Моделирование углеродного баланса болотных экосистем южной тайги при различных сценариях изменения климата

Е. А. Дюкарев, Е. А. Головацкая

Институт мониторинга климатических и экологических систем СО РАН, Томск, Россия E-mail: egor@imces.ru, golovatskaya@imces.ru

 CO_2 and CH_4 emission fluxes and net primary biological production was estimated for different peatland ecosystems. A local model of the carbon cycle in peatland ecosystems accounting for accumulation of carbon in vegetation and peat deposit was developed. A forecast of development of peatland ecosystems in the south taiga is provided for various scenarios of climate change.

Введение

Наблюдающееся в XX в. глобальное потепление проявляется во всех регионах России. От конца XIX к концу XX в. потепление для территории России в целом составило около +1 °C [1]. Существует мнение о возможной связи через парниковый эффект заметного повышения концентрации углекислого газа в атмосфере с глобальными изменениями климата. Основная планетарная функция наземных экосистем заключается в формировании и регулировании потоков углерода в биосфере, обеспечении непрерывной работы углеродного цикла. Функционирование наземных экосистем в качестве источников или стоков углекислоты определяется балансом между двумя мощными биосферными процессами — фотосинтетической продукцией органического углерода и выделением CO₂ при дыхании и разложении органического вещества. Болота — единственные в наземной биоте экосистемы, которые обеспечивают постоянный долговременный сток в них углерода.

В настоящей работе представлены результаты многолетних (1999–2006 гг.) натурных измерений потоков и запасов углерода олиготрофных болотных экосистем Западной Сибири, на основании которых построена локальная модель углеродного цикла болотной экосистемы и выполнен прогноз развития торфоболотных экосистем южной тайги при различных сценариях изменения климата.

1. Объекты и методы исследования

В качестве объекта исследования выбрано торфяное месторождение Бакчарское, расположенное между реками Икса и Бакчар (Томская область), которое характеризуется

[©] Институт вычислительных технологий Сибирского отделения Российской академии наук, 2008.

закономерной сменой болотных фитоценозов олиготрофного типа: сосново-кустарничково-сфагновый фитоценоз — высокий рям; такой же фитоценоз с угнетенным древостоем — низкий рям; открытая осоково-сфагновая топь. Мощность торфяной залежи изменяется от 1 до 3 м при возрасте от 3 до 5 тысяч лет [2].

Измерения потоков эмиссии CO_2 с поверхности торфяных залежей проводились камерным методом с использованием инфракрасного газоанализатора ОПТОГАЗ 500.4 два раза в месяц на высоком ряме и открытой топи, а на низком ряме — в круглосуточном режиме каждые 3 ч в течение семи дней ежемесячно (с мая по сентябрь). Для последующей оценки углеродного баланса одновременно проводились наблюдения за биологической продуктивностью (укосным методом) и содержанием CO_2 в воздухе (на высоте 0.3...2 м). Сопровождающие метеорологические наблюдения выполнялись на низком ряме в соответствии с требованиями стандартных метеонаблюдений.

2. Экспериментальные исследования круговорота углерода в болотных экосистемах

Чистая первичная продукция (NPP) является показателем накопления углерода в виде растительного вещества. Результаты исследования показали, что в среднем олиготрофные болотные экосистемы имеют одинаковые величины на высоком и низком ряме и открытой топи — 320, 286, 260 гС/м² (грамм углерода на м²) в год соответственно (без учета древесного яруса). Основной вклад в продукцию на исследуемых олиготрофных болотных биогеоценозах вносят корни растений (53–59%) и сфагновые мхи (22–30%). Динамика продуктивности за исследуемые годы определяется погодными условиями (рис. 1, *a*).

Анализ, проведенный для оценки влияния погодных условий на *NPP* исследуемых фитоценозов, показал, что продукция на высоком ряме и открытой топи зависит от температуры воздуха в течение вегетационного периода, на низком ряме температура играет незначительную роль, в то время как количество осадков имеет сильное влияние на продуктивность.

Исследование эмиссии CO₂ показало, что наблюдается заметное снижение эмиссии CO₂ от окраины болотного массива (высокого ряма) к его центральной части (осоково-

Рис. 1. Чистая первичная продукция (*a*) и эмиссия углерода (*б*) в различных фитоценозах за 1999–2006 гг.

