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The paper sets out from the inclusion of the analysis of existence and regularity

of solutions of the Navier—Stokes equations in the seven unsolved problems of math-
ematics by the Clay Mathematics Institute in the USA in 2000. It then mentions
d’Alembert’s early paradoxical attempts to determine the aerodynamic drag and the
insolvability of the Euler equations at the time when they were first published. Af-
ter the discussion of the derivation of the Navier—Stokes equations early results as
for example Helmholtz’s vorticity theorems and Reynolds’ approach to turbulent flows
are introduced, followed by Prandtl’s revolutionary boundary-layer theory and lifting-
line theory. The next section sketches the rapid development of modern computing
machines, enabling the introduction of numerical methods into fluid mechanics. Ar-
rangement of computational grids and solution techniques are briefly discussed. The
results of a recent international workshop on drag prediction and an example showing
the use of numerical methods in aerodynamic design are used to demonstrate the state
of the art. The summary concludes with a look on future problems.
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Introduction

It was in the year 2000 that the Clay Mathematics Institute in Cambridge (USA) selected the
analysis of existence and regularity of solutions of the Navier—Stokes equations for three-
dimensional incompressible flows, the millennium-problem of fluid mechanics, as one of the
seven unsolved problems of mathematics [1]. One million US dollars were offered as prize
money for the solution. Although more than ten years have passed in the meantime successful
solution approaches did not become known as yet, a disappointing result, especially, if one
realizes that a large body of literature pertaining to the subject exists. The understanding of
the mathematical nature of the Navier—Stokes equations is still rather limited, as Charles
L. Fefferman remarks in the official description of the problem [2]. But disappointments
have always accompanied research in fluid mechanics. For example the former Secretary
General of the Académie Francaise and member of the Académie des Sciences and also of
the Preußische Akademie der Wissenschaften, Jean-Baptiste le Rond d’Alembert, writes 1752
in [3] in the translation of [4]:

“I do not see then, I admit, how one can explain the resistance of fluids by theory in a
satisfactory manner. It seems to me on the contrary that this theory, dealt with profound
attention, gives, at least in most cases, resistance absolutely zero; a singular paradox which
I leave to geometricians to explain.”

3



4 E. Krause

The last part of the statement, the reference to the geometricians remains vague and
indeed discouraging. It is not easy to see, how the geometricians could possibly take care
of the paradoxical result, unless one wants to imply that a very large amount of numerical
work is required for an accurate description of complex aerodynamic configurations. But
most likely it was not this problem which d’Alembert meant, when he described his non-
satisfying result of his carefully worked-out theory, yielding no resistance at all. Almost
another century was necessary to find a suitable answer.

Fig. 1. Jean-Baptiste le Rond d’Alembert, (1718–1783), Sec-
retary General of the Académie Francaise, member of the
Académie des Sciences and of the Prussian Academy of Sci-
ences, exchanged letters with Catharine II. the Great and re-
tired on a pension of Frederick II. the Great of Prussia. The
above remark can be found in J. le R. d’Alembert: “Essai d’une
nouvelle théorie de la résistance des fluides”, Paris, 1752, Opus-
cules mathematiques, Paris, 1768, V, 132–138.

Also Leonhard Euler offers certain skepticism only a short time later, after his successful
formulation of the equations of motion for inviscid fluid flow in 1755, later named after him,
he remarks in [5]:

“I hope to reach the goal with some luck, so that the remaining difficulties are only of
analytical but not of mechanical nature.”

Euler’s remark is best be understood if one remembers, that Johann Bernoulli was the first
who applied the fundamental laws of mechanics to describe one-dimensional fluid motion,
published in his Hydraulica in 1742 [6].

