Анализ помех отражения в неоднородных многопроводных линиях передачи сигналов

К. Е. АФАНАСЬЕВ, С. Н. ТРОФИМОВ Кемеровский государственный университет, Россия e-mail: keafa@kemsu.ru, sergei@kemsu.ru

Рассматривается анализ помех отражения в неоднородных многопроводных линиях передачи во временной области с помощью TVD-схемы метода Годунова. Проведено сравнение результатов численного моделирования с экспериментальными данными и расчетами других авторов. Результаты численного моделирования представлены в виде графиков для напряжений в сигнальной и пассивной линиях.

Ключевые слова: многопроводные линии передачи, многосекционные линии передачи, метод Годунова, TVD-схемы.

Введение

С появлением цифровых технологий возрос интерес к анализу линий передачи для проектирования современных электронных устройств. В последние годы был проведен ряд исследований по разработке методов анализа отклика и вычисления параметров линий передач самой различной сложности [1, 2]. В монографии [3] подробно представлен обзор работ по анализу распространения сигнала в линиях передачи и расчету временного отклика.

Основной тенденцией развития высокоскоростной радиоэлектронной аппаратуры (РЭА) является повышение скорости обработки информации, что, однако, сопровождается появлением новых проблем, связанных с переходом в наносекундный диапазон работы устройств и обусловленных искажением сигналов в линиях передачи. Распространение сигнала вдоль многопроводных линий передач, когда полное сопротивление нагрузки не равно волновому сопротивлению линии передачи (несогласованные линии), играет значительную роль в современных технологиях обработки и передачи сигналов. Скоростные аналоговые и цифровые цепи любого уровня интеграции предлагают широкий выбор примеров простых и многопроводных, однородных и неоднородных линий передачи, присоединенных к устройствам с различными входными характеристиками. Уменьшение времени установления уровня амплитуды сигнала подчеркивает важность эффектов распространения и искажения сигналов вследствие воздействия таких наиболее значимых в большинстве приложений паразитных эффектов, как отражение от несогласованных нагрузок, перекрестные наводки и скин-эффект. Поэтому в данном случае важной задачей исследований является анализ временного отклика в несогласованных линиях передачи, искажение сигнала в которых может привести к некорректному поведению радиоэлектронного оборудования.

© ИВТ СО РАН, 2010.

Для анализа распространения сигнала в линиях передачи разработаны различные численные и аналитические методы [1, 4]. Широкое распространение получили также средства визуального электродинамического и квазистатического моделирования [5]. При этом для всех вариантов анализа исходным этапом являются формулировка системы телеграфных уравнений, задание начальных и граничных условий, а также описание матриц параметров линий передачи.

В настоящее время наиболее полно разработаны программы моделирования линейных радиотехнических устройств с сосредоточенными параметрами в частотной области. Существует ряд подходов, основанных на смешанных методах, дающих приемлемые результаты моделирования линий с распределенными параметрами и потерями в нелинейных цепях. Однако, учитывая особенности существующих методов, в которых часть решения проводится аналитически, расчет многопроводных линий сопряжен с громоздкими выкладками, что затрудняет решение практических задач, особенно если поведение оконечных устройств, вольт-амперные характеристики (ВАХ) которых имеют довольно сложный вид, не может быть описано стандартными аналитическими функциями. Заметим, что для элементов с нелинейными ВАХ (нелинейный нагружающий элемент) графическая зависимость тока от напряжения обычно известна из справочных данных или эксперимента. Поэтому при расчете электрических цепей с заданными нелинейными характеристиками элементов возникает задача приближенного воспроизведения таких характеристик. Одним из способов аппроксимации ВАХ, заданных таблично, является использование сплайнов. В ряде случаев поведение интерполяционных сплайнов не согласуется с качественными характеристиками исходных данных (появляются нежелательные изгибы или всплески). Этот недостаток устраняется в обобщенных кубических сплайнах — сплайнах с натяжением и их модификациях (гиперболические, экспоненциальные, рациональные и др.) [6]. Для аппроксимации вольт-амперных характеристик нелинейных элементов в данной работе используются экспоненциальные сплайны, описанные в [7], поскольку они хорошо зарекомендовали себя при решении подобных задач [8].

В статье описывается алгоритм для численного моделирования многопроводных линий передачи с нелинейными нагрузками, в частности, для решения задачи расчета временного отклика в многопроводных линииях передачи. В предлагаемом алгоритме использован метод Годунова, широко применяемый для решения задач газовой динамики, теории мелкой воды, магнитной гидродинамики и механики твердого деформируемого тела. Поскольку этот метод основан на законах сохранения материи и энергии, то данный подход является наиболее приемлемым с физической точки зрения, однако примеры использования метода Годунова в задачах теории цепей с распределенными параметрами авторам статьи неизвестны. Численное моделирование проводится во временной области, что позволяет выполнять точный анализ временного отклика многопроводных структур с нелинейными нагружающими элементами.

В первом разделе статьи рассматриваются физическая и математическая постановки задачи, во втором приводятся описание разностной схемы и построение аппроксимации вольт-амперных характеристик нелинейных нагружающих цепей с помощью экспоненциального сплайна с натяжением, в третьем представлены результаты численного решения нескольких тестовых задач и их сравнение с экспериментальными и расчетными данными других авторов. Рассмотрены примеры моделирования с нелинейными нагрузками, показана предпочтительность аппроксимации сплайном с натяжением.

1. Постановка задачи

1.1. Физическая постановка задачи

Наиболее общий подход при расчете временных характеристик любой электромагнитной системы основан на решении уравнений Максвелла во временной области, при этом можно учесть все эффекты геометрии системы и электрические свойства. Однако такой подход довольно сложен уже для простейших структур и трудноосуществим даже на высокопроизводительных ЭВМ. Поэтому обычно используют определенные допущения. Пусть выполняются следующие условия:

— многопроводная линия считается однородной по длине, а на концах нагружена произвольными цепями; если вдоль линии имеются неоднородности, то ее можно разбить на ряд однородных участков; влияние неоднородностей учитывается через соответствующие эквивалентные цепи;

— геометрические размеры структуры в поперечном сечении малы по сравнению с длиной проходящей по ней волны сигнала;

- длина линии намного превышает расстояние между ее проводниками.

