Моделирование параметров процесса электроискрового легирования для образования функциональных поверхностей^{*}

С. И. СМАГИН, В. Д. ВЛАСЕНКО Вычислительный центр ДВО РАН, Владивосток, Россия e-mail: smagin@as.khb.ru, vlasenko@as.khb.ru

Ю.И. Мулин

Тихоокеанский государственный университет, Хабаровск, Россия

Основная задача моделирования процесса электроискрового легирования (ЭИЛ) — определение технологических параметров для образования функциональных поверхностей, в том числе получение разнообразных покрытий деталей машин и инструментов. Для ее решения в данной работе используется метод имитационного статистического моделирования. На его основе разработан и реализован на ПЭВМ алгоритм, позволяющий определять технологические параметры процесса ЭИЛ. Сравнительный анализ расчетов и экспериментов показал хорошее совпадение результатов, что позволяет создавать, анализировать, а также оптимизировать процесс формирования поверхностного слоя с заданными свойствами.

Ключевые слова: моделирование, электроискровое легирование, алгоритм.

Введение

Одна из актуальных задач машиностроения — получение высококачественных поверхностей и покрытий деталей при их изготовлении. Метод электроискрового легирования (ЭИЛ) может эффективно применяться для повышения срока службы быстро изнашивающихся деталей машин и режущего инструмента. Отсутствие полной математической модели процесса ЭИЛ в настоящее время объясняется сложностью происходящих электро-физико-химических явлений при его реализации. Это затрудняет выбор режимов обработки и используемых электродных материалов, снижает эффективность применения ЭИЛ в производстве и воспроизводимость результатов процесса [1–3].

В данной работе для решения вышеупомянутой задачи используется метод имитационного статистического моделирования, позволяющий при неполном знании механизмов процессов низковольтного пробоя, эрозии, массопереноса, формирования покрытия на катоде с учетом наличия микрообъемов расплавленного металла, влияния окружающей среды создавать, анализировать, а также оптимизировать формирование измененного поверхностного слоя на катоде в зависимости от энергетических параметров процесса ЭИЛ. Приведены результаты применения созданной имитационной статисти-

^{*}Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 08-01-98502) и Президиума ДВО РАН (грант № 06-III-А-01-002).

[©] ИВТ СО РАН, 2009.

ческой модели для определения параметров процесса ЭИЛ при получении различных электродных материалов.

1. Характеристики математических зависимостей, используемых для построения модели

Изучение совместного воздействия исходных параметров процесса ЭИЛ (приведенной энергии $W_{\rm n}$, частоты следования импульсов искровых разрядов f, длительности искрового разряда τ) на величину суммарного привеса катода Δ_k позволяет сформулировать ряд требований к функции $\Delta_k(W_{\rm n}, f, \tau)$, выражающей зависимость Δ_k от $W_{\rm n}, f$ и τ :

1) наличие максимума Δ_k относительно $W_{\mathbf{n}}$;

2) обращение функции Δ_k и скорости изменения привеса катода V_k в ноль при $W_{\pi} = 0;$

3) возрастание функции $\Delta_k(W_n, f, \tau)$ относительно частоты следования импульса f и убывание относительно длительности искрового разряда τ ;

4) небольшое число дополнительных параметров, оцениваемых по экспериментальным данным.

Здесь $W_{\rm m}$ — приведенная энергия, т.е. энергия, затраченная на легирование 1 см² поверхности, $W_{\rm m} = W_1 t f k_N$, где W_1 — приведенная энергия единичного импульса, t — время легирования 1 см² поверхности, f — частота следования импульсов искрового разряда, k_N — коэффициент вероятности прохождения разряда ($k_N = 0.75...0.85$).

Этим требованиям удовлетворяют многие семейства функций, например, полиномы, степенно-показательные функции и др. Сравнение и выбор среди них для различных пар электродов производится по экспериментальным данным с учетом перечисленных выше требований и использованием методов математической статистики: оценка связи между суммарным привесом катода Δ_k и энергетическими параметрами процесса ЭИЛ, проверка гипотез о постоянстве значений некоторых коэффициентов и т. д. Степень согласия каждой рассматриваемой гипотезы с опытными данными оценивалась по коэффициенту детерминации R^2 [4]. По результатам многочисленных расчетов наилучшее согласие ($R^2 > 0.94$) было получено для степенно-показательных функций, поэтому для описания зависимости величины Δ_k от параметров процесса ЭИЛ используется аппроксимирующая функция

$$\Delta_k = A W_{\pi}^{1+Bf} \exp(-C\tau W_{\pi}^2), \tag{1}$$

где А, В, С — неизвестные коэффициенты.

