Анализ деформаций несвязного дна канала в нижнем бьефе гидроузла*

И. И. ПОТАПОВ, К. С. СНИГУР Вычислительный центр ДВО РАН, Хабаровск, Россия e-mail: potapovii@rambler.ru, snigur_ks@rambler.ru

Для одномерного канала формулируется задача деформирования песчаного дна в нижнем бьефе гидроузла, не содержащая феноменологических параметров. Задача определяется в рамках одномерного неравновесного руслового процесса, протекающего вследствие набегания на дно канала осветленного гидродинамического потока. Проведено сравнение полученных численных решений с экспериментальными данными и расчетами других авторов. Показано, что основной причиной замедления скорости размыва дна канала является увеличение глубины в его размытой части.

Ключевые слова: влекомые наносы, донные деформации, неравновесные и равновесные русловые процессы.

Введение

Изучению процессов размыва дна канала в нижнем бьефе посвящен ряд экспериментальных работ [1, 2], из которых следует, что с течением времени процесс размыва в нижнем бьефе замедляется. Авторы экспериментов отмечают, что существуют три механизма, влияющие на динамику замедления размыва: первый из них определяется неравновесностью механизма размыва дна в нижнем бьефе гидроузла, второй связан с процессом бронирования дна — смывом более мелких (подвижных) фракций донных частиц за начальный промежуток времени с последующим медленным влечением более крупных фракций, наконец, третий механизм связан с местным размывом дна при набегании на него осветленного потока, что приводит к местному увеличению глубины потока, уменьшению его скорости и уклона свободной поверхности в области размыва, что в свою очередь приводит к замедлению размыва дна.

Численные исследования, выполненные в [3, 4], привели к получению результатов, не согласующихся с экспериментальными данными [1, 2], основной причиной чего, по мнению авторов работы [3], является не учитывание расчетной моделью неравновесности процессов размыва. Для согласования расчетных и экспериментальных данных были введены феноменологические формулы калибровки влекомых наносов [3, 4]

$$q_s^{\ n}(x,t) = q_s(x,t) \left(1 - \exp\left(-\frac{x}{1+at}\right)\right),\tag{1}$$

^{*}Работа выполнена в рамках ФЦП "Научные и научно-педагогические кадры инновационной России". Госконтракт № 02.740.11.0626.

где q_s^{n} , q_s — соответственно неравновесное и равновесное значения влекомых наносов, a — эмпирический параметр, определяемый из эксперимента, x — пространственная, t — временная переменная.

В настоящей работе проводится проверка влияния вышеперечисленных механизмов на динамику замедления размыва дна. Учитывая, что донный материал в экспериментах [1, 2] был близок к однородному, влиянием процессов бронирования дна на замедление размыва донной поверхности пренебрегаем.

Для анализа причин процесса замедления размыва донной поверхности можно использовать известные русловые модели [5–7]. Однако сложность их применения связана с необходимостью определения феноменологических параметров данных моделей. В работе была выбрана неравновесная русловая модель [8], построенная на основе семейства русловых моделей [9–12], не содержащих в себе феноменологических параметров.

1. Математическая постановка задачи

Задача деформаций дна канала прямоугольной формы для одномерного неустановившегося руслового процесса рассматривается в расчетной области, представленной на рис. 1. Деформация несвязной донной поверхности происходит под действием протекающего по ней осветленного потока с расходом Q и определяется следующими уравнениями:

$$\frac{\partial}{\partial x} \left(\frac{U^2}{2g} + \eta \right) + \lambda \frac{U|U|}{gH} = 0, \quad Q = HU = \text{const}, \tag{2}$$

$$\frac{\partial\zeta}{\partial t} + \frac{\partial q}{\partial x} = 0, \tag{3}$$

$$\frac{\partial\xi}{\partial t} + u_a \frac{\partial\xi}{\partial x} = \frac{w}{h} (1 - \xi), \tag{4}$$

$$q = \frac{4}{3} \frac{\xi n \tau^{\zeta} \sqrt{\tau^{\zeta}}}{(1-\epsilon) F_a \sqrt{\rho_w} \kappa} \left[\left(1 - \sqrt{\chi_0}\right) - \left(1 - \frac{1}{2} \sqrt{\chi_0}\right) \Gamma \right],\tag{5}$$