С учетом этих допущений многопроводную линию передач можно описать системой дифференциальных уравнений в частных производных (обобщенные телеграфные уравнения), которые могут быть получены следующими путями [9–13]:

выводятся из уравнений Максвелла;

— записываются как следствие теоремы взаимности электротехнических цепей;

— выводятся из законов Кирхгофа предельным переходом от уравнений цепи с сосредоточенными параметрами к уравнениям структуры с распределенными параметрами. Краткая историческая справка по данному вопросу приведена в работах [14, 15].

Отметим, что особой проблемой при анализе многопроводных линий передачи является учет нагружающей цепи. Если линия передачи не имеет потерь и нагрузка линии представляет собой произвольную цепь, то решение может быть получено исключительно во временной области. С учетом этих допущений многопроводная линия передачи описывается системой дифференциальных уравнений в частных производных во временной области.

1.2. Математическая постановка задачи

Рассмотрим линию передачи, состоящую из N + 1 проводников. Предположим, что N проводников являются сигнальными, а проводник N + 1 представляет собой земляной (опорный) проводник. Также предположим, что земля имеет нулевой потенциал и линия по длине однородна. Обозначим через $u_k(x,t)$ напряжение между k-м сигнальным проводником и землей на расстоянии x от генераторного конца в момент времени t, через i — ток, протекающий по k-му проводнику на расстоянии x от генераторного конца в момент времени t. Пусть ось x направлена вдоль линии, причем точка x = 0 соответствует положению генератора, а x = l — положению нагрузки. Тогда, согласно теории цепей, напряжения и токи линии передачи при распространении TEM-волн связаны телеграфными уравнениями [1, 9, 11, 12]:

$$-\frac{\partial \mathbf{u}(x,t)}{\partial x} = \mathbf{R}\mathbf{i}(x,t) + \mathbf{L}\frac{\partial \mathbf{i}(x,t)}{\partial t},$$
$$-\frac{\partial \mathbf{i}(x,t)}{\partial x} = \mathbf{G}\mathbf{u}(x,t) + \mathbf{C}\frac{\partial \mathbf{u}(x,t)}{\partial t},$$
(1)

где матрицы $N \times N$ погонных параметров: **R** — сопротивлений, **L** — индуктивностей, **G** — проводимостей и **C** — емкостей, имеют следующий вид [13]:

$$\mathbf{C} = \begin{bmatrix} C_{11} & -C_{12} & \dots & -C_{1N} \\ -C_{21} & C_{22} & \dots & -C_{2N} \\ \dots & \dots & \dots & \dots \\ -C_{N1} & -C_{N2} & \dots & C_{NN} \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} L_{11} & L_{12} & \dots & L_{1N} \\ L_{21} & L_{22} & \dots & L_{2N} \\ \dots & \dots & \dots & \dots \\ L_{N1} & L_{N2} & \dots & \dots \\ L_{N1} & L_{N2} & \dots & L_{NN} \end{bmatrix},$$

$$\mathbf{G} = \begin{bmatrix} G_{11} & -G_{12} & \dots & -G_{1N} \\ -G_{21} & G_{22} & \dots & -G_{2N} \\ \dots & \dots & \dots & \dots \\ -G_{N1} & -G_{N2} & \dots & G_{NN} \end{bmatrix}, \quad \mathbf{R} = \begin{bmatrix} R_{11} & R_{12} & \dots & R_{1N} \\ R_{21} & R_{22} & \dots & R_{2N} \\ \dots & \dots & \dots & \dots \\ R_{N1} & R_{N2} & \dots & R_{NN} \end{bmatrix},$$

здесь $R_{kk}, L_{kk}, G_{kk}, C_{kk}$ — собственные параметры k-го проводника, $R_{ik}, L_{ik}, G_{ik}, C_{ik}$ аналогичные взаимные параметры между i-м и k-м проводниками системы из N проводников. Отметим три важных свойства матриц **R**, **L**, **G**, **C** [16]: 1 — симметричность; 2 — положительная определенность; 3 — для многопроводных линий передачи без потерь, находящихся в однородной среде, матрицы параметров на единицу длины связаны соотношением

$$\mathbf{L}\mathbf{C} = \mathbf{C}\mathbf{L} = \frac{1}{c^2}\mathbf{I},$$

где **I** — единичная матрица, $c = \sqrt{1/\epsilon \mu}$ — скорость света в вакууме, ϵ, μ — диэлектрическая и магнитная проницаемость.

Решение телеграфных уравнений определяется как свойствами проводника, так и начальными и граничными условиями на его концах, которые для системы (1) имеют вид

$$\mathbf{u}(0,t) = \mathbf{E}_0(t) - \mathbf{R}_g \cdot \mathbf{i}(0,t),$$

$$\mathbf{u}(l,t) = \mathbf{E}_l(t) + \mathbf{R}_n \cdot \mathbf{i}(l,t),$$
 (2)

здесь $\mathbf{E}_0(t)$, $\mathbf{E}_l(t)$ — векторы напряжений холостого хода генераторной и нагружающей цепи, \mathbf{R}_g , \mathbf{R}_n — матрицы сопротивлений генераторной и нагружающей цепи.

