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Comparing value-at-risk and tail onditional expetationin shortfall-onstrained portfolio seletionD. AkumeMathematis Department, University of Buea, Camerooniane-mail: d_akume�yahoo.aWe ompare value-at-risk (VaR) and tail onditional expetation (TCE) as riskbounds in determining optimal portfolio strategies, in a Blak�Sholes market. Ournumerial proedure leads to an approximate solution to the problem, whih enables usto verify that, be it tail onditional expetation or value-at-risk, the imposition of theonstraint urbs investment in risky assets in muh the same way, despite TCE being aoherent risk measure and value-at-risk not being oherent. Our numerial simulationalso enables us to on�rm that TCE takes a bigger numerial value than VaR to produethe the same limiting e�et.Keywords: �nanial market, market model, optimal portfolio hoie, risky assets,numerial proedure, approximate solution.
Introduction

According to Artzner et al. [5], Tail Conditional Expectation (TCE) is a coherent risk mea-
sure1 whereas value-at-risk (VaR) is not. In a simulation framework, we seek to show that
inspite of this assertion, VaR is as good a risk measure as TCE in our Black—Scholes
market.
In this paper we conduct our experiment by comparing the dynamic portfolio choice of

a trader subject to a risk limit specified on the one hand in terms of TCE, and on the
other hand, in terms of VaR. We achieve this by maximizing the agent’s utility over wealth
throughout the investment horizon. Both VaR and TCE are re-calculated and re-imposed
at short intervals of time, throughout the investment horizon. The portfolio is assumed
constant over each such short interval (re-evaluation horizon), as is the case in practice.
This paper is a follow-up on two earlier ones, Akume et al. [2, 3]. Here, we show through

numerical simulations, by applying an algorithm similar to that in Yiu [17], that by limiting
VaR or TCE, investment in risky assets is controlled in practically the same way. Our
numerical experiments use two risky assets, as opposed to just one in other existing literature.
Moreso, unlike other authors working on the same subject, we simulate both risk measures
in a unified framework.
The rest of this paper is structured as follows. In Section 1, we model the financial market

and describe the portfolio dynamic. In Section 2 we derive the VaR and TCE formulas for
the market model under study, while Section 3 makes precise the optimal control problem to
be solved. Section 4 develops the solution of the problem by using the Lagrange technique

1TCE is a coherent risk measure for an underlying continuous distribution [16].

3



4 D. Akume

to combine the Hamilton—Jacobi—Bellman (HJB) equation and the shortfall constraints.
In Section 5, a numerical algorithm is presented to obtain an approximate solution to the
constrained problem. Section 6 presents some simulation results with ensuing discussion,
while Section 7 concludes the paper.

1. The model

We consider a standard Black—Scholes type market just like Akume et al. [3].
Uncertainty in the financial market is modeled by a probability space (Ω,F ,P), equipped

with a filtration that is a non-decreasing family F = (Ft)t∈[0,T ] of sub-σ-fields of F

Fs ⊆ Ft ⊆ F ∀ 0 ≤ s < t <∞.

It is assumed throughout this paper that all inequalities as well as equalities hold P-almost
surely. Moreover, it is assumed that all stated processes are well defined without giving any
regularity conditions ensuring this. The risk-free rate r = rt of the risk-free asset (bond) S0

is supposed to evolve according to dS0
t = rS0

t dt, S
0
0 = s0. For the risky assets (stocks), for

which the prices will be denoted by St = (S1
t , . . . , S

n
t ) for some n ∈ N, the basic evolution

model is that of a log-normal diffusion process:

dSi
t

Si
t

= µidt+
k∑

j=1

σijdW
j
t ∀ t ∈ [0, T ], Si

0 = si, i = 1, . . . , n,

where, for some k ∈ N, k > n, Wt = [W 1
t , . . . ,W

k
t ]

T , with the symbol (T ) standing for
transpose, is a k-dimensional standard Wiener process, i. e., a vector of k independent one-
dimensional Wiener processes. The n-vector µ = (µ1, . . . , µn)T , contains the expected instan-
taneous rates of return and the n × k-matrix σ = σij (i = 1, . . . , n, j = 1, . . . , k) measures
the instantaneous sensitivities of the risky asset prices with respect to exogenous shocks so
that the (n×n)-matrix σσT contains the variance and covariance rates of instantaneous rates
of return. An agent invests according to an investment strategy that can be described by
the (n+1)-dimensional, Ft-predictable process xt = (x0t , x

1
t , . . . , x

n
t ), where x

i
t (i = 1, . . . , n)

denotes the number of shares of asset i held in the portfolio at time t (i = 0 refers to the
bond). The process x describes an investor’s portfolio as carried forward through time. The
value of the investor’s wealth at time t is then

V x
t = x0tS

0
t +

n∑

i=1

xitS
i
t ,

where xitS
i
t represents the amount invested in asset i at time t.

