (9) приводит к таким результатам: при $\mu = 1$ получаются значения $\gamma_1^* = 2.120$; $\gamma_2^* = 1.848$. На рис. 3 и 4 показаны конкретные интегральные кривые ЗК (9).

Чтобы построить остальные $\mathbf{U}_{k2}(\zeta)$, надо ЗК (5), (6) последовательно дифференцировать по χ и полагать $\chi = 0$. В результате будут получаться линейные СОДУ для $\mathbf{U}_{k2}(\zeta)$ с начальными условиями: $\mathbf{U}_{k2}(0) = \partial^k \mathbf{U}_0(\chi)/\partial \chi^k|_{\chi=0}$. При решении этих ЗК однозначно определятся все $\mathbf{U}_{k2}(\zeta)$. Построенный таким образом ряд (8) есть переразложение ряда (7), решающего ЗК (5), (6). Тот факт, что коэффициенты ряда (8) определяются из дифференциальных уравнений, а не из алгебраических (как коэффициенты ряда (7)), объясняется тем, что корни характеристического уравнения λ_1, λ_2 для системы (9) имеют такие значения:

$$\lambda_1 = \frac{\chi(u-c)}{1-\zeta(u-c)}, \quad \lambda_2 = \frac{\chi(u+c)}{1-\zeta(u+c)},$$

т.е. линия $\chi = 0$ для системы (5) служит характеристикой кратности два. Ряд (8) строится как решение характеристической ЗК, и единственность этого решения обес-

Рис. 3

Рис. 4

печивается заданием условий (6). Поскольку СОДУ, из которых определяются $\mathbf{U}_{k2}(\zeta)$, $k \geq 1$, являются линейными, то при $\zeta_* < \zeta < \zeta^*$ у $\mathbf{U}_{k2}(\zeta)$ особенностей нет. Тогда доказываем, что граничными по оси О ζ точками области сходимости ряда (8) являются точки $\zeta = \zeta_*$ и $\zeta = \zeta^*$. Это приводит к тому, что в плоскости переменных ζ, χ область сходимости рядов (8) ограничена некоторыми монотонными кривыми, выходящими из точек ($\zeta = \zeta^*, \chi = 0$), ($\zeta = \zeta_*, \chi = 0$) и входящими в точку ($\zeta = 0, \chi = \chi_*$). На рис. 8 (см. дальше) качественное поведение этих кривых в случае $\chi_* = \infty$ показано штриховыми линиями.

Зная течение газа в области Ω_1 в виде рядов (7), (8), можно, решая соответствующие ЗК для обыкновенного дифференциального уравнения, однозначно определить траектории движения частиц газа в области Ω_1 . Одна из построенных траекторий движения частицы может быть принята за траекторию движения непроницаемого поршня, порождающего волну сжатия в области Ω_1 .

Если $u_0(r) = \text{const} < 0$, $\sigma_0(r) = \text{const} > 0$, то ряды (8) обрываются на первом члене и течение газа в области Ω_1 описывается известным автомодельным решением Седова. Дифференциальное уравнение, описывающее траекторию движения частицы, в этом случае интегрируется в квадратурах. На рис. 5 в плоскости переменных ζ , χ приведена траектория частицы, проходящая через точку ($\zeta = 0, \chi = \chi_0 = 1$). На рис. 6 та же траектория изображена в плоскости переменных t, r.

Отметим, что в этом случае отраженная УВ (см. рис. 5 и 6, прямые O_1C , OC) движется с постоянной скоростью, газ в областях Ω_0 и Ω_2 однородный и покоится, причем справедливо неравенство $\sigma|_{\Omega_0} < \sigma|_{\Omega_2}$.

Если $u_0(r)$, $\sigma_0(r)$ не являются постоянными, то коэффициенты рядов (8) при n > 0отличны от нуля, а следовательно, течение в области Ω_1 неавтомодельное и отраженная УВ имеет переменную скорость движения. На рис. 7 и 8 показаны (линии A_2 и 2) траектории движения частиц газа в области Ω_1 , проходящие через точку $\zeta = 0$, $\chi = \chi_0$, т. е. через точку t = 0, $r = r_0 = \chi_0$ в случае конкретных распределений газодинамических параметров (2). Линии A_1 и 1 на рис. 7 и 8 передают траектории движения частиц в автомодельном течении Седова.