Полагаем, что в начальный момент (t = 0) в линии напряжение и ток отсутствуют. Начальные условия в этом случае записываются как

$$\mathbf{u}(x,0) = 0, \quad x \in (0,l),$$

 $\mathbf{i}(x,0) = 0, \quad x \in (0,l).$ (3)

В любой момент времени напряжение и ток в линии можно рассматривать как сумму напряжений и токов двух волн — падающей (u^+, i^+) , перемещающейся от источника энергии к приемнику, и отраженной (u^-, i^-) , перемещающейся от приемника к источнику. Общее напряжение (ток) в линии представляет собой сумму всех падающих и отраженных волн. Волна, дошедшая до конца линии, отражается с определенным коэффициентом отражения, зависящим от волнового сопротивления линии и оконечной нагрузки [12]. Таким образом, в начале линии величины напряжения и силы тока определяются падающей волной, движущейся от генератора, и обратной волной, отраженной от начала линии. В конце линии, при отсутствии генератора, величины напряжения и силы тока определяются падающей волной и коэффициентом отражения от оконечной нагрузки. В соответствии с этим граничные условия (2) могут быть переписаны в следующем виде [17]:

$$u_{i}(0,t) = E_{i} \cdot \frac{Z_{i}}{R_{g_{i}} + Z_{i}} + K_{i} \cdot u_{i}^{-}, \quad K_{i} = \frac{R_{g_{i}} - Z_{i}}{R_{g_{i}} + Z_{i}},$$

$$i_{i}(0,t) = \frac{E_{i}}{R_{g_{i}} + Z_{i}} - K_{i} \cdot u_{i}^{-}, \quad K_{i} = \frac{R_{g_{i}} - Z_{i}}{R_{g_{i}} + Z_{i}},$$

$$u_{i}(l,t) = Q_{i} \cdot u_{i}^{+}, \quad Q_{i} = \frac{R_{n_{i}} - Z_{i}}{R_{n_{i}} + Z_{i}},$$

$$i_{i}(l,t) = Q_{i} \cdot i_{i}^{+}, \quad Q_{i} = \frac{R_{n_{i}} - Z_{i}}{R_{n_{i}} + Z_{i}},$$
(4)

где u_i , i_i — напряжение и сила тока в *i*-м проводнике; K_i — коэффициент отражения обратной волны от источника энергии в *i*-м проводнике; E_i — напряжение на источнике энергии; R_{g_i} — сопротивление источника энергии; Q_i — коэффициент отражения прямой волны от оконечной нагрузки в *i*-м проводнике; R_{n_i} — сопротивление оконечной нагрузки в *i*-м проводнике; R_{n_i} — сопротивление оконечной нагрузки в *i*-м проводнике; R_{n_i} — сопротивление оконечной нагрузки; Z_i — волновое сопротивление *i*-го проводника; $i = \overline{1, N}$.

Неоднородная линия передачи, у которой вдоль некоторой выбранной пространственной координаты x изменяются характерные размеры области поперечного (по отношению к оси Ox) сечения или (и) диэлектрическая и магнитная проницаемость среды, заполняющей линию, представляется каскадным соединением однородных линий передачи с различными, но постоянными в пределах каждого сегмента волновыми сопротивлениями. В результате получается многосегментная линия передачи с собственными характеристиками каждого однородного сегмента. При анализе многосегментной линии разделение волн на прямые и обратные оказывается недостаточным. Волна, падающая на узел соединения двух линий, имеющих разные параметры, разделяется на две, одна из которых переходит из первой линии во вторую, а другая отражается от места соединения двух линий. Граничные условия и коэффициенты отражения и преломления определяются для каждого сегмента исходя из характеристик элементов в узлах и значений амплитуд волн, приходящих из соседних сегментов:

$$u_{i}(0,t) = K_{i}^{\Pi p_{r}} \cdot u_{i-1}^{+} + K_{i}^{OTP_{s}} \cdot u_{i}^{-},$$

$$i_{i}(0,t) = K_{i}^{\Pi p_{r}} \cdot u_{i-1}^{+} - K_{i}^{OTP_{s}} \cdot u_{i}^{-},$$

$$u_{i}(l,t) = K_{i}^{OTP_{r}} \cdot u_{i}^{+} + K_{i}^{\Pi p_{s}} \cdot u_{i+1}^{-},$$

$$i_{i}(l,t) = K_{i}^{OTP_{r}} \cdot u_{i}^{+} - K_{i}^{\Pi p_{s}} \cdot u_{i+1}^{-},$$
(5)

где u_i , i_i — напряжение и сила тока в *i*-м сегменте; u_i^+ , i_i^+ — падающая волна в *i*-м сегменте; u_i^- , i_i^- — отраженная волна в *i*-м сегменте; $K_i^{\text{пр}_r}$ — коэффициент преломления для приходящей из (i-1)-го сегмента волны; $K_i^{\text{отр}_s}$ — коэффициент отражения падающей волны от конца *i*-го сегмента; $K_i^{\text{отр}_r}$ — коэффициент отражения отраженной волны от начала *i*-го сегмента; $K_i^{\text{пр}_s}$ — коэффициент преломления приходящей из (i+1)-го сегмента волны.

Ниже описываются построение разностной схемы, которая используется для решения задачи анализа временного отклика в многопроводных линиях передачи, и аппроксимация вольт-амперных характеристик нелинейных нагружающих цепей с помощью экспоненциального сплайна с натяжением.

2. Численные методы

2.1. TVD-схема метода Годунова

Поскольку переходные процессы в проводных структурах описываются системой гиперболических уравнений, то для анализа временного отклика в несогласованной линии может быть использован метод Годунова. В основе метода лежит идея использования точных решений уравнений с кусочно-постоянными начальными данными для построения разностной схемы [18]. Для многопроводной линии без потерь ($\mathbf{R} = 0$, $\mathbf{G} = 0$) систему (1) можно записать в виде

$$\mathbf{A}\frac{\partial}{\partial t}\mathbf{U} + \mathbf{B}\frac{\partial}{\partial x}\mathbf{U} = 0, \tag{6}$$

где **A**, **B** — матрицы соответствующих коэффициентов при напряжениях и токах, **U** — вектор-столбец напряжений и токов. Например, для двухпроводной линии без потерь матрицы **A** и **B** будут иметь следующий вид:

$$\mathbf{A} = \begin{pmatrix} C_{11} - C_{21} & 0 & C_{21} & 0 \\ 0 & L_{11} & 0 & L_{21} \\ C_{12} & 0 & C_{22} & 0 \\ 0 & L_{12} & 0 & L_{22} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Система (6) при этом может быть переписана как

$$\Lambda^{\mathsf{T}} \mathbf{A} \Lambda \frac{\partial}{\partial t} \mathbf{U} + \Lambda^{\mathsf{T}} \mathbf{B} \Lambda \frac{\partial}{\partial x} \mathbf{U} = 0,$$

где Λ^{T} — транспонированная матрица Λ . Поскольку \mathbf{A} , \mathbf{B} — симметрические матрицы, причем \mathbf{A} — положительно определенная, то систему (6) приведем к каноническому виду с диагональной матрицей \mathbf{M} [18]:

$$\frac{\partial}{\partial t}\mathbf{V} + \mathbf{M}\frac{\partial}{\partial x}\mathbf{V} = 0,\tag{7}$$

где вектор-функция $\mathbf{V} = \Lambda^{-1} \mathbf{U}$. Данная система распадается на *m* независимых уравнений для отдельных компонент $v^{(m)}$:

$$\frac{\partial v^{(m)}}{\partial t} + \mu_m \frac{\partial v^{(m)}}{\partial x} = 0.$$

Компоненты $v^{(m)}$ носят название римановых инвариантов и сохраняют постоянные значения вдоль характеристик $dx/dt = \mu_m$.