Fig. 2. Leonhard Euler, (1707–1783), Professor at the Univer-
sity in Saint Petersburg, was appointed 1741 by Frederick II.
to the Royal Prussian Academy of Sciences in Berlin; returned
to Saint Petersburg in 1766. Catharine II. the Great strongly
supported him, even when he lost his sight completely in 1771.
His equations of motion for inviscid flows were first published
in Principe’s géneraux du mouvement des fluides, Memoires de
l’Acad. des Sciences de Berlin 11, 274–315, also in Opera Om-
nia, II 12. 54–91, 1755.

It was only thirteen years later that Euler had expanded Johann Bernoulli’s new ap-
proach to describe fluid motion to general incompressible, unsteady three-dimensional flow,
a gigantic step forward at that time. But also Euler’s skepticism was justified: About 200
years had to pass, until finally solutions of the Euler equations could be constructed for
the description of flows about aerodynamic configurations. The non-linearities appearing in
them prohibited direct applications for a long time.
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Equations of motion for viscous flows

Almost another seventy years went by, until the complete equations of motions for viscous
flows, today called the Navier—Stokes equations, could be formulated. They were first
published in 1823 by Claude-Louis-Marie-Henry Navier in [7]. The equations derived by
him describe the conservation of mass and momentum for an infinitesimally small volume
element of incompressible fluid in motion.

Fig. 3. Claude-Louis-Marie-Henry Navier (1785–1836), Profes-
sor of mechanics at the École des Ponts et Chaussées and later
Professor of calculus and mechanics at the École Polytechnic,
brought the theory of elasticity into a usable form; he is con-
sidered to be the founder of modern structural mechanics, his
main contribution is the derivation of the Navier—Stokes equa-
tions, first published in Mémoire sur les lois du mouvement des
fluides, Mémoires de léAcademie des Sciences 6, 389–416, 1823.

With the usual notation, v denoting the velocity, p the pressure, ρ the density, and η the
viscosity, the equations read as follows:

∆ · v = 0,

ρ

(

∂v

∂t
+ (v ·∆)v

)

= −∆p + η∆2v + f.

The naming of the equations is not clear, if it is remembered that Adhémer Barré de
Saint-Venant already in 1843 published the equations in the form given in [8], two years
before the publication of Sir Georg Gabriel Stokes [9].

Fig. 4. Adhémar Jean Claude Barré de Saint-Venant (1797–
1886), Professor of mathematics at the École des Ponts et
Chaussées in Paris, member of the Académie des Sciences; in-
troduced the vector calculus in France; in 1843 he published a
correct derivation of the Navier—Stokes equations, two years
prior to Stokes, in his Mémoire sur le équations générales de
lééquilibre et du mouvement des corps solides élastiques et des
fluides in Journal de École Polytechnique 13, pp. 1–174, Cahier
XX, 1831.

De Saint-Venant was also first to recognize in the derivation that the viscosity coefficient
could replace the shear modulus and serve as a multiplicative factor of the velocity gradients.
But still the above equations were not named after him. Perhaps the reason is, that Stokes
provided solutions for two problems of the equations of motion simplified for very slow
motion — that is the second term of the left-hand side could be left out — in [10] in 1851.
In the so-called Stokes’ first problem he analyzed a flow situation, which is generated, when a
plane wall is suddenly accelerated. In dealing with his second problem he provided a solution
describing the flow near an oscillating flat plate. These two problems could be solved with
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Fig. 5. Sir George Gabriel Stokes (1819–1903), Lucasian Pro-
fessor of mathematics at Cambridge University, member, secre-
tary, and president of the Royal Society, worked in pure mathe-
matics, mathematical and experimental physics, his theoretical
works were mainly in hydrodynamics. His derivation of the
equations of motion was first published under the title “On the
Theories of the Internal Friction of Fluids in Motion”, Transac-
tions of the Cambridge Philosophical Society, 8, 287–305, 1845.

the solution techniques available at that time. Two noteworthy results had already been
obtained along these lines, but without the use of the Navier—Stokes equations: In 1839
Gotthilf Heinrich Ludwig Hagen in [11], and about the same time Jean Louis Marie Poiseuille
in [12] published a simple relation describing the flow of water in a pipe. The results were
obtained from experimental studies.