Видно, что при малых r_0 физически осмысленная картина восстанавливается вплоть до характеристики O_0A_1 (см. рис. 7). При увеличении χ_0 ряды (8) передают течения

Рис. 5

Рис. 6

Рис. 7

Рис. 8

газа в окрестности точки ($\zeta = 0, \chi = \chi_0$) и не описывают течение газа в окрестности характеристики O_0A_1 . Линии O_1C_1 и O_1C_2 на рис. 8 передают траекторию движения отраженной УВ соответственно в автомодельном и неавтомодельном случае. Способ построения фронта отраженной УВ описан ниже.

Решение задачи (9) не является постоянным. Из этого следует, что в пространстве переменных t, r в области Ω_1 вектор-функция $\mathbf{U}(t, r)$ на разных прямых t/r = constпринимает разные значения в точке (t = 0, r = 0). Поэтому и возникает вопрос о выборе значений газодинамических параметров в точке (t = 0, r = 0) для расчета скорости движения отраженной УВ в момент t = 0. Пусть траектория отраженной УВ (см. рис. 1, линия OC) задается уравнением $r = \varphi(t)$, тогда скорость движения УВ $D(t) = \varphi'(t)$. Надо подобрать значение ζ_1 , чтобы величина $1/\zeta_1$ задавала бы значение D(0). Для функции D(t) из условий Гюгонио [10] следует соотношение

$$D = \frac{3-\gamma}{4}u_0 + \left[\frac{(\gamma+1)^2}{16}u_0^2 + c_0^2\right]^{1/2},\tag{10}$$

при выводе которого параметры газа перед УВ помечены индексом нуль, а скорость газа за УВ предполагается равной нулю. Следовательно, искомое значение ζ_1 должно удовлетворять соотношению $1/\zeta_1 = y(\zeta_1)$, где $y(\zeta_1)$ — правая часть соотношения (10), в котором вместо u_0 , c_0 надо подставить соответственно $u_{02}(\zeta)$, $c_{02}(\zeta)$. Отсюда при заданном решении задачи (9) значение ζ_1 определяется однозначно. Описанная процедура эквивалентна определению параметров газа за отраженной ударной волной *OC* при построении решений в областях Ω_1 и Ω_2 в классе автомодельных течений.

2. Построение полей течений газа в области между фронтом ударной волны и осью (центром) симметрии

Для построения решения в области Ω_2 в системе (1) будет сделана замена как независимых, так и искомых функций.

Вначале по формулам

$$r = \varphi(x), \quad t = y + x \tag{11}$$

производится замена r, t на независимые переменные x, y. Якобиан данного преобразования имеет вид

$$J = \varphi'(x) = D(x).$$

Функция $r = \varphi(t)$ пока неизвестна и задает траекторию движения отраженной УВ. Однако из предыдущих рассуждений известны значения: $\varphi(0) = 0$, $\varphi'(0) = D(0) = 1/\zeta_1$. Следовательно, замена (11) в точке (t = 0, r = 0) является невырожденной, а при условии аналитичности функции $\varphi(x)$ замена будет невырожденной и в некоторой окрестности начала координат. Главная цель замены (11) состоит в следующем: ось r = 0 переходит в ось x = 0; линия УВ переходит в другую координатную ось -y = 0.

В новых переменных система (1) записывается в виде

$$\begin{cases} \sigma_y + \frac{u}{D}(\sigma_x - \sigma_y) + \frac{\gamma - 1}{2}\frac{\sigma}{D}(u_x - u_y) + \nu\frac{\gamma - 1}{2}\frac{u\sigma}{\varphi} = 0, \\ u_y + \frac{2}{\gamma - 1}\sigma s^2 \frac{1}{D}(\sigma_x - \sigma_y) + \frac{u}{D}(u_x - u_y) + \frac{2}{\gamma}\sigma^2 s\frac{1}{D}(s_x - s_y) = 0, \\ s_y + \frac{u}{D}(s_x - s_y) = 0, \end{cases}$$
(12)

где за D = D(x) обозначена неизвестная пока функция $\varphi'(x)$.