Коэффициенты A, B, C этой зависимости оцениваются для каждой пары электродов по результатам $n \ge 5$ опытов по приведенной ниже методике.

Если вместо $W_{\rm n}$ в уравнении (1) перейти к безразмерной величине $W_{\rm n0} = W_{\rm n}/W_0$, где W_0 — масштабный коэффициент, зависящий от приведенной энергии, то размерность коэффициента A будет такой же, как у функции Δ_k . Далее вместо $W_{\rm n0}$ используется обозначение $W_{\rm n}$ [5].

Если A > 0, B > 0, C > 0, то функция (1) обладает следующими свойствами, характерными для реальных процессов легирования.

1. В начальный момент времени (t = 0) величины W_{π} , Δ_k и V_k равны нулю.

2. Зависимость (1) имеет максимум при энергии W_{nx} :

$$W_{\pi \mathbf{x}}^2 = \frac{1 + Bf}{2C\tau},$$

соответствующий порогу хрупкого разрушения материала покрытия, который определяется приравниванием нулю первой производной функции (1) по W_{n} .

3. График функции (1) имеет точку перегиба при энергии $W_{\pi V}$:

$$W_{\pi V}^2 = 2Bf + 3 - \frac{\sqrt{9 + 8Bf}}{4C\tau},$$

которая определяется из равенства нулю второй производной функции (1) по $W_{\rm n}$. Эта точка соответствует максимуму скорости V_k изменения массопереноса.

4. Если $W_{\text{п}} > W_{\text{пx}}$ и неограниченно возрастает, то $\Delta_k \to 0$.

При других сочетаниях знаков коэффициентов A, B, C нарушаются все или некоторые перечисленные свойства функции $\Delta_k(W_n, f, \tau)$, что не соответствует процессу ЭИЛ.

Толщина покрытия (толщина легированного слоя) h связана с величиной суммарного привеса катода Δ_k формулой [6]

$$h = k_{\rm H} \Delta_k \rho^{-1} = k_{\rm H} A W_{\rm n}^{1+Bf} \rho^{-1} \exp\left(-C\tau W_{\rm n}^2\right),\tag{2}$$

где ρ — удельная плотность материала покрытия, $k_{\rm H}$ — коэффициент неравномерности образования толщины покрытия ($1.1 \le k_{\rm H} \le 1.3$).

Величина $Y = \Delta_k / W_{\rm n}$ характеризует эффективность массопереноса при значении выделившейся энергии $W_{\rm n}$. Дифференцируя Y по $W_{\rm n}$ и приравнивая первую производную нулю, получаем, что максимум эффективности достигается при значении энергии $W_{\rm nE}$:

$$W_{\pi E}^2 = \frac{Bf}{2C\tau}.$$

Величина энергии W_{nE} может быть принята граничной, рекомендуемой для окончания процесса легирования при образовании однослойных и многослойных покрытий (кроме последнего слоя). Прирост массы покрытия значительно замедляется при W_n близких к W_{nx} . В качестве ограничения на продолжительность легирования при образовании однослойного покрытия и последнего слоя многослойного покрытия предлагается промежуток времени, соответствующий граничной точке с энергией W_{nr} :

$$W_{\rm mr}^2 = \frac{x_1}{2C\tau}$$

где x_1 — единственный действительный корень кубического уравнения

$$x^{3} - 3(2 + Bf)x^{2} + 3(1 + Bf)x + Bf - B^{3}f^{3} = 0$$

из интервала (Bf, 1 + Bf). Два других корня — мнимые.

Рис. 1

Рис. 2

Типичные графические зависимости суммарного привеса катода Δ_k , эффективности массопереноса Y и скорости изменения привеса катода V_k от величины приведенной энергии $W_{\rm n}$ представлены на рис. 1 и 2.