где

$$\tau_0 = \frac{3}{8} \frac{dF_a \kappa^2}{c_x}, \quad \chi_0 = \frac{\tau_0}{\tau^{\zeta}}, \quad \xi = \frac{f}{f_*}, \quad \tau^{\zeta} = \rho_w \lambda U^2,$$
$$F_a = (\rho_s - \rho_w) g \cos \gamma \tan \varphi, \quad n = \begin{cases} 1, & \chi_0 < 1, \\ 0, & \chi_0 \ge 1. \end{cases}$$

Рис. 1. Расчетная область; Ј — уклон дна, L — длина расчетной области

Для замыкания системы уравнений (2)-(4) определим начальные

$$\zeta(x,0) = \zeta_0(x), \quad \xi(x,0) = 0 \tag{6}$$

и граничные

$$H(L) = H_0, \tag{7}$$

$$q(0,t) = 0, \quad \frac{\partial \zeta(L,t)}{\partial x} = J \tag{8}$$

условия. Здесь U — осредненная по глубине скорость потока; $\eta + H_0$ — уровень свободной поверхности потока; η — возмущение свободной поверхности потока; $H = \eta + H_0 - \zeta$ — глубина потока; H_0 — средняя глубина потока; Q = UH — расход потока; λ — коэффициент гидравлического сопротивления потока; $h = \frac{\tau^{\zeta}}{f_*F_a(1+\Gamma)}$, — толщина активного

слоя; $\Gamma = \frac{1}{\cos\gamma\tan\varphi} \frac{\partial\zeta}{\partial x}$; $u_a = \frac{4}{3\kappa} \sqrt{\frac{\tau_0}{\rho_w}}$ — скорость движения активного слоя; $f_* \approx 0.1$ —

концентрация донных частиц в придонном активном слое [9, 10]; ϵ — пористость донного материала; g — скорость свободного падения; ζ — уровень донной поверхности; ξ — коэффициент насыщения активного слоя частицами; w — гидравлическая крупность частиц; ρ_s — плотность песка; ρ_w — плотность воды; τ^{ζ} — напряжения на площадках, касательных к поверхности смеси в точке ζ ; τ_0 — критические напряжения; κ — постоянная Кармана; φ — угол внутреннего трения частиц; d — диаметр частиц песка; c_x — лобовое сопротивление частиц; γ — острый угол между нормалью к поверхности смеси в активносов; f — концентрация частиц в активном слое; ζ_0 — начальный уровень донной поверхности.

2. Алгоритм решения задачи

Решение задачи (2) - (8) проводилось с расщеплением на две подзадачи. Для дискретизации и решения гидродинамического уравнения (2) с граничным условием (7) методом центральных разностей используется вариант метода превышений [6]. При этом предполагается, что в связи с малой скоростью изменения величины ξ во времени значением $\partial \xi / \partial t$ можно пренебречь, т. е. насыщение активного слоя частицами по времени по сравнению с насыщением по координате x изменяется на малую величину и справедлива зависимость

$$\xi = 1 - \exp\left(-Kx\right),\tag{9}$$

где $K = \frac{w}{u_a h}$ — показатель неравновесности руслового процесса.