Early findings

Since the integration of the complete Navier—Stokes equations was not yet possible, further
success concerning their solution could not be reported. However, already in 1858, 35 years
after their derivation, Hermann von Helmholtz, at that time professor for physiology in
Heidelberg, was able to derive a new relation from the equations of motion, which later
became known as the vorticity transport equation. In his derivation he used the Euler
equations — that is the equations given above without the last but one term. By introducing
the definition of the notion of vorticity in [13] he obtained a vector equation with which the
motion of vortices in inviscid fluid flows could be described.

Helmholtz was also able to derive three theorems, which characterize the behavior of
vortex filaments in inviscid flows. As formulated in his original paper [13], they read in the
translation:

1. A water particle, which does not rotate from the beginning on, cannot begin to rotate
at a later time.

2. Water particles which belong to a vortex filament at an arbitrary time will always
belong to that same filament, even when the particles are in motion.

3. The vortex filaments must therefore form closed loops in the fluid or can end only at
its boundaries.

Fig. 6. Hermann von Helmholtz (1821–1894), Professor of
pathology and physiology in Königsberg, Bonn, and Heidelberg;
universal scholar, was ennobled 1883 and elected first president
of the newly founded Physikalisch-Technische Reichsanstalt in
1888. His work on the vorticity transport equation appeared un-
der the title “Über Integrale der hydrodynamischen Gleichun-
gen, welche den Wirbelbewegungen entsprechen”, Celles J. 55,
25, 1858.
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The vortex theorems played an important role in the developments that followed. The
realization, that a vortex ring cannot be cut is a direct consequence of Helmholtz’s third
theorem. It also became the starting point in the development of the theory of lift. Needless
to say that the vorticity transport equation could not be solved either because of the non-
linearities of the terms describing the convective acceleration.

Another fundamental cornerstone of the nineteenth century was laid five years later
in 1883 by Osborne Reynolds, professor of mechanics in Manchester [14]. He showed in an
experiment that under certain conditions — today characterized by a dimensionless similarity
parameter, called Reynolds number — that an originally plain laminated pipe flow would
generate pressure and velocity fluctuations, later on termed laminar-turbulent transition,
eventually turning into fully turbulent flow.

Fig. 7. Osborne Reynolds (1842–1912), Professor of civil and
mechanical engineering at Owens College in Manchester, 1877
Fellow of the Royal Society; worked in fluid mechanics, electri-
cal engineering, magnetism, and astrophysics; most important
similarity parameter in fluid dynamics is named after Reynolds.
His 1883 experiments were published in “An Experimental In-
vestigation of the Circumstances whether the Motion of Water
Shall Be Direct or Sinuous and of the Law of Resistance in Par-
allel Channels”, Philosophical Transactions of the Royal Society
of London, series A, 174, 1883, 935–982.

Reynolds also introduced the concept of turbulent fluctuations into the Navier—Stokes
equations and postulated that after time-averaging the equations they could be used for
describing turbulent flows. Since information is lost in the averaging process new unknown
terms appeared, which nowadays are called Reynolds stresses. From the time of Reynolds’
experiment on the construction of suitable closure relations is regarded as the central problem
of turbulent flow research.

New theories

In the year 1904 Ludwig Prandtl presented a paper at the III. International Mathematics
Congress in which he showed with an order-of-magnitude analysis that in fluids with small
viscosity the frictional forces come into play only in the vicinity of solid boundaries [15].

In his derivation, which soon became known as boundary-layer theory, Prandtl was able
to simplify the Navier—Stokes equations to the boundary-layer equations, which for special
cases could be solved with the aid of the similar-solutions technique. The first of such
solutions was given by Prandtl’s student Hermann Blasius in 1908. He determined the skin
friction of a flat plate at zero incidence in laminar flow with his solution of the boundary-layer
equations [16].