Расчетное время легирования t_p , необходимое для образования толщины покрытия при заданных частоте f, длительности импульса τ и принятых материалах электродов, определяется из соотношения [7]

$$t_p = \frac{2W_{\pi}}{C_1 U^2 k_E f k_N},\tag{3}$$

где $W_{\rm n}$ — величина приведенной энергии, соответствующая заданной толщине покрытия h, определяется из формулы (2); C_1 — емкость конденсаторов установки; U — напряжение на конденсаторных батареях; k_E — коэффициент эффективности использования энергии в разрядном контуре ($k_E = 0.5...0.6$).

2. Обработка результатов эксперимента и алгоритм вычислений

Степень согласия, т.е. качество уравнения регрессии (1) в логарифмическом виде

$$\ln\left(\frac{\Delta^k}{W_{\pi}}\right) = \ln A + (Bf)\ln W_{\pi} - C\tau W_{\pi}^2,\tag{4}$$

определяется с помощью двух показателей: критерия значимости Фишера F и коэффициента детерминации R^2 [4].

Использование уравнения и его результатов считаем достаточно надежным, если значение F, полученное по результатам опытов, превышает четырехкратное значение F_{kp} ($F > 4F_{kp}$) (см., например, [8]).

На основе изложенного выше метода разработан и реализован на ПЭВМ алгоритм, который определяет технологические параметры процесса ЭИЛ [9].

Исходные данные для решения задачи: удельная плотность материала покрытия ρ ; коэффициент неравномерности образования покрытия $k_{\rm H}$; число опытов n; энергия единичного импульса W_1 ; наименьшее и наибольшее значения частоты следования импульсов искрового разряда f и длительности искрового разряда τ , необходимые для построения линий уровня получаемой толщины покрытия в этих интервалах изменения.

По результатам опытов (величине приведенной энергии $W_{\rm n}$, частоте f, длительности импульса τ и полученному значению суммарного массопереноса Δ_k) рассчитываются коэффициенты A, B, C и показатели качества статистической обработки. При этих значениях коэффициентов определяются порог хрупкого разрушения материала покрытия $W_{\rm nx}$, максимальная эффективность массопереноса $W_{\rm nE}$, граничное значение энергии $W_{\rm nr}$ и время легирования t_p для достижения заданной толщины покрытия hисследуемым материалом при выбранном режиме легирования.

Результаты вычисления коэффициентов A, B, C для материалов, имеющих применение в производстве, представлены в табл. 1 и 2.

При отсутствии численных значений коэффициентов A, B, C зависимости (1) метод, на основе экспериментальных данных, позволяет определять эти значения.

Материал анода	Коэффициенты			Коэффициент
(легирующего электрода)	$A\cdot 10^{-3},$ г/см 2	$B \cdot 10^{-4}, c$	C, c^{-1}	детерминации R^2
W	1.01	8.70	67.8	0.954
Cr	2.61	1.81	26.6	0.971
Ni	2.29	2.94	31.9	0.994
Ti	1.36	3.52	42.2	0.990
${ m Fe}$	2.24	3.02	14.9	0.984
TiC	1.01	5.19	73.4	0.968
BK8	1.28	3.93	44.9	0.991
W-Ni	2.06	3.15	28.6	0.990
$\operatorname{W-Fe}$	1.59	3.35	21.8	0.990
W-Fe-Ti	1.20	4.04	50.5	0.983
W-Co	1.23	2.81	14.9	0.984
W-Zr	1.29	3.76	26.6	0.980
$\operatorname{W-Cr}$	2.35	1.51	18.8	0.986
НИАТ-5	3.30	6.27	11.2	0.972
W-Ni-Zr	1.48	3.94	23.3	0.977
W-Co-Mo	1.38	3.52	20.1	0.988
W-Ni-Co	1.81	2.13	17.1	0.984
W-Cr-Mo	1.35	4.80	21.7	0.978
W-Cr-Co	1.31	4.42	18.7	0.984
W-Cr-Ni	1.46	4.45	22.1	0.987
W-Ni-Mo	1.91	2.63	21.1	0.970

Т а б л и ц а 1. Коэффициенты уравнения регрессии (1) и их статистические показатели при обработке методом ЭИЛ поверхностей деталей из стали 45