Equivalently, one may consider the vector

θt = (θ1t , . . . , θ
n
t ), θit =

xitS
i
t

V x
t

(i = 1, . . . , n),

with θit denoting the fraction of wealth invested in the risky asset i at time t, whereby the

remaining fraction 1 −
n∑

j=1

θit of the agent’s wealth is invested in the risk-free asset. It is

assumed that θ1t , . . . , θ
n
t are admissible and Ft- adapted control processes. That is, θit is
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a non-anticipative function that satisfies the condition of integrability
T∫
0

n∑
1=1

(θit)
2dt <∞, for

an investment time horizon T <∞. The corresponding portfolio value process reads

dV θ
t = V θ

t

[(
1−

n∑

i=1

θit

)
dS0

t

S0
t

+

n∑

i=1

θit
dSi

t

Si
t

]
, V θ

0 = v0. (1)

To have a better exposition, we adopt a matrix expression: denote σ=[σi,j ], θt=[θ1t , . . . , θ
n
t ]

T ,
µ = [µ1, . . . , µn]T , 1n = [1, . . . , 1]T and Wt = [W 1

t , . . . ,W
k
t ]

T , so that σ is an n × k matrix,
µ − r1n and θt are n-dimensional column vectors and Wt is a k-dimensional column vector.
Hence equation (1) can be rewritten as

dV θ
t = V θ

t

[(
r + θTt (µ− r1n)

)
dt+ θTt σtdWt

]
, V θ

0 = v0. (2)

2. Risk measures

Here, like in Akume et al. [3], we formally define and compute value-at-risk and Tail Condi-
tional Expectation, the two risk measures of interest.

Definition 1 (value-at-risk). Given some probability level α ∈ (0, 1), a time t wealth
benchmark Υt and horizon ∆t, the value-at-risk (V aRα

t ) of time t wealth Vt at the confidence
level 1−α is given by the smallest number L such that the probability that the loss Gt+∆t :=
Υt+∆t − V θ

t+∆t exceeds L is no larger than α

V aRα
t = inf {L ≥ 0 : P(Gt+∆t ≥ L|Ft) ≤ α} := (Qα

t )
−,

where

Qα
t = sup

{
L ∈ R : P((V θ

t+∆t −Υt+∆t) ≤ L|Ft) ≤ α
}

is the quantile of the projected wealth surplus at the horizon t +∆t and x− = max[0,−x].
Thus, V aRα

t = 0 for Qα
t ≥ 0. V aRα

t is therefore the loss of wealth with respect to a
benchmark Υt+∆t at the horizon ∆t which could be exceeded only with a small conditional
probability α if the current portfolio θt were kept unchanged. Typical values for the probabili-
ty level α are α = 0.05 or α = 0.01. In market risk management the time horizon ∆t is
usually one or ten days.

Proposition 1 (computation of value-at-risk). We have

V aRα
t = (Qα

t )
− =

(
V θ
t exp

[
Φ−1(α)‖θTt σ‖

√
∆t+

+

(
θTt (µ− r1n) + r − 1

2
‖θTt σ‖2

)
∆t

]
−Υt+∆t

)−

,

where Φ(·) and Φ−1(·) denote the normal distribution and the inverse distribution functions
respectively, and ‖ · ‖ stands for the Euclidean norm.

We refer to [2] for the proof.
TCE is closely related to the VaR concept, but overcomes some of the conceptual deficien-

cies of VaR (Rockafellar and Uryasev [16]). In particular, it is a coherent risk measure for
continuous distributions (Artzner et al. [4]).
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Definition 2 (tail conditional expectation). Consider the loss distribution Gt+∆t :=
Υt+∆t − V θ

t+∆t represented by a continuous2 distribution function FGt+∆t
with

∫

R

|Gt+∆t|dF (Gt+∆t) <∞.