сфагновой топи) (рис. 1, б). Установлена зависимость эмиссии CO_2 от температуры (r = 0.59) и влажности воздуха (r = -0.40) воздуха, а также от содержания CO_2 в приземном слое воздуха. Общий поток углерода из торфоболотных экосистем состоит из эмиссии CO_2 и CH_4 с поверхности торфяной залежи и выноса углерода с болотными водами. Эмиссия CH_4 составляет от 5% (в высоком ряме) до 13% (на топи) от эмиссии CO_2 . Вынос углерода с болотными водами составляет в среднем около 6% от общей эмиссии (рис. 1, δ).

Сравнение *NPP* и эмиссии углерода с поверхности торфяной залежи показало, что аккумуляция углерода в процессе фотосинтеза в два раза превышает эмиссию CO₂ с поверхности торфяной залежи всех исследуемых биогеоценозов. Таким образом, в настоящее время на территории исследуемого болотного массива преобладает процесс депонирования углерода в виде органического вещества растений и торфа.

3. Прогноз развития торфоболотных экосистем при изменении климата

Круговорот углерода в болотной экосистеме можно представить схематически в виде классической системы блоков и потоков. Блоками являются содержание углерода в атмосфере (A), запасы углерода в живой фитомассе (Live) и мортмассе (Mort). В качестве потоков рассматриваются: нетто-поступление углерода из атмосферы в живую фитомассу — разница между усвоением углерода в процессе фотосинтеза (Ph) и дыханием растений (R_L); переход углерода живой фитомассы в мортмассу (D) — отмирание, возврат углерода в атмосферу в виде CO₂ и CH₄ в результате эмиссии газов с поверхности (R_D). Имеются сведения о значительной роли процессов реассимиляции (reA) в углеродном балансе болот [3]. Однако в связи с трудностью количественных оценок в предложенной модели она не учитывается. Некоторый вклад в формирование баланса вносит вынос углерода с болотными водами (X). В рамках локальной модели считаем, что атмосферная концентрация углерода меняется независимо от потоков углерода между пулами органического вещества. Для изучения долговременных изменений в системе будем рассматривать годовые величины потоков без учета сезонной динамики.

Рассмотрим отношение содержания углерода в фито- и мортмассе к запасам фитомассы в начальный (современный) момент (L_0) : $M = Mort/L_0$, $L = Live/L_0$. Изменение содержания углерода в живой массе растений и мортмассе будет описываться уравнениями, которые в безразмерном виде выглядят следующим образом:

$$dL/dt = (1 - \gamma)pL, \qquad p = NPP_0/L_0, dM/dt = \gamma p \ L - f - x, \quad f = R_D/L_0, x = X/L_0.$$
(1)

Здесь *NPP* — годичная первичная продукция, которая связана с общими запасами фитомассы линейной зависимостью $NPP = NPP_0L$; γ — коэффициент, характеризующий отмирание фитомассы; R_D — минерализация мортмассы, X — сток с болотными водами.

Годичная продукция растительности с температурой и количеством CO₂ в воздухе связана соотношением

$$p = p_0 (1 + p_1 \Delta T) (1 + p_2 \Delta C), \qquad (2)$$

где C — концентрация углекислого газа в воздухе; T — температура воздуха; p_0 — коэффициент, связанный с современной продуктивностью растительности; p_1 и p_2 —

коэффициенты, определяющие увеличение продуктивности при росте температуры и концентрации CO₂ [4].

Скорость эмиссии углерода из залежи зададим соотношением

$$f(T) = f_0(1 + f_1\Delta T + f_2\Delta C), \tag{3}$$

где f_1 и f_2 — коэффициенты, связанные с изменением эмиссии при увеличении температуры и концентрации CO₂ [5].

Для анализа влияния изменений климата на процесс аккумуляции углерода в торфе выполнены расчеты по модели (1) с учетом соотношений (2) и (3), определяющих зависимости основных потоков углерода от климатических характеристик. Концентрация CO₂ в атмосфере задавалась исходя из известных сценариев изменения климата [6]. Прогноз изменения климата в XX в. на территории Западной Сибири взят из данных расчетов по модели HadCM3, выполненных в Центре Хедли (Великобритания) [7]. Решение дифференциального уравнения (1) проводилось численно с использованием явного метода интегрирования. Шаг по времени в модели составлял один год. Исходные данные для моделирования приведены в табл. 1.