Another fundamental theory followed ten years later in 1918, when Prandtl was able to
formulate the lifting-line theory with the aid of a Helmholtz vortex filament, shaped into the
form of a horseshoe [17]. This theory enabled aerodynamicists from then on to determine
the lift and the induced drag of wings of finite span. The lifting-line theory became the
fundament of all the later developments of wing theories that followed.
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Fig. 8. Ludwig Prandtl, (1875–1953), Professor at the Univer-
sities of Hanover and Göttingen, Director of the Institute for
Technical Physics, built first wind tunnel in 1909; President of
the Aerodynamic Research Laboratory at Gottingen; developed
the concept of boundary-layer theory, first published in “Über
Fléssigkeitsbewegung bei sehr kleiner Reibung”, Verhandl. III.
Intern. Math. Kongr. Heidelberg, 484–491, 1904; his funda-
mental work on wing theory was published in “Tragflügeltheorie
I. u. II.” Mitt., Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl.,
451–477, 1918; 107–137, 1919.

Prandtl also foresaw the development of modern computing. One of his former students,
formerly professor of mathematics at Freiburg University, Henry Görtler reports in [18], that
before and during World War II Prandtl developed a mechanical computing machine, he
had dreamed of to solve the initial-two-point boundary-value problem of the boundary-layer
theory with. The machine never worked, and only a design drawing dating back to the year
1941, just a short time before the advent of the electronic computing machines, was saved.

Fig. 9. Ludwig Prandtl’s unfulfilled dream: A mechanical computing machine, he thought he could
solve the initial-two-point boundary-value problem of his boundary-layer theory with. The design
draft shown dates back to 1941, only a few years before the advent of the electronic computing
machines. The machine was never completed, as reported in [18], only the draft was saved.
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The ascent of numerical solutions

Even in the twenties solutions of the Navier—Stokes equations could not be availed for the
description of viscous flows. If flows with large Reynolds numbers were to be described,
the flow field would be divided into an inviscid part and the boundary layer. The inviscid
flow was then computed with the potential-flow theory and the flow in the boundary layer
with new integral methods for the solution of Prandtl’s boundary-layer equations, derived
by Theodore von Kármán [19].

Since the wind-tunnel technique was substantially advanced by Prandtl and his stu-
dents in Göttingen from the turn of the century on, extensive measurements of pressure
distributions were used for flow investigations. This scenario prevailed until the sixties. As-
tonishingly enough this situation was confirmed by one of the fathers of informatics, John
von Neumann, after whom the architecture of modern computing machines is named and
whom we owe the scientification of modern computing. Von Neumann strongly shaped and
pushed forward the unforeseen development of modern computers and computational tech-
niques. He developed the first computer of the Institute for Advanced Studies in Princeton.
In 1963 von Neumann remarked in [20]:

“Thus, wind tunnels are, for example, used at present, at least in large part, as computing
devices of the so-called analogy type (. . . ..) to integrate the nonlinear partial differential
equations of fluid dynamics.”

This remark offered by one of the leading mathematicians of his time came as a surprise, in
as much as von Neumann emphasized that wind tunnels were used as computing machines
and not so much as instruments to determine flow characteristics with by measuring, for
example, certain quantities, like pressure or velocities.

Fig. 10. John von Neumann (1903–1958), after appointments
as university lecturer in Göttingen, Berlin, and Hamburg, fol-
lowed an invitation to Princeton University in 1930, and joined
the newly founded Institute for Advanced Studies in 1933. He
is known as one of the fathers of informatics. The architecture
of modern computing machines is named after him. The above
remark may be found in an article entitled: “On the Principles
of Large Scale Computing Machines”, Collected Works, Perga-
mon Press, Oxford, 1–34, 1963, by J.H. Goldstine, and J. von
Neumann.