Then the TCEα
t at confidence level 1− α is defined as

TCEα
t = Et

{
(Υt+∆t − V θ

t+∆t) ≥ V aRα
t |Ft

}
,

TCEα
t =

Et

{
(Υt+∆t − V θ

t+∆t)I((Υt+∆t − V θ
t+∆t) ≥ −Qα

t )|Ft

}+

α
,

where I(A) is the indicator function of the set A and x+ = max[0, x].
In other words, the TCE of wealth Vt at time t is the conditional expected value of the

loss exceeding (Qα
t )

−. Again, given the log-normal distribution of asset returns, the TCEα
t

can be explicitly computed as can be seen in the following proposition.
Proposition 2 (computation of tail conditional expectation). We have

TCEα
t =

1

α

(
αΥt+∆t − V θ

t

[
exp

(
(θTt (µ− r1n) + r)∆t

)
Φ
(
Φ−1(α)− ‖θTt σ‖

√
∆t
)])

,

where Φ(·) and Φ−1(·) denote the normal distribution and the inverse distribution functions.
We refer to [2] for the proof.

3. Statement of the problem

We seek the optimal asset allocation that maximizes (over all allowable {θt}) the expected
utility of discounted wealth over the entire horizon [0, T ], for a risk averse investor who limits
his risk by imposing an upper bound on VaR or TCE. We shall determine whether using the
one risk measure presents any advantage over the use of the other.
The choice of this problem is motivated by the income drawdown option in defined contri-

bution pension schemes. Such an option allows the member who retires not to convert the
accumulated capital into annuity immediately at retirement, but to defer the purchase of
the annuity until a certain point in time after retirement. The period of time can be limited
to time T . Usually, freedom is given for a fixed number of years after retirement and at a
certain age the annuity is bought.
Here, we consider the income drawdown option and investigate, by means of stochastic

optimal control techniques, what should be the optimal investment and consumption alloca-
tion of the fund after retirement until the purchase of the annuity. The reason the pensioner
chooses the drawdown option is the hope of being able to invest the accumulated capital at
retirement and increase its value in order to buy a better annuity in the future than the one
he otherwise could have bought at retirement.
Thus, our objective is to maximize the expected utility of wealth from retirement until

the interruption of the income drawdown option. Therefore, in mathematical terms the final
optimal control problem with constraint is

2Under the Black—Scholes model (µ, σ constant) and for fixed θt, the conditional distribution of Gt+∆t

given Ft is continuous (since it is lognormal).
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max
{θ}∈A(v)

E0,V0





T∫

0

e−ρsU1(Vs, s)ds+ e−ρTU2(VT , T )



 , (3)

subject to the wealth dynamic

dV θ
t =

[
V θ
t (θ

T
t (µ− r1n) + r)

]
dt+ V θ

t θ
T
t σdWt, V θ

0 = v

and, on the one hand, the TCE constraint

TCEα
t ≤ ε(v, t), ∀ t ∈ [0, T −∆t), (4)

where for fixed ∆t > 0

TCEα
t = TCEα

t (V
θ
t , θt) =

1

α

(
αΥt+∆t − V θ

t

[
exp

(
(θTt (µ− r1n) + r)∆t

)
×

×Φ
(
Φ−1(α)− ‖θTt σ‖

√
∆t
)])

(5)

or, on the other hand, the VaR constraint

V aRα
t ≤ ε(v, t), ∀ t ∈ [0, T −∆t), (6)

where for fixed ∆t > 0

V aRα
t = V aRα

t (V
θ
t , θt) =

(
V θ
t exp

[
Φ−1(α)‖θTt σ‖

√
∆t+

+

(
θTt (µ− r1n) + r − 1

2
‖θTt σ‖2

)
∆t

]
−Υt+∆t

)−

,

for all t ∈ [0, T ), where Et,v denotes the expectation operator at time t, given V θ
t = v

(and given the chosen investment strategies), U1 and U2 are twice differentiable, concave
utility functions, ε(v, t) is an upper bound on TCE and ρ > 0 is the rate at which wealth
is discounted. Take note that we give room for the running utility function to differ (be
weighted differently) from the terminal utility function. Now, we let U1(x) = U2(x) =
U(x) = Kx − (1 −K)(x − ψ)2 to denote a quadratic utility which privileges with a weight
K ∈ (0, 1), a large wealth whereas it penalizes with a weight (1−K) the square of the spread
between the current wealth, x and a target one, denoted ψ.
Noteworthy is the fact that despite exhibiting increasing absolute risk aversion, quadratic

utilities are still widely used in the literature (Haberman et al. [8]), for reasons of tractability.