Схема, предложенная в [18], имеет первый порядок точности по времени и по пространству. Для повышения качества получаемых численных решений необходимо построить схему более высокого порядка точности. В настоящей работе строится TVD (Total Variation Diminition)-схема метода Годунова [19].

Значения функции f(x) на гранях вычислительных ячеек определяются с помощью реконструкции по усредненным значениям в их центрах. Для этого задается процедура реконструкции:

$$f(x) = f_m + \alpha_m x, \quad x \in \left[-\frac{1}{2} \Delta x, \frac{1}{2} \Delta x \right]$$

Задачей наклонов α_m кусочно-линейного или кусочно-полиномиального распределения функции f(x) внутри дискретной ячейки является ограничение роста осцилляций там, где это снижает устойчивость схемы. TVD-схема вместо условия сохранения монотонности уменьшает или сохраняет полную вариацию функции. Такое условие невозрастания вариации численного решения, или TVD-принцип, является более слабым, чем требование монотонности схемы.

Полная вариация (TV, Total Variation) для дискретной функции f_m^k имеет вид

$$TV[f] = TV_0^k = \sum_{m=1}^M \left| f_{m+1}^k - f_m^k \right| = \sum_{m=1}^M \left| \Delta_m^k \right|, \quad \Delta_m^k = f_{m+1}^k - f_m^k.$$

Численная схема является TVD-схемой, если она удовлетворяет свойству

$$TV_0^{k+1} \le TV_0^k,$$

которое означает, что сумма пространственных вариаций в среднем не должна увеличиваться, т.е. численные осцилляции не могут расти.

Построение схемы высокого порядка точности осуществляется путем сочетания кусочно-линейной аппроксимации величин внутри ячеек с различными алгоритмами пересчета по времени. Используется двухшаговый пересчет: предиктор-корректор [19].

Предиктор: первый шаг. Предполагается, что внутри дискретных ячеек для всех значений сеточных функций заданы следующие кусочно-линейные распределения:

$$v(x,t^k) = v_j^k + \alpha_j^k(x-x_j), \quad x \in \left[x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x\right],$$

где x_j — пространственная координата центра ячейки с номером j, α_j^k — вектор наклонов распределения функции V внутри ячейки. Уравнение для учета изменения V по времени в центре ячейки имеет вид

$$\frac{\hat{v}_j^{k+1} - v_j^k}{\Delta t} + \frac{F\left(V_j^k + \frac{1}{2}\Delta x \cdot \alpha_j^k\right) - F\left(V_j^k - \frac{1}{2}\Delta x \cdot \alpha_j^k\right)}{\Delta x} = 0.$$

Предиктор: второй шаг. Значение функции v на промежуточном слое по времени $t + \frac{1}{2}\Delta t$ вычисляется по формуле

$$v_j^{k+\frac{1}{2}} = \frac{1}{2} \left(\hat{v}_j^{k+1} + v_j^k \right).$$

Корректор. На данном шаге применяется схема (7) :

$$\frac{v_j^{k+1} - v_j^k}{\tau} + \mu \frac{V_{j+\frac{1}{2}} - V_{j-\frac{1}{2}}}{h} = 0,$$

где все значения $V_{j+\frac{1}{2}}$ определяются решением задачи Римана с кусочно-постоянными начальными данными

$$\left\{ \begin{array}{ll} V_{j}^{k+\frac{1}{2}}+\frac{1}{2}\Delta x\,\alpha_{j}^{k}, & \mbox{при}\,\mu<0, \\ \\ V_{j+1}^{k+\frac{1}{2}}-\frac{1}{2}\Delta x\,\alpha_{j+1}^{k}, & \mbox{при}\,\mu>0. \end{array} \right.$$

Существует несколько способов вычисления наклонов α_m в дискретной ячейке с номером m для сеточной функции V. Величины наклонов α_m модифицируются ограничителями ψ_m , которые являются некоторыми функциями, задающими и одновременно ограничивающими наклоны α_m на основе анализа значений v_m или конечных разностей $v_{m+1} - v_m$. В данной работе применяется ограничитель, предложенный в [20].

2.2. Аппроксимация характеристик нелинейных элементов

Интерполяционные сплайны с натяжением при определенном выборе значений свободных параметров не содержат ложных точек перегиба [6, 7]. Это означает, что если исходные данные свидетельствуют о локальной выпуклости кривой, то сплайн с натяжением будет локально-выпуклым. После того как значения свободных параметров, называемых параметрами натяжения, заданы, интерполирующий сплайн определяется однозначно. Поскольку зависимость сплайна от этих параметров нелинейная, то для их определения необходимы итерации. Точку перегиба кривой y = s(x) в интервале $[x_i, x_{i+1}]$ считаем ложной, если вычисленные по исходным данным вторые центральные разности имеют в точках x_i и x_{i+1} одинаковые знаки.