Таблица 2. Коэффициенты уравнения регрессии (1) и их статистические показатели при обработке методом ЭИЛ поверхностей деталей из стали 4X5MФС

Материал анода	Коэффициенты			Коэффициент
(легирующего электрода)	$A\cdot 10^{-3},$ г/см 2	$B \cdot 10^{-4}, c$	C, c^{-1}	детерминации R^2
W	1.27	9.23	99.80	0.953
Cr	3.06	3.08	26.37	0.968
Ni	2.60	4.03	46.35	0.990
Ti	1.40	4.13	38.60	0.986
T15K6	1.15	3.96	68.77	0.978
BK8	1.83	4.72	39.71	0.987
W-Ni	2.61	4.53	24.45	0.987
W-Cr	2.76	6.84	25.30	0.982
НИАТ-5	3.38	6.14	11.16	0.968

3. Результаты расчетов технологических параметров процесса ЭИЛ

Пример 1. Процесс ЭИЛ выполняется для легирования поверхности детали из стали 45 электродом из сплава ВК8 на установке для электроискрового легирования модели "Элитрон-16" [3]. Необходимо определить наибольшую толщину покрытия, образуемого за один проход, и удельное время легирования (t_p , мин/см²) для образования на по-

верхности покрытия наибольшей толщины и толщины h = 0.01 мм при использовании режима с энергией единичного импульса $W_1 = 0.00024$ кДж, длительности следования импульсов $\tau = 4 \cdot 10^{-5}$ с и частоте следования импульсов f = 600 Гц.

Для расчетов использовалась информация о значениях коэффициентов A, B, C из табл. 1 для материала электрода ВК8 $A = 0.00128 \text{ г/см}^2, B = 3.93 \cdot 10^{-4} \text{ c}, C = 44.9 \text{ c}^{-1}$. Удельная плотность материала покрытия $\rho = 14.6 \text{ г/см}^2$. Коэффициент неравномерности образования толщины покрытия $k_{\rm H} = 1.2$.

Расчеты с применением вышеописанного алгоритма показали, что наибольшая толщина покрытия за один проход может достигать $h_{\rm max} = 0.0209$ мм и расчетное удельное время легирования для получения покрытия толщиной 0.020 мм при указанных выше режимах процесса составляет 2.18 мин/см². Для достижения толщины покрытия h = 0.01 мм при тех же режимах расчетное удельное время легирования должно быть 0.95 мин/см².

Также были вычислены: порог хрупкого разрушения $W_{\text{пx}} = 18.5 \text{ кДж/см}^2$, максимальное значение суммарного массопереноса $m = 0.025 \text{ г/см}^2$, энергия максимума эффективности $W_{\text{п}E} = 8.1 \text{ кДж/см}^2$, граничная точка $W_{\text{пr}} = 15.2 \text{ кДж/см}^2$.

Для проверки правильности определения технологических параметров на установке "Элитрон-16" были проведены экспериментальные исследования. Получены следующие результаты. Наибольшая толщина образуемого покрытия электродом из сплава BK8 до его разрушения составляет 0.019 мм (по расчету 0.021 мм). При работе на установке с использованием вышеуказанных режимов в течение 1.0 мин при обработке 1 см² поверхности получена средняя толщина покрытия 0.0096 мм (по расчету 0.010 мм). Для приведенного примера средняя погрешность между вычисленными и экспериментальными данными не превышает 4%. При исследовании массопереноса более чем 20 пар электродных материалов наибольшая погрешность была получена при легировании титанового сплава BT20 электродом Cr-Ni и составляла 6%.

Пример 2. Процесс ЭИЛ выполняется для восстановления размеров поверхности детали из стали 4X5M2ФС компактным электродом из сплава 11X15H25M6AГ2 на установке для электроискрового легирования модели ИМ-101 [3], имеющей по паспортным данным следующие технологические характеристики: частота следования импульсов f = 100...1000 Гц, длительность следования импульсов $\tau = (0.06...0.12) \cdot 10^{-3}$ с, энергия единичного импульса W_1 для режима 3 составила 0.00033 кДж, режима 4 — 0.00045, режима 5 — 0.00096 кДж.