Общий вид дискретного аналога задачи (2)-(4) имеет вид

$$H_{i-1}^{n} = H_{i}^{n} + \Delta x \frac{\frac{\zeta_{n} - \zeta_{n-1}}{\Delta x} + \lambda \operatorname{Fr}_{i}}{1 - \operatorname{Fr}_{i} \left(1 - \frac{3\lambda \Delta x}{2H_{i}}\right)},\tag{10}$$

$$U_{i-1}^{n} = \frac{Q}{H_{i-1}^{n}},\tag{11}$$

$$\xi_i = 1 - \exp\left(-Kx_i\right),\tag{12}$$

$$\zeta_i^{n+1} = \zeta_i^n - \Delta t \frac{q_i^n - q_{i-1}^n}{\Delta x}.$$
(13)

Здесь n — шаг по временной, i — шаг по пространственной координате. С помощью уравнений (10), (11) для текущего шага по времени n методом обратной прогонки [6] вычисляются значения глубины потока H_i и его скорости U_i , что позволяет по формулам (12), (13) определить изменения дна канала ζ_i^{n+1} . По алгоритму сначала задаются расход потока Q, уровень дна ζ_i , глубина потока H_N на выходе из расчетной области $0 \le x \le L$. Для сеточной области $x_i = i\Delta x, i = 0, ..., N$, определяются значение скорости $U_N = \frac{Q}{H_N}$ и число Фруда $\operatorname{Fr}_N = \frac{u_N^2}{gH_N}$ в узле N. Расчет глубины H_{i-1}^n на текущем шаге выполняется по (10). Вычисление пар U_i^n , H_i^n проводится от N-го до 0-го узла области. Расчет донных деформаций производится по формулам (12), (13).

Для анализа неравновесности руслового процесса вводится критерий среднего насыщения активного слоя

$$\Xi = \frac{1}{L} \int_{0}^{L} \zeta(x) dx = 1 - \frac{1 - \exp(-KL)}{LK},$$
(14)

отражающий относительное наполнение активного слоя донными частицами для неравновесного и равновесного случаев руслового процесса в расчетной области длиной L.

3. Результаты численных исследований

Для выявления механизмов, влияющих на замедление процесса размыва дна, были выполнены численные расчеты, согласованные с экспериментальными данными [1]. Расчеты проводились при следующих данных: $d = 6.9 \cdot 10^{-4}$ м, $\kappa = 0.4$, $\varphi = 32^{\circ}$, $\rho_w = 1000$ кг/м³, $\rho_s = 2650$ кг/м³, $c_x = 0.45$, $\epsilon = 0.375$, Q = 0.00566 м³/с, $H_0 = 0.0411$ м, $q_N = 0.88652$ кг/с (массовый расход наносов), U = 0.45 м/с, L = 9.14 м, W = 0.3048 м (ширина лотка).

На рис. 2 представлено сравнение полученных расчетных результатов (кривые 1-4) с экспериментальными данными [1], которое показывает, что между ними имеется хорошее согласование (различие не превышает 9 %, что близко к систематической точности

Рис. 2. Размыв донной поверхности; сравнение расчетных и экспериментальных данных; 1 — дно канала в начальный момент времени

отдельных измерений $\leq 7 \%$ [1]). Кривые 5–7 и 8–10 построены по расчетным данным [3] без учета и с учетом калибровочной функции расхода (1). Видно, что без применения феноменологической формулы (1) расчеты [3] (кривые 5–7) дают отклонение от экспериментальных данных, достигающее 60 % в начальной максимально размываемой области канала. Применение регуляризации (1) позволяет снизить отклонение до приемлемой точности (до 12 %) (см. кривые 8–10) [1].

Из полученных расчетов следует, что при различных значениях физических параметров, ограниченных условием K > 0.5, учет неравновесности процесса донных деформаций при $0.8 < \Xi < 1$ приводит к изменениям уровня дна, отличающегося от равновесного не более чем на 6%. Следовательно, в рассмотренной задаче влияние неравновесных механизмов на процесс донных деформаций минимально и не превышает ошибку согласования расчетных данных с экспериментальными измерениями.