Вид экспоненциального сплайна с натяжением определяется решением совокупности краевых задач на интервалах $[x_i, x_{i+1}]$ (i = 1, ..., N):

$$[D^4 - p_i^2 D^2] \tau = 0, \quad \tau \ (x_i) = f_i, \quad \tau \ (x_{i+1}) = f_{i+1}, \quad \tau''(x_i) = \tau''_i, \quad \tau''(x_{i+1}) = \tau''_{i+1},$$

где $\tau_i'', \, \tau_{i+1}''$ выбраны так, чтобы $\tau(x) \in C^2[a,b]$. Решением является функция

$$\tau(x) = \left(f_i - \frac{\tau_i''}{p_i^2}\right) \frac{(x_{i+1} - x)}{h_i} + \left(f_{i+1} - \frac{\tau_{i+1}''}{p_{i+1}^2}\right) \frac{(x - x_i)}{h_i} + \frac{1}{p_i^2 sh(p_i h_i)} \left[\tau_i'' shp_i(x_{i+1} - x) + \tau_{i+1}'' shp_i(x - x_i)\right],$$

где τ''_i , $i = \overline{1, N+1}$, определяются решением системы уравнений с трехдиагональной матрицей:

$$d_{1}\tau_{1}'' + e_{1}\tau_{2}'' = b_{1},$$

$$e_{i-1}\tau_{i-1}'' + (d_{i-1} + d_{i})\tau_{i}'' + e_{i+1}\tau_{i+1}'' = b_{i} \ (i = \overline{2, N}),$$

$$e_{N}\tau_{N}'' + d_{N}\tau_{N+1}'' = b_{N+1},$$

здесь

$$\begin{aligned} d_i &= \frac{1}{p_i^2} \left(\frac{p_i C_i}{sh(p_i h_i)} - \frac{1}{h_i} \right); \quad e_i = \frac{1}{p_i^2} \left(\frac{1}{h_i} - \frac{p_i}{sh(p_i h_i)} \right); \quad C_i = ch(p_i h_i) \quad (i = \overline{1, N}); \\ b_1 &= \frac{(f_2 - f_1)}{h_1} - f'(a); \quad b_{N+1} = f'(b) - \frac{(f_{N+1} - f_N)}{h_N}; \\ b_i &= \frac{(f_{i+1} - f_i)}{h_i} - \frac{(f_i - f_{i-1})}{h_{i-1}} \quad (i = \overline{2, N}). \end{aligned}$$

В предельных случаях имеем:

1) при $p_i \to 0 \Rightarrow [D^4 - p_i^2 D^2] \tau = 0 \Rightarrow [D^4] \tau = 0$ экспоненциальный сплайн с натяжением вырождается в кубический сплайн;

2) при $p_i \to \infty \Rightarrow [D^4 - p_i^2 D^2] \ \tau = 0 \Rightarrow \left[\frac{1}{p_i^2} D^4 - D^2\right] \ \tau = [D^2] \ \tau = 0$ интерполяционная кривая является ломаной, составленной из отрезков прямых.

Рис. 1. Треугольный импульс (*a*), трапециевидный импульс (*б*); сплошная линия — экспоненциальный сплайн с натяжением, штриховая — кубический сплайн

На интервале $[x_i, x_{i+1}]$ вторая производная изменяется по закону

$$\tau''(x) = \tau_i'' \frac{sh \ p_i \left(x_{i+1} - x\right)}{sh(p_i h_i)} + \tau_{i+1}'' \frac{sh \ p_i \left(x - x_i\right)}{sh(p_i h_i)}$$

Таким образом, в случае $b_i b_{i+1} > 0$ для обеспечения постоянства знака $\tau''(x)$ внутри интервала достаточно потребовать, чтобы $\tau''_i b_i > 0$ и $\tau''_{i+1} b_{i+1} > 0$. Для этого необходимо найти значения $\{p_i\}_{i=1}^N$, обеспечивающие выполнение неравенств $\tau''_i b_i > 0$ ($i = \overline{1, N+1}$).

Пусть $\tau_k'' b_k < 0$. Определим

$$\lambda = \frac{\max\left(|b_k|, (d_{k-1} + d_k)|\tau_k''|\right)}{2\max\left(|\tau_{k-1}''|, |\tau_{k+1}''|\right)} \tag{8}$$

и положим $\tilde{p} = \max\left[\left(\lambda h_i^2\right)^{-1}, p_i\right], i = \overline{k-1,k}$. Тогда значения параметров натяжения определяются формулой

$$p_i = p_i + \omega \left(\widetilde{p}_i - p_i \right), \quad i = \overline{k - 1, k}, \tag{9}$$

где w — релаксационный параметр. Расчет проводится следующим образом:

1) строится интерполяционная кривая, соответствующая $p_i = 0$ для всех i, т. е. определяется кубический сплайн, играющий роль нулевого приближения;

2) проверяется выполнение неравенств $\tau_i'' b_i > 0$ $(i = \overline{1, N+1});$

3) если обнаруживаются ложные точки перегиба, то с помощью итераций обеспечивается выполнение неравенств $\tau''_i b_i > 0$ $(i = \overline{1, N+1})$.

Сравнение экспоненциального сплайна с натяжением с кубическим показано на рис. 1.

В работе [8] проведено сравнение справочных данных с результатами использования кубического сплайна и экспоненциального сплайна с натяжением при аппроксимации вольт-амперных характеристик выпрямительных диодов и стабилизатора с операционным усилителем и на разных примерах сделан вывод о предпочтительном использовании экспоненциального сплайна.

Объединяя модули анализа многопроводных линий передачи с линейными нагрузками и сплайн-аппроксимации, получаем программный комплекс, позволяющий анализировать многопроводные линии передачи с линейными и нелинейными нагрузками.

3. Численные результаты

Пример 1. Требуется вычислить временной отклик для схемы из работы [2].

Дано: Объект в виде двухпроводной связанной линии (рис. 2) с параметрами, заданными в табличном виде (табл. 1). Длина линии 0.3048 м. На активный проводник

Таблица 1				
$L_{11} = L_{22}$	494.6 нГн/м			
$L_{12} = L_{21}$	63.3 нГн/м			
$C_{11} = C_{22}$	62.8 пФ/м			
$C_{12} = C_{21}$	-4.9 п $\Phi/м$			
$R_1 = 50 \text{ Om}, R_2 = R_3 = R_4 = 100 \text{ Om}$				

a

		0	
Точки	1	2	3
измерения	1		5
t, нс	2	6	8
<i>U</i> , B	0.628	0.667	0.039

0

		<i>i</i> , 11
-0.02	8 12 4	16
	∂	

Точки	1	2	2	1
измерения	1		5	4
<i>t</i> , нс	1.82	2.5	7.82	8
<i>U</i> , B	-0.023	0.031	0.024	-0.031

Рис. 2. Линия передачи с двумя сигнальными проводниками (*a*); форма напряжений на выводах линии; *б*, *в* — данные [2]; *г*, *д* — результаты, полученные в настоящей работе; сплошные линии и штрихпунктир — напряжение соответственно в начале и конце линии

подается трапециевидный импульс с параметрами: амплитуда $E_0 = 1$ В, длительность вершины $t_d = 4.5$ нс, время нарастания и спада $t_r = t_f = 1.5$ нс.