После группировки слагаемых система (12) принимает вид

$$\begin{cases} \frac{u}{D}\sigma_x + \frac{D-u}{D}\sigma_y + \frac{\gamma-1}{2}\frac{\sigma}{D}(u_x - u_y) + \nu\frac{\gamma-1}{2}\frac{u\sigma}{\varphi} = 0, \\ \frac{D-u}{D}u_y + \frac{u}{D}u_x + \frac{2}{\gamma-1}\frac{\sigma s^2}{D}(\sigma_x - \sigma_y) + \frac{2}{\gamma}\frac{\sigma^2 s}{D}(s_x - s_y) = 0, \\ \frac{u}{D}s_x + \frac{D-u}{D}s_y = 0, \end{cases}$$
(13)

Обе части первого уравнения системы (13) умножаются на $\frac{D}{D-u}$, обе части второго уравнения — на $\frac{(\gamma - 1)D}{2\sigma s^2}$, обе части третьего уравнения — на $\frac{D}{D-u}$. В результате система примет вид^{2 σ s²</sub>}

$$\begin{cases} \frac{u}{D-u}\sigma_{x} + \sigma_{y} + \frac{\gamma - 1}{2}\frac{\sigma}{D-u}(u_{x} - u_{y}) + \nu\frac{\gamma - 1}{2}\frac{u\sigma D}{\varphi(D-u)} = 0, \\ \sigma_{x} - \sigma_{y} + \frac{(\gamma - 1)(D-u)}{2\sigma s^{2}}u_{y} + \frac{(\gamma - 1)u}{2\sigma s^{2}}u_{x} + \frac{\sigma(\gamma - 1)}{\gamma s}(s_{x} - s_{y}) = 0, \\ \frac{u}{D-u}s_{x} + s_{y} = 0. \end{cases}$$
(14)

Первые два уравнения (14) складываются:

$$\frac{D}{D-u}\sigma_x + \frac{\gamma - 1}{2}\frac{\sigma}{D-u} \left[1 + \frac{u(D-u)}{\sigma^2 s^2} \right] u_x + \frac{\gamma - 1}{2}\frac{\sigma}{D-u} \left[\frac{(D-u)^2}{\sigma^2 s^2} - 1 \right] u_y + \frac{\sigma(\gamma - 1)}{\gamma s} (s_x - s_y) + \nu \frac{\gamma - 1}{2}\frac{u\sigma D}{\varphi(D-u)} = 0.$$

Если последнее уравнение разрешить относительно u_x , то получится

$$u_{x} = \frac{1}{\left[1 + \frac{u(D-u)}{\sigma^{2}s^{2}}\right]} \left\{ \left[1 - \frac{(D-u)^{2}}{\sigma^{2}s^{2}}\right] u_{y} - \frac{2D}{(\gamma-1)\sigma}\sigma_{x} - \frac{2(D-u)}{\gamma s}(s_{x} - s_{y}) - \frac{\nu uD}{\varphi} \right\},$$

Второе уравнение (14) разрешается относительно σ_y :

$$\sigma_y = \sigma_x + \frac{(\gamma - 1)(D - u)}{2\sigma s^2} u_y + \frac{(\gamma - 1)u}{2\sigma s^2} u_x + \frac{\sigma(\gamma - 1)}{\gamma s} (s_x - s_y);$$

третье уравнение (14) — относительно s_y :

$$s_y = -\frac{u}{D-u}s_x.$$

Также в систему добавляется уравнение $\varphi' = D|_{y=0}$, описывающее движение ударной волны. Итак, получена система

$$u_{x} = \frac{1}{\left[1 + \frac{u(D-u)}{\sigma^{2}s^{2}}\right]} \left\{ \left[1 - \frac{(D-u)^{2}}{\sigma^{2}s^{2}}\right] u_{y} - \frac{2D}{(\gamma-1)\sigma}\sigma_{x} - \frac{2(D-u)}{\gamma s}(s_{x} - s_{y}) - \frac{\nu uD}{\varphi} \right\},$$

$$\sigma_{y} = \sigma_{x} + \frac{(\gamma-1)(D-u)}{2\sigma s^{2}}u_{y} + \frac{(\gamma-1)u}{2\sigma s^{2}}u_{x} + \frac{\sigma(\gamma-1)}{\gamma s}(s_{x} - s_{y}),$$

$$s_{y} = h,$$

$$\varphi' = D|_{y=0},$$

$$(15)$$

где

$$h = -\frac{u}{D-u}.$$

Пусть

$$K_1 = \frac{2D_0}{\sigma_{00}(\gamma - 1)} > 0, \quad K_2 = \frac{2D_0}{s_{00}\gamma} > 0, \quad M_0 = \frac{D_0}{\sigma_{00}s_{00}}.$$
 (16)

По теореме Цемплена [10] $0 < M_0 < 1$.