Необходимо определить наибольшую толщину образуемого за один проход покрытия и удельное время легирования t_p , мин/см², для образования на поверхности покрытия толщиной h = 0.40 мм при использовании 3-, 4- и 5-го режимов обработки. Для расчетов использовалась информация о величине суммарного массопереноса материала анода на катод от параметров, найденных по результатам эксперимента (шесть опытов).

В результате вычислений получили, что наибольшая толщина покрытия за один проход может достигать $h_{\text{max}} = 0.66$ мм. Для h = 0.4 мм длительность процесса при использовании режимов 3, 4, 5 составляет соответственно $t_3 = 1.8$ мин/см², $t_4 = 1.39$, $t_5 = 0.65$ мин/см².

Правильность определения технологических параметров проверялась экспериментально на установке ИМ-101. Получены следующие результаты. Наибольшая толщина образуемого покрытия электродом из сплава 11X15H25M6AГ2 до его разрушения составляет 0.641 мм (по расчету 0.66 мм). При работе на установке с использованием 4-го режима в течение 1.4 мин при обработке 1 см² поверхности получена средняя толщина покрытия 0.388 мм (по расчету 0.4 мм). При работе на установке с использованием 3-го режима в течение 2 мин при обработке 1 см² поверхности получена средняя толщина покрытия 0.412 мм (по расчету 0.4 мм). Для приведенного примера средняя погрешность между вычисленными и экспериментальными данными составила 3 %.

Анализ результатов исследований показывает, что основное влияние на величину суммарного массопереноса оказывает приведенная энергия $W_{\rm n}$ (до 63%). Влияние частоты следования искровых разрядов f составляет до 16.3%, длительности искрового разряда τ — до 3.2%, совместного взаимодействия $W_{\rm n}$ и f — до 12.6%.

Заключение

В данном исследовании разработан и реализован на ПЭВМ алгоритм для определения технологических параметров процесса ЭИЛ и необходимого времени легирования для образования заданной толщины покрытия. Проведено моделирование процесса ЭИЛ для электродов из различных сплавов. Сравнение численных результатов, полученных по разработанному алгоритму, с данными экспериментальных исследований позволяет сделать вывод об эффективности предложенного алгоритма. Метод позволяет создавать, анализировать, а также оптимизировать процесс формирования поверхностного слоя на катоде в зависимости от энергетических параметров процесса ЭИЛ.

Список литературы

- [1] САМСОНОВ Г.В., ВЕРХОТУРОВ А.Д., БОВКУН Г.А., СЫЧЕВ В.С. Электроискровое легирование металлических поверхностей. Киев: Наукова думка, 1975.
- [2] ВЕРХОТУРОВ А.Д. Формирование поверхностного слоя металлов при электроискровом легировании. Владивосток: Дальнаука, 1995.
- [3] Мулин Ю.И., ВЕРХОТУРОВ А.Д. Электроискровое легирование рабочих поверхностей инструментов и деталей машин электродными материалами, полученными из минерального сырья. Владивосток: Дальнаука, 1999.
- [4] ДРЕЙПЕР Н., СМИТ Г. Прикладной регрессионный анализ. М.: Финансы и статистика, 1985.
- [5] МАНЬКОВСКИЙ В.А., САПУНОВ В.Т. Статистическое прогнозирование усталостной и длительной прочности в рамках теории нелинейного подобия // Заводская лаборатория. 1995. № 11. С. 38-41.
- [6] ВЕРХОТУРОВ А.Д., ПОДЧЕРНЯЕВА И.А., ПРЯДКО Л.Ф., ЕГОРОВ Ф.Ф. Электродные материалы для электроискрового легирования. М.: Наука, 1988.
- [7] ГИТЛЕВИЧ А.Е., МИХАЙЛОВ В.В., ПАРКАНСКИЙ Н.Я., РЕВУЦКИЙ В.М. Электроискровое легирование металлических поверхностей. Кишинев: Штиинца, 1985.
- [8] Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1965.
- [9] ВЛАСЕНКО В.Д., МУЛИН Ю.И. Программа расчета технологических параметров процесса электроискрового легирования для образования функциональных поверхностей // Свидетельство РФ об официальной регистрации программы для ЭВМ № 2007610392 от 23.01.2007 по заявке № 2006613256.