The following fifty years witnessed a development of the information and computing
technology that not only affected all branches of science and technology but also our entire
life. For example in 1991 the US Congress promulgated the High Performance Computing
and Communication Act, thereby proposing high-speed communications systems in order to
enhance science and education in the USA. In [21] it is reported that the Japanese government
in 2006 declared the supercomputer technology as one of the key technologies of national
importance:

“The Japanese government selected the supercomputing technology as one of the key tech-
nologies of national importance. . . and launched the Next Generation Supercomputer project
in 2006. . . .The system with 10 Petaflops class performance is planned to be completed in
2012. . . . One of the goals of this project is to develop . . . the grand challenge applications.”
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The aim of this project is to increase the computational performance of presently avail-
able machines so that solutions of the “Grand Challenges” can be provided. The Grand
Challenges were formulated in the 1980 s in the USA as those fundamental problems in sci-
ence and technology with many possibilities of applications, but with the expectation that
their solutions can only be obtained in the near future with the aid of supercomputers.
Turbulent flow research also belongs to these problems. The Nobel laureate Richard Feyn-
man remarked already in the 1960 s: “Turbulence is the most important unsolved problem in
classical physics”.

From the mid 1960 s on the rapid development of the computer technology enabled the
construction of numerical solutions of the equations of motion in fluid dynamics. This
requires the choice of a suitable mathematical model for the problem to be analyzed, as
either the complete Navier—Stokes equations, the Euler equations, or Prandtl’s boundary-
layer equations. The non-linear partial differential equations have to be discretized and
replaced by algebraic equations, which can be solved on supercomputers. A computational
grid has to be designed for the discretisation, which must be arranged in such a way, that
the local flow structures can properly be resolved. Because of limited storage capacity this
is not always possible. The last step of the numerical solution requires the presentation of
the results.

In the discretisation of the equations of motion a certain condition has to be met, which
guarantees that the domain of dependence of the differential equations is always included
by the domain of dependence of the discretisation scheme chosen, or else the convergence of
the numerical solution cannot always be ensured. It surprises one today that this condition,
the domain-of-dependence condition, was already derived in 1928 by Richard Courant, Kurt
Otto Friedrich, and Hans Lewy in Göttingen, published in [22], in a time, when numerical
solutions of the Navier—Stokes equations were not in sight.

There are several ways in which the numerical solutions of the Navier—Stokes equations
can be constructed. For example in the direct numerical simulation (DNS) the Navier—

Fig. 11. Increase of the performance of supercomputers during the past 25 years. Data were
published by T. Watanabe and M. Nomura in their article “Petaflops Computers and Beyond”,
Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 100, 481–490, 2009.
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Stokes equations are discretized and solved on a grid, which guarantees that the local flow
structures are adequately resolved. This method is suited for the simulation of flows char-
acterized by relatively small Reynolds numbers. Another method of solution is the large-
eddy-simulation technique (LES). In this approach the large vortex structures are directly
computed, and the smaller vortex structures are described with modeled approximations.
The large-eddy-simulation technique is used when flows with moderate Reynolds numbers
are to be described. The third technique mentioned here consists in the solution of the
Reynolds-averaged Navier—Stokes equations (RANS), as introduced by Reynolds in 1883.
Prior to their solution these equations have to be closed with closure relations for the de-
scription of the Reynolds’ stress tensor.

As for the numerical solutions there also exist several possibilities for the discretisation of
the Navier—Stokes equations. If straight-forward finite differences are used, the derivatives
in the differential equations are substituted by difference approximations, and the resulting
difference equations are solved with explicit or implicit algorithms. In the finite-volume tech-
nique the integral forms of the conservation equations are discretized. A third method is the
finite-element method: The flow field is subdivided into finitely large elements. In a second
step shape functions are defined for the elements, which when inserted in the conservation
equations supply a system of algebraic equations that can be solved on computers.