4. Optimality conditions

Just like in Akume et al. [2], we adopt a dynamic programming approach to solve the HJB
equation associated with the utility maximization problem (3). Following Fleming & Rishel
[7], the corresponding HJB equation is given by

Jt(v, t)− ρJ(v, t) + U(v) + sup
θt

{
DθtJ(v, t)

}
= 0, (7)

where t ∈ [0, T ] is the horizon, V θ
t = v is any admissible state and DθtJ(v, t) is
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DθtJ(v, t) = Jv(v, t)
(
v
[
θTt (µ− r1n) + r

])
+

1

2
v2‖θTt σ‖2Jvv(v, t),

subject to the terminal condition J(v, T ) = U(v), and where J , the value function is given by

J(v, t) = sup
{θ}∈A(v)

Et,Vt





T∫

t

e−ρ(s−t)U(Vs, s)ds+ e−ρ(T−t)U(VT , T )



 ,

with subscripts on J denoting partial derivatives and V θ
t = v, the wealth realization at

time t.

4.1. First-order conditions for the TCE constraint

In solving the HJB equation (7), the static optimization problem

max
θt

{
DθtJ(v, t)

}
,

subject to the TCE constraint (4) can be tackled separately to reduce the HJB equation (7)
to a nonlinear partial differential equation of J only. We introduce the Lagrange function
L (θ, λ) = L (θ(v, t), λ(v, t)) as

L (θ, λ) = Jv(v, t)
(
v
[
θT (µ− r1n) + r

])
+

1

2
v2θTσσT θJvv(v, t)+

+U(v)− λ(v, t) (αTCEα
t (v, θ)− ε1) , (8)

where λ is the Lagrange multiplier, ε1 = ε · α and TCEα
t is given in (3). The first-order

necessary conditions with respect to θ and λ respectively of the static optimization problem
(4.1) are given by

▽θL = vJv(µ− r1n) +
1

2
Jvvv

2σσT θ+

+λv
[
(µ− r1n)∆t exp

(
(θT (µ− r1n) + r)∆t

)
· Φ
(
Φ−1(α)− ‖θTσ‖

√
∆t
)
−

− exp
(
(θT (µ− r1n) + r)∆t

)
·
√
∆t

2

σσT θ

‖θTσ‖
1√
2π

exp

(
−1

2
(Φ−1(α)− ‖θTσ‖

√
∆t)2

)]
= 0,

and

∂L
∂λ

= H(v, t) = −αΥt+∆t + v
[
exp

(
(θT (µ− r1n) + r)∆t

)
×

×Φ
(
Φ−1(α)− ‖θTσ‖

√
∆t
)]

+ ε1 = 0,

while the complimentary slackness condition is given as

λ(v, t)H(v, t) = 0 and λ(v, t) ≥ 0.
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4.2. First-order conditions for the VaR constraint

In analogy to Section 4.1 above, in solving the HJB equation (7), the static optimization
problem

max
θt

{
DθtJ(v, t)

}
,

subject to the VaR constraint (6) can be tackled separately to reduce the HJB equation (7)
to a nonlinear partial differential equation of J only. We introduce the Lagrange function
L (θ, λ) = L (θ(v, t), λ(v, t)) as

L (θ, λ) = Jv(v, t)
(
v
[
θTt (µ− r) + r

])
+

+
1

2
v2‖θTt σ‖2Jvv(v, t) + U(v)− λ(v, t)

(
−v exp

[
Φ−1(α)‖θTt σ‖

√
∆t+

+

(
θTt (µ− r) + r − 1

2
‖θTt σ‖2

)
∆t

]
+Υt+∆t − ε(v, t)

)
, (9)

and the first-order necessary conditions with respect to θ and λ respectively of the static
optimization problem (4.2) are given by

▽θL = vJv(µ− r) +
1

2
Jvvv

2σσT θt + λ(v, t)v

[
Φ−1(α)

1

2

σσT θt

‖θTt σ‖
√
∆t+

+(µ− r)∆t− 1

2
σσT θt∆t

]
·
(
exp

[
Φ−1(α)‖θTt σ‖

√
∆t+

+

(
θTt (µ− r) + r − 1

2
‖θTt σ‖2

)
∆t

])
= 0,

∂L
∂λ

= H(v, t) = v exp
[
Φ−1(α)‖θTt σ‖

√
∆t+

+

(
θTt (µ− r) + r − 1

2
‖θ′tσ‖2

)
∆t

]
−Υt+∆t + ε(v, t) = 0,

while the complimentary slackness condition is given as

λ(v, t)H(v, t) = 0 and λ(v, t) ≥ 0.