Требуется: Найти значения напряжения на выводах активной и пассивной линий, сравнить полученные результаты с данными работы [2].

На рис. 2 представлены формы напряжений на выводах активной (рис. 2, 6, e) и пассивной (рис. 2, e, d) линий. В пассивной линии возникает наведенный сигнал, вызванный электромагнитными наводками от активной линии (перекрестная помеха на ближнем конце — сплошная линия, на дальнем — штрихпунктирная). Из рисунков видно хорошее совпадение форм сигнала и пиковых значений напряжения. Небольшое отличие полученных результатов от опубликованных в [2], возможно, связано с явлением Гиббса (особенность поведения частичных сумм ряда Фурье в окрестности точки разрыва функции).

Пример 2. Рассматривается структура, состоящая из двух последовательно соединенных двухпроводных отрезков линий передачи [21].

Дано: Объект в виде двух последовательно соединенных двухпроводных отрезков линий передачи (рис. 3) с параметрами, заданными в табличном виде (табл. 2). Длина первого отрезка линии — 0.2 м, второго — 0.3 м. На один из проводников первого отрезка

Рис. 3. Структура из двух последовательно соединенных двухпроводных отрезков

Таблица 2

Отрезок	1	2		
$L_{11} = L_{22}$	494.6 нГн/м	750 нГн/м		
$L_{12} = L_{21}$	63.3 нГн/м	95 н Γ н/м		
$C_{11} = C_{22}$	62.8 пФ/м	133 п $\Phi/$ м		
$C_{12} = C_{21}$	-4.9 п $\Phi/$ м	-9 пФ/м		
$R_1 = 50 \text{ Om}, R_2 = R_3 = R_4 = 100 \text{ Om}$				

Точки измерения	1	2	3	4	5
<i>t</i> , нс	1.5	6	8.1	10.7	13.5
<i>U</i> , B	1.256	1.204	1.331	1.375	0.13

Рис. 4. Сравнение результатов моделирования отклика без потерь: *a* — данные [2, 21]; *б* — результат, полученный в настоящей работе

подается трапециевидный импульс с параметрами: амплитуда $E_0 = 2$ B, длительность вершины $t_d = 6$ нс, время нарастания и спада $t_r = t_f = 1$ нс.

Требуется: Найти напряжение на концах структуры, в месте соединения сегментов, сравнить полученные результаты с данными работы [21].

При условии линейности нагружающих цепей были получены результаты, представленные на рис. 4, — формы напряжений в начале активной линии (V1), между отрезками (V3) и в конце активной линии (V5).

Вследствие несогласованности нагрузок на концах отрезков линии и их различных характеристик в линии возникают отраженные и преломленные волны, поэтому формы сигнала в начале линии, в месте соединения отрезков и в конце линии различны. Значения напряжения, вычисленные по предложенному алгоритму, с приемлемой точностью совпадают с опубликованными в [2, 21] результатами.

Пример 3. Аппроксимация нелинейных вольт-амперных характеристик экспоненциальным сплайном с натяжением.

Дано: Объект в виде двухпроводной связанной линии (см. рис. 2, a) (параметры заданы в табл. 1) с нелинейной нагрузкой (аппроксимация вольт-амперной характеристики включаемого в начало линии стабилитрона приведена на рис. 5, a, δ).

Требуется: Оценить влияние способа аппроксимации вольт-амперной характеристики на перекрестные наводки и помехи отражения.

Рассмотрим форму сигнала в начале линии при включении в нее стабилитрона. При аппроксимации экспоненциальным сплайном с натяжением вольт-амперная характери-

Рис. 5. Аппроксимация вольт-амперной характеристики стабилитрона экспоненциальным сплайном с натяжением (a), кубическим сплайном (b); e, e — изменение напряжения в начале линии соответственно в первом и втором случае

стика подключаемого стабилитрона достаточно хорошо воспроизводится (см. рис. 5, a), а при аппроксимации кубическим сплайном возникают ложные точки перегиба и появляется нежелательная волнистость (см. рис. $5, \delta$).

На рис. 5, *в*, *г* приведены формы напряжений в начале линии. Видно, что использование при аппроксимации вольт-амперной характеристики стабилитрона экспоненциального сплайна с натяжением приводит к незначительным (допустимым) погрешностям формы сигнала, в то время как применение кубического сплайна приводит к значительным искажениям формы и амплитуды сигнала.

Пример 4. Рассмотрим неоднородную линию передачи из работы [22].

Дано: Объект в виде неоднородной линии передачи (AR-процессор) и эквивалентная ему восьмисекционная линия передачи. Параметры линии: общая длина l = 210.65 мм, все секции одной длины. Нагрузка в начале и конце линии $R_0 = R_l = 50$ Ом/м. Волновые сопротивления секций: $Z_1 = 57.98$ Ом/м, $Z_2 = 102.7$, $Z_3 = 156.32$, $Z_4 = 66.27$, $Z_5 = 18.02$, $Z_6 = 77.46$, $Z_7 = 46.62$, $Z_8 = 52.11$ Ом/м.

Требуется: Найти значения напряжения в конце эквивалентной многосегментной структуры и форму сигнала на приемнике и сравнить полученные результаты с данными работы [22].

На рис. 6, б представлена форма сигнала на приемнике восьмисекционной эквивалентной AR-процессору линии передачи, полученная в работе [22]. Во время прохождения по линии, при переходе из одной секции в другую, сигнал претерпевает изменения из-за несогласованности секций между собой (различные волновые сопротивления).