The computational grids are generated by discrete decomposition of the flow field into
area or volume elements. The grids can be structured, following certain prescribed regulari-
ties, as for example Cartesian volume elements. Also unstructured grids are used: They are
generated by prescribing the coordinates of the vertices of the elements. The unstructured
grids offer good adaptation possibilities for the resolution of local flow structures.

The following Fig. 12 shows an example for the generation of a structured hybrid Carte-
sian grid for the computation of the flow around an aerodynamic shape. The grid is com-
posed of rectangular cells, based on an octree-data structure, with an imbedded grid with
triangular-prismatic cells for the computation of the flow in the boundary layer as described

Fig. 12. Example for a generation of a structured hybrid Cartesian grid for the computation of the
flow around an aerodynamic shape. The grid consists of rectangular cells of different size, generated
with an octree-data structure. A second grid with triangular–prismatic cells is imbedded near the
surface for the computation of the boundary-layer flow as described in [23]. A large computational
effort is necessary for the generation of the grid.
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in [23]. It is clear from Fig. 12 that a large effort is necessary for the grid generation.
Perhaps it was this difficulty d’Alembert was hinting at in [3], that could not be overcome
in the eighteenth century with no computing machines available.

Many technical flows are characterized by extraordinary large Reynolds numbers, as
for example, flows about airplanes Re: (O108). A direct simulation of such flows on super-
computers presently available is not possible, since according to [24] a computer performance
of about 1023 flops would be required for the solution. The large-eddy simulations today
allow investigations of modeled flow problems.

The Reynolds-number restriction was already discovered in 1963 by Jacob E. Fromm. He
remarked in [25], that in his simulation of the flow about a rectangular block the solution
would fail at a Reynolds number of Re = 6× 103:

“It is believed, however, that the Re = 6000 case is about as far as the calculational
method can be extended in its current form, since here the instability discussed earlier tends
to confuse the display patterns.”

The instability of Fromm’s numerical solution of the Navier—Stokes equations can also
be recognized in a comparison with experimental flow visualization provided by A.M. Lippich
in 1958, shown in Fig. 13.

Although actual flow conditions are still difficult to simulate on supercomputers, today
flow computations, for example to determine lift and drag of airplane configurations can be
carried out at much larger Reynolds numbers, see [27], than those chosen in [25] and [26].
Nevertheless it remains a laborious task for several reasons. One, of course, is the difficulty
of correctly predicting the Reynolds stresses, with often little or no reliable information
available. Turbulent flow research still has to depend on judicious assumptions. Another
reason is the approximate nature of the numerical solutions due to their dependence on grid
spacing and orders of approximation of the discretisation procedure chosen.

For these and other reasons the American Institute of Aeronautics and Astronautics
organizes “Drag Prediction Workshops” in order to determine the accuracy of predictions of
numerical solutions of the conservation equations, so far restricted to aerodynamic problems.
The fourth workshop took place in 2009. Test computations were carried out for the transonic

a b

Fig. 13. Fromm’s numerical visualization of the flow around a rectangular block, obtained from the
Navier—Stokes equations in [25] (a). Lippich’s experimental flow visualization of the flow around
a rectangular block obtained by smoke injection described in [26] (b).
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flow about the “NASA Common Research Transonic Wing-Body-Tail Model” for Reynolds
numbers of the order Re = 2×107, about one order of magnitude smaller than those of flight
conditions, but four orders of magnitude larger than the Reynolds number in Fromm’s 1963
computation.

The workshop was organized as an international meeting: Nineteen groups from various
countries participated with 29 solutions. Researchers from the USA and Europe provided
eleven solutions each and seven were submitted from Asia and Russia. Industry presented
results of seven solutions, research establishments and venders nine each, and academia four.
The presentations showed that grid generation still occupies a large portion of the work, with
structured grids used in nine solutions, but unstructured in twenty.

An example for the results obtained is pictured in Fig. 15, taken from [27]. Shown is the
Lilienthal polar diagram, which gives the dimensionless lift coefficient as a function of the
dimensionless drag coefficient. The computed data are compared with experimental results.