С использованием (16) преобразованная система (15) может быть переписана следующим образом:

$$\begin{cases} u_x = (1 - M_0^2)u_y - K_1\sigma_x - K_2s_x - \frac{\nu uD}{\varphi} + X_1, \\ \sigma_y = \sigma_x + \frac{M_0^2}{K_1}u_y + \frac{K_2}{K_1}s_x + X_2, \\ s_y = h, \\ \varphi' = D|_{y=0}. \end{cases}$$
(17)

Здесь

$$\begin{aligned} X_1 &= \frac{1}{\left[1 - \frac{u(D-u)}{\sigma^2 s^2}\right]} \left\{ \left[1 - \frac{(D-u)^2}{\sigma^2 s^2}\right] u_y + \frac{2D}{(\gamma - 1)\sigma} \sigma_x - \frac{2(D-u)}{\gamma s} (s_x - h) \right\} - \\ &- (1 - M_0^2) u_y + K_1 \sigma_x + K_2 s_x, \end{aligned}$$

$$X_2 = \frac{(\gamma - 1)(D - u)}{2\sigma s^2} u_y + \frac{(\gamma - 1)u}{2\sigma s^2} u_x + \frac{\sigma(\gamma - 1)}{\gamma s} (s_x - h) - \frac{M_0^2}{K_1} u_y - \frac{K_2}{K_1} s_x$$

Функции h, X_1, X_2 таковы, что коэффициенты перед производными неизвестных функций равны нулю в точке ($x = 0, y = 0, u = 0, \sigma = \sigma_{00}, s = s_{00}$).

До введения новых неизвестных функций вводятся следующие обозначения: \mathbf{U} – искомое решение в области между фронтом УВ и осью (центром) симметрии; $\mathbf{U}^1 = (u^1, c^1)$ – фоновое течение, и переписываются условия Гюгонио на УВ (т.е. на оси y = 0) в эквивалентном виде для D, σ, s через \mathbf{U}^1 и u (что возможно в силу теоремы определенности):

$$D|_{y=0} = \left\{ \frac{3-\gamma}{4}u^{1} + \frac{\gamma+1}{4}u + L \right]|_{y=0},$$

$$\sigma|_{y=0} = \left\{ c^{1} \left[\frac{\frac{1}{4}(\gamma+1)\Delta u + L}{\frac{1}{4}(\gamma-3)\Delta u + L} \right]^{\frac{\gamma-1}{2}} \right\}|_{y=0},$$

$$s|_{y=0} = \left\{ \left[\frac{1}{4}(\gamma-3)\Delta u + L \right]^{\frac{\gamma}{2}} \times \left[\frac{1}{4}(\gamma-1)\Delta u + L \right]^{\frac{\gamma}{2}} \right\}|_{y=0},$$

$$(18)$$

где

 \times

$$L = \sqrt{\frac{(\gamma+1)^2}{16}(u-u^1)^2 + (c^1)^2}, \quad \Delta u = u - u^1, \quad c = \sigma s.$$

В силу симметрии имеем условие $u|_{x=0} = 0$, поэтому величины $\sigma_{00} = \sigma|_{x=y=0}$, $s_{00} = s|_{x=y=0}$ однозначно определяются из условий (18), поскольку $\mathbf{U}^{1}|_{\zeta=\zeta_{1},\chi=0}$ известны из предыдущего. При этом $c_{00} = s_{00}\sigma_{00} > 0$.