Точки	1	2
измерения	1	2
<i>t</i> , нс	1.57	3.23
U, B	0.424	-0.423

Рис. 6. Форма сигнала на входе (a) и на конце (b) эквивалентной AR-процессору линии передачи [6]; b = c результат, полученный в настоящей работе

Форма сигнала на приемнике (рис. 6, e), найденная в результате численного моделирования прохождения сигнала в восьмисекционной линии передачи, практически неотличима от данных [22].

Пример 5. Сравнение с экспериментальными данными.

Дано: Объект в виде двух последовательно соединенных линий передачи (рис. 7, табл. 3) и экспериментальные данные, полученные с помощью программного обеспечения "ИмпульсМ" для векторного измерителя характеристик цепей Р4-И-01 [23]. Первый отрезок — кабель PK-50-2-21 длиной 22 м, второй — кабель RG-6U длиной 5 м. В линию подается тестовый сигнал "Видеоимпульс" (амплитуда 1 В, длительность 0.1 мкс) и "Хевисайда функция" (амплитуда 1 В) [23]. Линия разомкнута на конце.

Требуется: Провести сравнение результатов численного моделирования с экспериментальными данными и оценить погрешность моделирования.

На рис. 8 представлены экспериментальные данные (a, δ) и результаты численного моделирования (s, z) в начале исследуемой структуры (a, s - ha) в вход линии подается сигнал "Хевисайда функция", $\delta, z - cигнал$ "Видеоимпульс"). Видно хорошее совпадение

Рис. 7. Структура из двух последовательно соединенных отрезков

т	2	б	π	тл	тт	2	3
L 1	d	U.	./ 1	и		a	•)

Отрезок	1	2		
	494.6 нГн/м	750 нГн/м		
C	62.8 пФ/м	133 п $\Phi/м$		
$R_1 = 50 \text{ Om}, R_2 = \infty \text{ Om}$				

Рис. 8. Форма напряжения в начале линии: *a*, *б* — экспериментальные данные; *b*, *e* — результат численного моделирования; ниже приведены параметры в точках измерения *1*–5

Точки	1	2	2	4	5	
измерения			0	4	Ð	
		Puc. 8,	a			
<i>t</i> , c	1.1e-7	2.1e-7	3.2e-7	3.8e-7	4.1e-7	
U, B	1.01	0.98	1.21	1.96	1.86	
		Puc. 8,	б			
<i>t</i> , c	1.05e-7	1.2e-7	3.15e-7	3.5e-7	3.95e-7	
<i>U</i> , B	0.87	-0.04	0.15	0.45	-0.06	
		Puc. 8,	6			
<i>t</i> , c	1.0e-7	2.0e-7	3.2e-7	3.8e-7	4.2e-7	
<i>U</i> , B	0.96	0.93	1.12	2.01	1.83	
Рис. 8, г						
<i>t</i> , c	1.0e-7	1.15e-7	3.3e-7	3.7e-7	4.1e-7	
<i>U</i> , B	0.83	-0.025	0.11	0.49	-0.1	

форм сигнала и пиковых значений напряжения для расчетных и экспериментальных данных (небольшие отличия вызваны тем, что характеристики кабеля имеют допустимые отклонения (ГОСТ 11326.35-79, волновое сопротивление 50±4 Ом)). Погрешность моделирования относительно эксперимента находится в пределах 3–8 %.

Пример 6. Экспоненциальная линия передачи.

Дано: Объект в виде неоднородной (экспоненциальной) линий передачи, описанной в работе [24]. Параметры линии: l = 1 м, $L^0 = 1$ Гн/м, $C^0 = 1$ Ф/м. Индуктивность и емкость изменяются по законам: $L(x) = L^0 e^{\sigma x}$, $C(x) = C^0 e^{-\sigma x}$, $\sigma = \ln 4$. В линию подается колоколообразный импульс: $e = \exp\left\{-\frac{(t-T_s)^2}{2\Delta_s^2}\right\}$, $T_s = 2$ с, $\Delta_s = 0.2$ с.

Tpeбyemcя: Найти напряжение на выводах линии и сравнить полученные результаты с данными [24].

На рис. 9, *a*, *б* приведены формы напряжения соответственно в начале и в конце экспоненциальной линии, взятые из работы [24].

Несмотря на то что линия передачи согласована и в источнике, и в нагрузке, в ней вследствие неоднородности по поперечному сечению возникают отраженные волны на всей длине проводника. Полученные численные результаты это подтверждают, на что указывают формы напряжений в начале (рис. 9, *в*) и в конце (рис. 9, *г*) экспоненциальной линии.

Пример 7. Непараллельные проводники.

Дано: Объект в виде неоднородной линий передачи, составленной из двух проводников, расположенных непараллельно друг другу [24]. Параметры линии: l = 1 м, высота над поверхностью h = 3 см, радиус r = 1 мм, расстояние между проводниками в начале линии $D_0 = 5$ мм, в конце линии — $D_1 = 15$ мм, индуктивность и емкость изменяются по следующим законам: $L_{11} = L_{22} = \frac{\mu_0}{2\pi} \log\left(\frac{2h}{r}\right)$, $L_{12}(x) = L_{21}(x) =$

 $\frac{\mu_0}{4\pi} \log\left(1 + \frac{4h^2}{D^2(x)}\right), \ C(x) = \varepsilon_0 \mu_0 L^{-1}(x), \ D(x) = D_0 + x(D_1 - D_0).$ В активный проводник с частотой 1 МГц подается последовательность трапециевидных импульсов с параметрами: амплитуда $E_0 = 1$ В, коэффициент заполнения 50 %, время нарастания и спада $t_r = t_f = 20$ нс.

Рис. 9. Изменение напряжения в согласованной экспоненциальной линии: *a*, *б* — данные работы [24]; *в*, *г* — результат численного расчета

Рис. 10. Изменение напряжения в начале пассивной линии

Требуется: Найти перекрестную помеху в начале пассивной линии и сравнить полученные результаты с данными работы [24].