Анализ эволюции донной поверхности, приведенный на рис. 2, показывает, что со временем происходит замедление процесса размыва дна канала. С увеличением глубины потока, вызванным размывом дна, скорость потока падает, следовательно, уменьшаются придонные касательные напряжения, что в свою очередь приводит к снижению транспортной способности потока и, как следствие, к замедлению размыва донной поверхности.

Выводы

На основе математической модели донных деформаций, не содержащей феноменологических параметров, сформулирована одномерная неравновесная русловая задача для песчаного дна канала прямоугольной формы, позволяющая уточнить роль неравновесных механизмов в процессе размыва донной поверхности при набегании на нее осветленного потока. Получено хорошее согласование расчетных и экспериментальных данных, максимальное различие которых не превышает 9 %, что близко к систематической точности экспериментальных измерений.

В результате численных исследований показано, что вклад неравновесных механизмов в процессы движения влекомых наносов и замедления размыва донной поверхности при набегании на нее осветленного потока для рассматриваемой задачи не превышает 3-6% и, следовательно, им можно пренебречь. Однако в реальных реках при K < 0.5и толщине активного слоя на порядки большей полученной в эксперименте влияние механизма неравновесного размыва может быть более существенным.

Основной причиной замедления размыва донной поверхности в рассмотренной задаче является местное увеличение глубины потока и вызываемое им уменьшение донных касательных напряжений.

Список литературы

- NEWTON C.T. An Experimental Investigation of Bed Degradation in an Open Channel. Transcript. Boston Soc. of Civil Eng., 1951.
- [2] SURYANARAYANA B. Mechanics of degradation and aggradation in a laboratory flume // J. Agricultural Eng. Res. 1999. Vol. 74, No. 4. P. 421-426.
- [3] VIKAS S. Two Dimensional Sediment Transport Model Using Parallel Computers. B. Tech. Banaras Hindu Univ., India, 2002. 88 p.

- [4] BELL S.G., SUTHERLAND A.J. Non-equilibrium bed load transport by steady flows // J. Hydraulic Eng. 1983. Vol. 109(3). P. 353-367.
- [5] БЕЛОЛИПЕЦКИЙ В.М., ГЕНОВА С.Н. Вычислительный алгоритм для определения динамики взвешенных и донных наносов в речном русле // Вычисл. технологии. 2004. Т. 9, № 2. С. 9–25.
- [6] ВЕКСЛЕР А.Б., ДОНЕНБЕРГ В.М. Метод расчета трансформации русла в нижних бъефах гидроузлов // Гидравлика. Ч. 1 / Под ред. Д.А. Ивашинцова и А.Б. Векслера. СПб.: Изв. ВНИИГ, 1997. С. 115–130.
- [7] КАРАУШЕВ А.В. Теория и методы расчета речных наносов. Л.: Гидрометеоиздат, 1977.
 271 с.
- [8] ПОТАПОВ И.И., СНИГУР К.С. Анализ донных деформаций несвязного дна канала в нижнем бьефе гидроузла // XXXV Дальневосточная математическая школа-семинар. Владивосток, 2010. С. 617–618.
- [9] ПЕТРОВ П.Г. Движение донных наносов под воздействием потока жидкости // МЖГ. 1988. № 2. С. 182–185.
- [10] ПЕТРОВ А.Г., ПЕТРОВ П.Г. Вектор расхода наносов в турбулентном потоке над размываемым дном // ПМТФ. 2000. Т. 41, № 2. С. 102–112.
- [11] ПОТАПОВ И.И. Двумерная модель транспорта донных наносов для рек с песчаным дном // Там же. 2009. Т. 50, № 3. С. 131–139.
- [12] ПЕТРОВ А.Г., ПОТАПОВ И.И. О развитии возмущений песчаного дна канала // Докл. АН. 2010. Т. 431, № 2. С. 191–195.

Поступила в редакцию 26 января 2011 г., с доработки — 25 февраля 2011 г.