Функции u^1 , c^1 определяются вдоль неизвестного фронта УВ. Поэтому

$$\mathbf{U}^{1}|_{y=0} = \mathbf{U}^{1}(\zeta, \chi)|_{y=0} = \mathbf{U}^{1}\left(\frac{x+y}{x\psi(x)}, x\psi\right)\Big|_{y=0} = \mathbf{U}^{1}\left(\frac{1}{\psi(x)}, x\psi(x)\right),$$

где $\psi(x)$ находится из соотношения $\varphi(x) = x\psi(x)$. Правые части условий Гюгонио (18) обозначаются соответственно через $D^*|_{y=0}$, $\sigma^*|_{y=0}$, $s^*|_{y=0}$. Приведенные рассуждения позволяют записать функции $D^*|_{y=0}$, $\sigma^*|_{y=0}$, $s^*|_{y=0}$ в виде

$$\begin{cases} D^*|_{y=0} = (\alpha u + \varepsilon \psi + q_0)|_{y=0}, \\ \sigma^*|_{y=0} = (\alpha_1 u + \varepsilon_1 \psi + q_1)|_{y=0}, \\ s^*|_{y=0} = (\alpha_2 u + \varepsilon_2 \psi + q_2)_{y=0}. \end{cases}$$

Здесь $(\partial q_i)/(\partial u)|_{x=y=0} = (\partial q_i)/(\partial \psi)|_{x=y=0} = 0, \ i = 0, 1, 2.$

Тогда, в частности, последнее уравнение системы (17) записывается как

$$x\psi'(x) = [(\varepsilon - 1)\psi(x) + \alpha u + q_0]|_{y=0}.$$
(19)

Из (18) следует, что справедливы неравенства

$$\alpha > 0, \quad \alpha_1 > 0, \quad \alpha_2 > 0, \quad \varepsilon < 0, \quad \varepsilon_1 < 0, \quad \varepsilon_2 < 0.$$
 (20)

Теперь вводятся новые неизвестные функции по формулам

$$\begin{cases}
 u' = u, \\
 v = K_1(\sigma - \sigma^*|_{y=0}), \\
 w = \psi - D_0, \\
 z = s - s^*|_{y=0}.
\end{cases}$$
(21)

т. е. вместо (u, σ, s, ψ) неизвестными функциями будут (u', v, w, z). Якобиан замены (21), очевидно, равен единице.

Замена (21) позволяет перейти к обобщенной задаче Коши с нулевыми начальными данными, заданными на двух поверхностях для квазилинейной системы с особенностями.

Для того чтобы с учетом замены (21) преобразовать систему (17), необходимо старые неизвестные u, σ, ψ, s выразить через новые u', v, w, z. С этой целью выполняются некоторые преобразования. Из (21) непосредственно следует, что

$$u = u', \quad w = \psi + D_0.$$
 (22)

После подстановки во второе и в третье из соотношений (21) равенств (22) получается

$$v = K_1[\sigma - \sigma^*(x, u, \psi)|_{y=0}] = K_1[\sigma - \sigma^*(x, u'|_{y=0}, w + D_0)],$$
$$z = s - s^*(x, u, \psi)|_{y=0} = s - s^*(x, u'|_{y=0}, w + D_0).$$

Таким образом, искомые выражения старых неизвестных u, v через новые неизвестные u', v' (и независимые переменные x, y) имеют вид

$$u = u', \quad \sigma = \frac{1}{K_1} [v + \sigma^*(x, u', w + D_0)|_{y=0}],$$

$$s = z + s^*(x, u', w + D_0)|_{y=0}, \quad \psi = w + D_0.$$
(23)

Прежде чем подставлять соотношения (23) в систему (17), необходимо дополнительно получить соотношения для производных. Для этого обе части соотношений (23) последовательно дифференцируются по x и по y. В результате получается, что

$$\begin{cases} u_{x} = u'_{x}, \\ u_{y} = u'_{y}, \\ \sigma_{x} = \frac{1}{K_{1}} [v_{x} + \sigma_{x}^{*}(x, u', w + D_{0})]_{y=0} + \\ + \sigma_{u}^{*}(x, u', w + D_{0})]_{y=0} \cdot u'_{x}|_{y=0} + \sigma_{\psi}^{*}(x, u' + u_{00}, w + D_{0})]_{y=0} \cdot w_{x}], \\ \sigma_{y} = \frac{1}{K_{1}} v_{y}, \\ z_{x} = s_{x} + s_{x}^{*}(x, u', w + D_{0})]_{y=0} + \\ + s_{u}^{*}(x, u', w + D_{0})]_{y=0} \cdot u'_{x}|_{y=0} + s_{\psi}^{*}(x, u' + u_{00}, w + D_{0})|_{y=0} \cdot w_{x}, \\ z_{y} = s_{y}, \\ w_{x} = \psi_{x}, \\ w_{y} = 0. \end{cases}$$

