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The purpose of this article is to discuss my research of Martin-Löf’s type theory.
It consists of a number of scholastic proofs and results. In order to use a theory it is
a requirement to prove its consistency. One of my results is a proof of consistency of
Martin-Löf’s type theory. It has been submitted for publication in “Springer Archive
for Mathematical Logic”. Another problem is the efficiency of the generated computer
programs. This problem can be reformulated into a problem of comparison of complex-
ity of inferences in the type theory and in other known systems, in the Hilbert-type
System, and in the Gentzen-type System.

I will present an overview of my algorithm that automates the construction of an
object of the type that represents the problem under question. The construction of
this algorithm raises fixed-point type problems. I presented my algorithm in 1986 at
the “Personal Computers & Local Networks” conference in Georgia.
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1. Consistency of Martin-Löf’s type theory

The most important property of any theory is its consistency. If the theory is not consistent,
then there exist a proposition A that both A and ¬A are provable in the theory. Therefore,
a not consistent theory cannot be used for automated computer program writing. Simply
put, a not consistent theory is useless.

I have proved the consistency of Martin-Löf’s type theory. I have presented my proof at
2005–2006 Association for Symbolic Logic Winter Meeting (with Joint Mathematics Meet-
ings) San Antonio, Texas, January 14–15, 2006, and has been submitted to “Springer Archive
for Mathematical Logic” for publication.

2. Complexity of logical inferences in Martin-Löf’s type theory

To characterize the complexity of inferences in Martin-Löf’s type theory [1] we need to
compare complexity of inferences in the type theory with complexity of inferences in other,
already researched, formal systems. In order to compare complexity of inferences in different
systems we will need to define methods of complexity measurements universal for all of
these systems. I have compared complexity of inferences in Martin-Löf’s small types [2],
that is, types of V0, with complexity of inferences in two other well known systems. One
of these systems is the Hilbert-type Intuitionistic Formal System (hereafter H) [3]. The© Èíñòèòóò âû÷èñëèòåëüíûõ òåõíîëîãèé Ñèáèðñêîãî îòäåëåíèÿ �îññèéñêîé àêàäåìèè íàóê, 2009.
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second system is a Gentzen-type Intuitionistic Formal System (hereafter G) [3, 4]. All these
three systems (small types, H and G) are formalizations of arithmetic. Also, I have defined
three measurements of complexity, and Shannon’s Functions [5] for all these measurements
of complexity. Then I have defined upper and lower limits of these Shannon’s Functions.
My results show that complexity of inferences in small types are not more complex than
complexity of inferences in both H and G. (I am in the process of preparing these results
plus additional results on complexity of inferences for publication.) My overall conclusion
is that inferences in Martin-Löf’s type theory are definitely less complex than inferences in
both H and G.

3. Automation of inference in Martin-Löf’s type theory

I have built an algorithm “Inference Research System with Dialogue in Martin-Löf’s In-
tuitionistic Type Theory” that automates the construction of an object of the type that
represents the problem under question [6]. The construction of this algorithm raises fixed-
point type problems. I presented my algorithm in 1986 at the “Personal Computers & Local
Networks” conference in Georgia. Later, on the basis of Martin-Löf’s type theory a few sys-
tems such as NuPRL, Lego, Coq, Agda, ALF, Twelf and Epigram, were constructed. Here
are brief descriptions of these systems taken mainly from Wikipedia.

Agda is an interactive system for developing constructive proofs in a variant of Per
Martin-Löf’s type theory. In Agda the proof is a term, not a script. It can also be seen as a
functional programming language with dependent types.

Coq is a proof assistant application. It is not an automated theorem prover but includes
automatic theorem proving tactics and various decision procedures.

Epigram is a functional programming language with dependent types. The goal is
to support a smooth transition from ordinary programming to integrated programs and
proofs whose correctness can be checked and certified by the compiler. Epigram exploits the
propositions as types principle, and is based on intuitionistic type theory.

Lego Mindstorms is a line of Lego sets combining programmable bricks with electric
motors, sensors, Lego bricks, and Lego Technic pieces. The first retail version of Lego
Mindstorms was released in 1998. The current version is Lego Mindstorms NXT which is a
programmable robotics kit released by Lego in late July 2006.

NuPRL is a higher-order proof development system developed at Cornell University.
Twelf is an implementation of the logical framework. It is used for logic programming

and for the formalization of programming language theory.
Let us use an example to illustrate how the language of Martin-Löf’s type theory works.

As an example we will use the following formula:
(
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(1)

where N is type of natural numbers, and the variables n and y occur free in C (1) is a type.
I will show how to construct an object of this type. This object may be interpreted as a
proof of (1). Assume

n ∈ N, (2)

y ∈ C, (3)
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where (2) means that n is a variable of type N , and (3) means that y is a variable of type C.
To prove (1) we need to construct an object of the type to the right of the arrow (→) using
the assumption (4).

First we have to apply the
∑

-elimination rule to (4). Let us use the following abbrevia-
tions:

p(c) for (Ea, b)(c, a), q(c) for (Ea, b)(c, b)

which means that c = (p(c), q(c)). By
∑

-elimination we get

p(z) ∈ C(0/n) (5)

and
q(z) ∈

(

∏

n ∈ N
) (

∏

y ∈ C
)

C(n′/n). (6)

By
∏

-elimination, from (6) and (2) we get

q(z) = q(z)(n/n) ∈
(

∏

y ∈ C
)

C(n′/n). (7)

By
∏

-elimination, from (7) and (3) we get

q(z)(y) ∈ C(n′/n). (8)

By N -elimination, from (2), (5) and (8) we get

(Ru, v)(n, p(z), q(z)(y)) ∈ C(n/n) = C. (9)

Finally, by
∏

-introduction, from (9) and (4) we get

(λz)(Ru, v)(n, p(z), q(z)(y)) ∈

∈
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C
)]

.

Thus,
(λz)(Ru, v)(n, p(z), q(z)(y))

is the sought object of the type (1).
This procedure of constructing an object offers an idea about how to choose which rule

to apply. The ultimate operation of (1)

(
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is →, that is,
∏

. Notice that the assumption (4) was made in order to construct an object
of (1) by using

∏

-introduction. Then we used elimination rules to go from outside to inside
to construct objects of types. Next, to construct an object of the type to the right from the
arrow, we applied introduction rules from inside, out. Finally, we applied the

∏

-introduction
rule to construct an object of the type (1). This logic can be used to any type, and construct
an object of that type, if there is one. This method can be used to build an algorithm that
automates inference in Martin-Löf’s type theory. The algorithm I have built [6] is a system
with dialog. When applied to a type it constructs an object of that type. This system can
be used as an algorithm that solves the proposition. Based on this algorithm a computer
program can be created. My system with dialog can be used as a skeleton of a software that
automatically synthesizes computer programs.
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