Таблица 1. Параметры модели для различных фитоценозов

Параметр	Высокий рям	Рям	Топь
Фитомасса (L_0) , гС/м ²	591.8	539.5	436.9
Мортмасса (M_0) , гС/м ²	2036	1940	1290
$NPP_0, m rC/m^2/$ год	320.4	285.8	259.8
Эмиссия, г $C/m^2/г$ од	185.4	135.2	111.2
Сток, г $C/M^2/г$ од*	15.0	15.0	15.0
Безразмерный параметр			
M_0/L_0	3.44	3.60	2.95
p_0	0.54	0.53	0.59
f_0	0.31	0.25	0.25
x	0.03	0.03	0.03

* — оценка по литературным данным

Рис. 2. Динамика фито- и мортмассы для экосистем южной тайги при неизменном климате

Рис. 3. Изменение запасов фито- и мортмассы при различных сценариях изменения климата для ряма

Т а б л и ц а 2. Влияние изменений климата на темпы накопления углерода торфяной залежью. Приведено изменение темпов аккумуляции относительно современных, %

	Высокий рям	Рям	Топь	
Фитомасса				
A1	29.0	28.3	32.3	
A2	23.4	22.9	26.0	
B1	16.2	15.8	17.9	
B2	15.7	15.3	17.4	
Мортмасса				
A1	114.0	100.7	100.9	
A2	91.6	79.1	81.0	
B1	60.8	52.9	54.0	
B2	60.5	52.4	53.4	

Варьирование начальных значений эмиссии и продуктивности показывает, что в зависимости от соотношения между параметрами f_0 и p_0 может происходить как рост, так и деградация торфяной залежи. На основании анализа литературных данных и собственных исследований нами определены следующие параметры, характеризующие чувствительность моделируемых процессов к изменениям климата: $f_1 = 0.035$, $f_2 = -0.002$, $p_1 = 0.01$, $p_2 = 0.002$, $\gamma_0 = 0.99$. Модельный расчет, в котором климат считался неизменным в течение всего XX в., показал, что происходит рост запасов мортмассы для всех исследованных экосистем (рис. 2).

При анализе климата в соответствии с различными сценариями установлено нелинейное изменение запасов фитомассы и мортмассы (рис. 3). Увеличение концентрации CO₂ в атмосфере и сопутствующее ему потепление климата вызывают рост скорости накопления углерода в торфяной залежи. Наиболее сильно этот эффект проявляется к концу века.

В табл. 2 приведены данные по увеличению темпов накопления углерода в различных экосистемах относительно современных темпов аккумуляции, которое произойдет к концу столетия. К 2100 г. в южной тайге скорость роста пула мортмассы возрастет на 52–114 % по сравнению с современными темпами. Наибольшие изменения в темпах аккумуляции углерода наблюдаются в экосистеме высокого ряма.

Заключение

Согласно модельным расчетам, в зависимости от типа экосистемы и выбранного сценария изменения климата скорость депонирования углерода растительностью к 2100 г. возрастет на 22±6 %, а скорость накопления в торфяной залежи — на 75±22 % по сравнению с современными темпами накопления.

Список литературы

- ГРУЗА Г.В., РАНЬКОВА Э.Я. Колебания и изменения климата на территории России // Физика атмосферы и океана. 2003. Т. 39, № 2. С. 166–185.
- [2] БОЛЬШОЕ Васюганское болото. Современное состояние и процессы развития / Под ред. М.В. Кабанова. Томск: Изд-во ИОА СО РАН, 2002. 229 с.
- [3] NAUMOV A.V. Carbon budget and emission of greenhouse gases in bog ecosystems of Western Siberia // Eurasian Soil Sci. 2004. Vol. 37. P. 58–64.
- [4] ТАРКО А.М. Антропогенные измерения глобальных биосферных процессов. М.: Физматлит, 2005. 232 с.
- [5] ГОЛОВАЦКАЯ Е.А., ДЮКАРЕВ Е.А., ИППОЛИТОВ И.И., КАБАНОВ М.В. Влияние ландшафтных и гидрометеорологических условий на эмиссию CO₂ в торфоболотных экосистемах // Доклады Академии наук. 2008. Т. 418, № 4. С. 539–542.
- [6] IPCC CLIMATE Change 2001: the Scientific Basis. Cambridge: Cambridge Univ. Press, 2001. 881 p.
- [7] POPE V.D., GALLANI M.L., ROWNTREE P.R., STRATTON R.A. The impact of new physical parametrizations in the Hadley Centre climate model HadAM3 // Climate Dynamics. 2000. Vol. 16. P. 123–146.

(http://www.met-office.gov.uk/research/hadleycentre/models/HadCM3.html).

Поступила в редакцию 21 февраля 2008 г.