$$(24)$$

Вводятся обозначения:

$$v_{1}|_{y=0} = \frac{1}{K_{1}} \{ \sigma_{x}^{*}(x, u', w + D_{0})|_{y=0} + [\sigma_{u}^{*}(x, u', w + D_{0})|_{y=0} - \alpha_{1}] u_{x}'|_{y=0} + [\sigma_{\psi}^{*}(x, u', w + D_{0})|_{y=0} - \varepsilon_{1}] w_{x} \},$$

$$z_{1}|_{y=0} = s_{x}^{*}(x, u', w + D_{0})|_{y=0} + [s_{u}^{*}(x, u', w + D_{0})|_{y=0} - \alpha_{2}] u_{x}'|_{y=0} + [s_{\psi}^{*}(x, u', w + D_{0})|_{y=0} - \varepsilon_{2}] w_{x}.$$
(25)

Функции v_1, z_1 зависят от независимых переменных x, y, неизвестных функций u', w и их производных u'_x, w_x , причем зависимость от производных линейная и коэффициенты перед производными обращаются в нуль в точке O(x = 0, y = 0, u' = 0, v = 0, z = 0, w = 0).

С учетом обозначений (25) соотношения (24) переходят в соотношения:

$$\begin{cases}
 u_{x} = u'_{x}, \\
 u_{y} = u'_{y}, \\
 \sigma_{x} = \frac{1}{K_{1}}(v_{x} + \alpha_{1}u'_{x}|_{y=0} + \varepsilon_{1}w_{x}|_{y=0}) + v_{1}|_{y=0}, \\
 v_{y} = v'_{y}, \\
 s_{x} = z_{x} + \alpha_{2}u'_{x}|_{y=0} + \varepsilon_{2}w_{x}|_{y=0} + z_{1}|_{y=0}, \\
 \sigma_{y} = \frac{1}{K_{1}}v_{y}, \\
 w_{x} = \psi_{x}, \\
 w_{y} = 0.
 \end{cases}$$

$$(26)$$

Теперь правые части формул (23), (26) подставляются в систему (17). В результате с учетом (19) система примет следующий вид (штрих далее для удобства написания будем опускать):

$$u_{x} = (1 - M_{0}^{2})u_{y} - v_{x} - \lambda(u_{x})|_{y=0} - \kappa(w_{x})|_{y=0} - \frac{\nu u D}{x(D_{0} + w)} - K_{2}z_{x} + Y_{1},$$

$$\frac{1}{K_{1}}v_{y} = \frac{M_{0}^{2}}{K_{1}}u_{y} + \frac{1}{K_{1}}v_{x} + \frac{1}{K_{1}}\lambda(u_{x})|_{y=0} + \frac{1}{K_{1}}\kappa(w_{x})|_{y=0} + \frac{K_{2}}{K_{1}}z_{x} + \frac{1}{K_{1}}Y_{2},$$

$$z_{y} = Y_{3},$$

$$xw_{x} = [\alpha u + (\varepsilon - 1)w + Y_{4}]|_{y=0}.$$
(27)

Здесь

$$\lambda = K_1 \alpha_1 + K_2 \alpha_2; \quad \kappa = K_1 \varepsilon_1 + K_2 \varepsilon_2;$$

$$Y_1 = X'_1 - K_1 v_1|_{y=0} - K_2 z_1|_{y=0}; \quad Y_2 = K_1 X'_2 + K_1 v_1|_{y=0} + K_2 z_1|_{y=0};$$

$$Y_4 = q'_0 - D_0 + \varepsilon D_0.$$

Функции X'_1, X'_2, Y_3, q'_0 получаются из функций X_1, X_2, h, q_0 в результате замены (21).