Figure 15 contains data for several test conditions. For example, the influence of the
grid spacing on the accuracy of the solution was investigated by varying the number of grid

Fig. 14. The NASA Common Transonic Research Model, consisting of a wing-body-tail configura-
tion, used in the AIAA “Drag Prediction Workshops” for comparison calculations for a Reynolds
number Re = 2× 107, see, for example [27].

Fig. 15. Comparison of numerical and experimental results of the fourth AIAA “Drag Prediction
Workshop” of 2009. Shown is the dimensionless lift coefficient as a function of the dimensionless
drag coefficient in the form of Lilienthal’s polar diagram for several test conditions, discussed in
[27] and elsewhere.
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Fig. 16. Present and future applications of numerical methods in industrial design and optimiza-
tion of aerodynamic configurations. Solutions of Reynolds-averaged Navier—Stokes equations are
preferably used as described in an article by K. Becker, J. Vassberg: “Numerical Aerodynamics in
Transport Aircraft Design”, in Notes on Numerical Fluid Mechanics and Multidisciplinary Design,
Vol. 100, 2009.

cells between 3.5 to 105 million cells. A second test case was focused on the influence of the
Reynolds number on the drag coefficient. In these studies the Reynolds number was varied
between Re = 2 × 106 and Re = 2 × 107. It is reported in [27] that the computed results
matched the experimental data best at the higher Reynolds number. The workshop also
included the investigation of other problems, fore example, studies of the influence of the
stabilizer on the drag and lift coefficients.

Altogether the results of the fourth workshop were summarized in [28]. In the general
conclusion it is manifested, that a number of numerical solutions of the Navier—Stokes
equations is available, which for all test cases yield good agreement. The authors state in
[28], that

. . . “there is a set of CFD codes whose members . . . agree relatively well with each other
. . . over all the test cases. . . . it is comprised of flow solvers that are based on all types
of grids. Hence, several structured, unstructured, and hybrid mesh solvers have matured
sufficiently to be useful CFD tools for accurate drag prediction.”

In the past fifty years numerical solutions of the Navier—Stokes equations have ma-
tured to such a degree that the accurate determination of the drag for the flow conditions
mentioned is possible. According to [29] numerical methods are already intensively being
used in analyses of aerodynamic characteristics of airplane configurations in the design and
optimization phase. These investigations mainly prefer solutions of the Reynolds-averaged
Navier—Stokes equations. Figure 16 published in [29] shows the many applications of nu-
merical methods in industrial applications.

Concluding remarks

The enormous progress in the development of modern computing machines and numerical
solutions of the Navier—Stokes equations during the past fifty years makes it possible
today to determine lift and drag of aerodynamic configurations for flows up to moderate
Reynolds numbers. Counting from d’Alembert’s first attempts in 1752 it took more than
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200 years until the drag of a body moving in a fluid could be computed with presently
available numerical simulation techniques, although with some severe restrictions: Transition
of laminar to turbulent flow and fully turbulent flows still belong to the most important
unsolved problems of fluid mechanics. They pose problems in the construction of numerical
solutions for flow simulation, as approximations have to be introduced.

Flows with high Reynolds numbers still remain inaccessible for direct simulation. The
validity of results of numerical flow computations can therefore only be checked by comparing
with experimental results, because of the approximations that have to be introduced in the
solutions. Presently available computational speeds and storage capacities, although large,
pose another problem: They restrict the temporal and spatial resolution of the flow motion.

Nevertheless, the new computational methods in fluid mechanics in the mean time have
become an indispensible tool for fluid flow research and development. Many applications
demonstrate the usefulness of modern simulation techniques, how incomplete they still may
be. Some of the most difficult fundamental problems still wait for their solution. For these
reasons the millennium problem formulated by the Clay Mathematics Institute, the analysis
of existence and regularity of solutions of the Navier—Stokes equations for the description
of three-dimensional flows remains of outmost importance.
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