В силу взаимовлияний в пассивном проводнике возникает наведенный сигнал. На рис. 10 приведена перекрестная помеха в начале пассивной линии (*a* — данные работы [24], *б* — результат, полученный в настоящей работе). Видно хорошее совпадение форм сигнала и пиковых значений напряжения.

Заключение

Разработан алгоритм и создан комплекс программ для численного моделирования многопроводных линий передачи с нелинейными нагружающими элементами. Получены результаты расчетов временного отклика на нескольких модельных задачах. Проведено сравнение полученных результатов с экспериментом и расчетными данными других авторов [2, 21, 22, 24] и показано их совпадение. Погрешность моделирования относительно эксперимента находится в пределах 3–8 %. Преимуществом представленного подхода является возможность вычисления отклика и перекрестных помех не только в концевых точках, но в каждом узле оконечной и соединительной цепи. Полученные результаты свидетельствуют о работоспособности алгоритма в задачах анализа помех отражения и перекрестных наводок в неоднородных многопроводных линиях передачи сигналов.

Список литературы

- ACHAR R., NAKHLA M.S. Simulation of high-speed interconnects // Proc. IEEE. 2001. Vol. 89, No. 5. P. 693-728.
- [2] DJORDJEVIC A.R., SARKAR T.K. Analysis of time response of lossy multiconductor transmission line networks // IEEE Trans. Microwave Theory Techniq. 1987. Vol. 35, No. 10. P. 898–908.
- [3] ЗАБОЛОЦКИЙ А.М., ГАЗИЗОВ Т.Р. Временной отклик многопроводных линий передачи. Томск: Томский гос. ун-т, 2007. 152 с.
- [4] CHANG F.-Y. Transient analysis of lossless coupled transmission lines with arbitrary initial potential and current distributions // IEEE Trans. Circuits Systems-I: Fundamental Theory Appl. 1992. Vol. 39, No. 3. P. 180–198.
- [5] ВОРОБЬЕВ А.Ю., КЕЧИЕВ Л.Н., КОРОЛЕВ С.А., СТЕПАНОВ П.В. Численные методы анализа многопроводных линий связи. М.: МИЭМ, 2000. 77 с.
- [6] БОГДАНОВ В.В., ВОЛКОВ Ю.С. Выбор параметров обобщенных кубических сплайнов при выпуклой интерполяции // Сибирский журн. вычисл. математики. 2006. Т. 9. С. 5–22.
- [7] МАККАРТИН Б.Дж. Применение экспоненциальных сплайнов в вычислительной гидродинамике // Аэрокосм. техника. 1984. Т. 2, № 4. С. 13–20.
- [8] АФАНАСЬЕВ К.Е., ВЕРШИНИН Е.А., ТРОФИМОВ С.Н. Об аппроксимации характеристик нелинейных элементов с помощью экспоненциального сплайна с натяжением // Вестник Томского гос. ун-та. Приложение "Информац. технологии и мат. моделирование-2006". 2006. № 19. С. 68–74.

- [9] Джорджевич А.Р., Саркар Т.К., Харрингтон Р.Ф. Временные характеристики многопроводных линий передачи // ТИИЭР. 1987. Т. 75, № 6. С. 7–29.
- [10] МАЛЮТИН Н.Д. Многосвязные полосковые структуры и устройства на их основе. Томск: Томский гос. ун-т, 1990. 164 с.
- [11] СМИРНОВ В.И. Курс высшей математики. Т. 2. М.: Наука, 1974. 656 с.
- [12] ДЕМИРЧЯН К.С., НЕЙМАН Л.Р., КОРОВКИН Н.В., ЧЕЧУРИН В.Л. Теоретические основы электротехники. В 3-х т. Уч. для вузов. Т. 2. СПб.: Питер, 2006. 576 с.
- [13] PAUL C.R. Analysis of Multiconductor Transmission Lines. New York: John Wiley and Sons, 1994. 553 p.
- [14] ЗАХАР-ИТКИН М.Х. Теорема взаимности и матричные телеграфные уравнения для многопроводных линий передачи // Радиотехника и электроника. 1974. № 11. С. 2338–2348.
- [15] PAUL C.R. A Brief history of work in transmission lines for EMC applications // IEEE Trans. Electromagn. Compab. 2007. Vol. 49, No. 2. P. 237–252.
- [16] MIANO G., MAFFUCCI A. Transmission Lines and Lumped Circuits. New York: John Wiley and Sons, 2001. 479 p.
- [17] ЗЕВЕКЕ Г.В., ИОНКИН П.А., НЕТУШИЛ А.В., СТРАХОВ С.В. Основы теории цепей. М.: Энергия, 1975. 752 с.
- [18] ЧИСЛЕННОЕ решение многомерных задач газовой динамики / Под ред. С.К. Годунова. М.: Наука, 1976. 374 с.
- [19] КАРАМЫШЕВ В.Б. Монотонные схемы и их приложения в газовой динамике. Уч. пособие. Новосибирск, 1994. 100 с.
- [20] KADALBAJOO M.K., KUMAR R.A. High resolution total variation diminishing scheme for hyperbolic conservation law and related problems // Appl. Math. Comput. 2006. No. 175. P. 1556-1573.
- [21] ЗАБОЛОЦКИЙ А.М. Передача импульсных сигналов в многопроводных межсоединениях с неоднородным диэлектрическим заполнением. Автореф. дис. ... канд. тех. наук. Томск, 2007. 23 с.
- [22] PAN T.-W., HSUE C.-W. Modified transmission and reflection coefficients of nonuniform transmission lines and their applications // IEEE Trans. Microwave Theory Techniq. 1998. Vol. 46, No. 12. P. 2092–2097.
- [23] Лощилов А.Г., Семенов Э.В., Малютин Н.Д. Цифровой измерительный комплекс для измерения частотных и импульсных характеристик четырехполюсников // Изв. Томского политех. ун-та. 2006. Т. 309, № 8. С. 37–41.
- [24] GRIVET-TALOCIA S., CANAVERO F. Weak solution of the nonuniform multiconductor transmission lines // IEEE Intern. Symp. Electromagn. Compat. 1998. Vol. 2. P. 964–968.

Поступила в редакцию 9 декабря 2009 г.