Функция Y_4 обладает свойством

$$Y_4|_{x=u=w=0} = \left. \frac{\partial Y_4}{\partial u} \right|_{x=u=w=0} = \left. \frac{\partial Y_4}{\partial w} \right|_{x=u=w=0} = 0.$$

Из (16) и (20) следует, что

$$0 < M_0 < 1, \ \lambda > 0, \ \kappa < 0, \ \alpha > 0, \ \varepsilon < 0.$$

Обе части первого уравнения (27) умножаются на x, обе части второго — на K_1 . Окончательно получается следующая система:

$$\begin{cases} xu_x = x(1 - M_0^2)u_y - xv_x - x\lambda(u_x)|_{y=0} - \kappa(w_x)|_{y=0} - \nu u \frac{D}{(D_0 + w)} - xK_2 z_x + xY_1, \\ v_y = M_0^2 u_y + v_x + \lambda(u_x)|_{y=0} + \kappa(w_x)|_{y=0} + K_2 z_x + Y_2, \\ z_y = Y_3, \\ xw_x = [\alpha u - (\varepsilon + 1)w + Y_4]|_{y=0}. \end{cases}$$

$$(28)$$

Условие на оси симметрии для скорости газа u = 0 и условия Гюгонио на УВ в новых переменных запишутся в виде

$$w(0) = 0, \quad u(0,y) = 0, \quad v(x,0) = 0, \quad z(x,0) = 0.$$
 (29)

Тем самым для системы (28) получена ОЗК с начальными данными (29) на двух поверхностях: начальные значения для неизвестных w(x), u(x, y) задаются на одной координатной оси x = 0, а для двух других функций v(x, y), z(x, y) начальные значения задаются на другой координатной оси y = 0. Линии x = 0 в пространстве физических переменных t, r соответствует прямая r = 0 и начальные условия на ней отвечают равенствам $D(t)|_{t=0} = 1/\zeta_1$, $u|_{r=0} = 0$. А линии y = 0 соответствует траектория неизвестной УВ. При этом два из трех условий Гюгонио на УВ переходят в начальные данные для v(x, y), z(x, y), поставленные на прямой y = 0, а третье из условий Гюгонио перешло в первое уравнение системы (28).

Задача (28), (29) описывает течения в области Ω_2 , точно удовлетворяющие условиям Гюгонио, и является обобщенной задачей Коши с данными на двух поверхностях, одна из которых служит характеристикой.

Теорема 2.1. Задача (28), (29) имеет единственное аналитическое решение, т. е. при $\gamma > 1$ существует единственное аналитическое решение задачи (1), (2) в области Ω_2 , в том числе траектория движения отраженной УВ, на которой выполнены условия Гюгонио. Для решения в Ω_2 выполнено также условие симметрии.

Доказательство теоремы 2.1 является чрезвычайно громоздким и здесь не приводится.

Автор признателен Сергею Петровичу Баутину за полезные обсуждения статьи.

Список литературы

- [1] СЕДОВ Л.И. Методы подобия и размерности в механике. М.: Наука, 1987. 448 с.
- [2] ЗАБАБАХИН И.Е., СИМОНЕНКО В.А. Сферическая центрированная волна сжатия // Прикладная математика и механика. 1978. Т. 42, вып. 3. С. 573–576.
- [3] БАУТИН С.П. Математическая теория безударного сильного сжатия идеального газа. Новосибирск: Наука, 1997. 160 с.

- [4] ЛЕДНЁВ Н.А. Новый метод решения дифференциальных уравнений с частными производными // Математический сборник. 1948. Вып. 2. С. 205–266.
- [5] БАУТИН С.П., КАЗАКОВ А.Л. Обобщенная задача Коши и ее приложения. Новосибирск: Наука, 2006. 399 с.
- [6] ТЕШУКОВ В.М. Построение фронта ударной волны в пространственной задаче о поршне // Динамика сплошной среды. 1978. Вып. 33. С. 114–133.
- [7] ТЕШУКОВ В.М. Распад произвольного разрыва на криволинейной поверхности // Прикладная механика и техническая физика. 1980. № 2. С. 126–133.
- [8] ТЕШУКОВ В.М. О регулярном отражении ударной волны от жесткой стенки // Прикладная математика и механика. 1982. Т. 46, вып. 2. С. 225–234.
- [9] БЛОХИН А.М. Интегралы энергии и их приложения к задачам газовой динамики. Новосибирск: Наука, 1986. 240 с.
- [10] Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений и их приложения к газовой динамике. М.: Наука, 1968. 529 с.

Поступила в редакцию 28 июля 2007 г.