Simultaneous solution of the first-order conditions of either problem yields the optimal so-
lutions θopt and λopt. Substituting these into (7) gives the partial differential equation

−ρJ(v, t) + Jt(v, t) + Jv(v, t)
(
v[(θopt(v, t))T (µ− r1n) + r]

)
+

+Kv − (1−K)(v − ψ)2 +
1

2
Jvv(v, t)v

2(θopt(v, t))TσσT (θopt(v, t)) = 0, (10)

with terminal condition
J(v, T ) = Kv − (1−K)(v − ψ)2,

which can then be solved for the optimal value function Jopt(v, t).
Due to the non-linearity in θopt, the first-order conditions together with the HJB equa-

tion are a non-linear system so the differential equation (4.2) has no analytic solution and
numerical methods such as Newton’s method or Sequential Quadratic Programming (SQP)
(see, e. g., Nocedal & Wright [15]) are required to solve for θopt(v, t), λopt(v, t) and Jopt(v, t)
iteratively.



10 D. Akume

5. Numerical solution

Again as in Akume et al. [2] we use an iterative algorithm similar to that of Yiu [17] which

yields a C2,1 approximation Ĵ of the exact solution J , while θ̂t is the investment strategy
related to Ĵ . When the optimal solution strictly satisfies the constraint3, the Lagrange
multiplier λ(v, t) is zero. If the constraint is active, the multiplier is positive. First, we divide
the domain of resolution into a grid of nv × nt mesh points. Iterations are indexed by k.
1. For each point (t, v), with t ∈ {0,∆t, . . . , nt∆t}, v ∈ {0,∆v, . . . , nv∆v}, we compute

the value function Ĵk=0 = J(v, t) and the optimal strategy θoptt of the unconstrained problem.
All Lagrange multipliers are set to zero, λk=0

t,v = 0. This solution is the starting point of the
algorithm.
2. For all points of the grid, the constraint is checked. If the constraint is not active

(TCEα
t < ε), the multiplier is zero λk+1

t,v = 0 and θk+1
t is the solution of a similar equation

to that of the unconstrained case

λk+1
t,v = 0, θk+1

t = − Ĵv

vĴvv
(µ− r1n)(σ

Tσ)−1.

If the TCEα
t constraint is active (TCEα

t ≥ ε), we solve a nonlinear system in λk+1
t,v and

θ̂
j+1
t . This nonlinear system is composed of the first-order necessary conditions of the static
optimization problem (4.1). That system is numerically solved by the sequential quadratic
programming method (Nocedal and Wright [15]).

3. The last stage consists in the calculation of the value function Ĵk+1 according to the
investment strategy θ̂k+1

t as detailed in Section 7 in Akume et al. [3].
4. Return to step 2 with k = k + 1 until the error at time t from wealth level v, ǫt,v,

satisfies |ǫt,v| < δ with some small δ > 0, where

ǫt,v = Ĵt − ρĴ(v, t) + Ĵv

(
v[(θ̂optt )T (µ− r1n) + r]

)
+

1

2
v2‖(θ̂t

opt
)Tσ‖2Ĵvv + U(v).

6. Simulation results and discussion

We have, in a MATLAB program, implemented the above algorithm to illustrate the optimal
portfolios of the preceding section with examples. We assume that n = 2. That is, the market
is composed of two risky stocks and a risk-free bond. Table shows the parameters for the
portfolio optimization problem and the underlying Black—Scholes model of the financial
market. We achieve convergence in 300 seconds after three iterations.
We consider the constraint (TCE or VaR) of the wealth surplus (Vt+∆t − Υt+∆t) with

respect to the benchmark Υt+∆t such that it satisfies

TCEα
t (Vt+∆t −Υt+∆t) ≤ ε(Vt, t) = 0.1 or V aRα

t (Vt+∆t −Υt+∆t) ≤ ε(Vt, t) = 0.05.

We obtain both bounds above after several simulations. This confirms the fact that TCE
takes a bigger numerical value than VaR to produce the the same limiting effect. The
constraint is then re-evaluated at each discrete time step (constraint horizon) ∆t and kept

3This refers to either VaR (expression (6)) or TCE (expression (4)), depending on the risk measure being
applied. However, for ease of exposition, we shall use just TCE to describe the algorithm, bearing in mind
that it can always be replaced with VaR if need be.
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Author’s parameters for portfolio optimization problem

Parameter Value

Stock (S1) µ = 4%, σ11 = 5%, σ12 = 5%

Stock (S2) µ = 6%, σ21 = 5%, σ22 = 20%

Bond (S0) r = 3%

Investment horizon t ∈ [0, 1]

State of wealth v ∈ [0, 20]

Shortfall probability α = 1%

Value-at-risk horizon ∆t = 1/48 ≈ 7 days

No. of wealth mesh points Nv = 81

Mesh size for wealth ∆v = 20/80 = 0.25

Quadratic utility function U(v) = Kv − (1−K)(v − ψ)2

K = 0.6, ψ = 5

Discounting factor ρ = 0.3

below the upper bound ε(Vt, t), by making use of conditioning information. Figure 1 plots,
in the right panel, the investment in risky assets with TCE constraint (red), with VaR
constraint (green), without constraint (black) against the possible wealth realization at dif-
ferent times. Here, the shortfall benchmark is taken to be the conditional expected wealth
Υt+∆t = Et{Vt+∆t} = Vt exp [(θ

′
t(µ− r) + r)∆t], at each constraint horizon before the ter-

minal date T .

We observe that as the wealth level increases, the amount of wealth invested in stocks
diminishes. This results from the “increasing absolute risk aversion” that characterizes the
quadratic nature of the utility function. Furthermore, it can be observed that when the
wealth is smaller than the utility target ψ = 5 of the quadratic utility function, the optimal
solution consists of increasing the position of stocks. The exposure to the market is however
limited by the constraint which bounds the amount invested in stocks. On the other hand,
as wealth increases more than ψ, the position in stocks is reduced, but again limited by the
constraint.

This, nonetheless, is a rather counter-intuitive investment strategy, but directly results the
quadratic nature of the utility function, whereby utility rises up to the satiation level ψ and
falls thereafter. We would expect that as the wealth level falls we might shift into lower-risk
assets to protect our position. The strategy we have found does the opposite. The reason for
this is because of the quadratic form of the objective function. This, in a sense, defines an
ideal wealth level ψ. If wealth is below this, then we invest in high-return, high-risk assets to
increase the chance of getting quickly back to the ideal level. Conversely if the wealth level
is too high then we are prepared to invest in an inefficient low-return investment strategy
in order to get back to the ideal level. Owing to this shortcoming of quadratic utility, one
could instead consider applying power utility with its more intuitive constant relative risk
aversion property (see, e. g., Akume et al. [2]).

Like we noted at the end of Section 3, quadratic utilities are still widely used in the
literature despite exhibiting increasing absolute risk aversion (Haberman, Sung [8]).

The left panel in Figure 1 depicts the value function, indicating that for the constrained
problem, it is identical with that of the unconstrained problem when the Lagrange multipliers
are null (the optimal constrained portfolio follows the unconstrained one), whereas it is
inferior when the constraint is active (allocation to risky asset is controlled).
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Fig. 1. Effect of constraint on the proportion of risky investment
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Fig. 2. Constraints and bounds, plotted against wealth at various times of the investment horizon

This explanation is also evidenced by Figure 2 which displays the constraints — TCE
(black), VaR (blue) and bounds — VaR bound (green), TCE bound (red) in wealth/time
space. The constrained and unconstrained strategies coincide as long as the risk measure
lies below the bound. As expected, TCE (black) lies above VaR (blue), as it is by definition,
conditional expectation of the loss exceeding VaR.
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7. Concluding remarks

Using a quadratic utility function, we have investigated how a bound imposed on TCE or
VaR affects the optimal portfolio choice. In so doing, we have taken for wealth benchmark —
conditional expected wealth, whereby the constraint was re-evaluated at short intervals along
the investment horizon. We deduce from our observations that the constraint controls risky
investment.
The value function of the constrained problem is identical to that of the unconstrained

one when the Lagrange multipliers are null (the optimal constrained portfolio follows the
unconstrained one), whereas it is inferior when the constraint is active (allocation to risky
asset is controlled).
On the whole we observe that similar to VaR, the TCE bound limits risky investment as

well, albeit on a different scale.
Our simulation results therefore suggest that in a Black—Scholes market, where wealth

is lognormally distributed, TCE is similar to VaR in controlling investment in risky assets
despite the fact that TCE is coherent and VaR is not.
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