Критические числа Рейнольдса в сверхзвуковом течении Куэтта колебательно-возбуждённого двухатомного газа^{*}

Ю. Н. Γ РИГОРЬЕВ¹, И. В. ЕРШОВ²

¹Институт вычислительных технологий СО РАН, Новосибирск, Россия ²Новосибирский государственный архитектурно-строительный университет,

Россия

e-mail: grigor@ict.nsc.ru, i_ershov@ngs.ru

Григорьев Ю.Н., Ершов И.В. Критические числа Рейнольдса в сверхзвуковом течении Куэтта колебательно-возбуждённого двухатомного газа // Вычисл. технологии. 2014. Т. 19, № 2. С. 20–32.

В рамках нелинейной энергетической теории гидродинамической устойчивости исследовано сверхзвуковое плоское течение Куэтта колебательно-возбуждённого двухатомного газа. Соответствующая спектральная задача для критических значений числа Рейнольдса Re_{cr}, определяющих возможное начало ламинарно-турбулентного перехода, решалась численно с помощью метода коллокаций и QZ-алгоритма. Показано, что в сверхзвуковом диапазоне рассчитанные значения Re_{cr} могут в пределах двух порядков превышать аналогичные значения для дозвуковых чисел Маха.

Ключевые слова: энергетическая теория, гидродинамическая устойчивость, колебательная релаксация, уравнения двухтемпературной газовой динамики, критическое число Рейнольдса, метод коллокаций, QZ-алгоритм.

Grigoryev Yu.N., Ershov I.V. Critical Reynolds numbers in supersonic Couette flow of vibration excited diatomic gas // Comput. Technologies. 2014. Vol. 19, No. 2. P. 20–32.

Supersonic 2D-Couette flow of vibration excited diatomic gas was investigated in the framework of nonlinear energy theory for hydrodynamic stability. The corresponding spectral problem for critical Reynolds numbers Re_{cr} defining possible origin of laminarturbulent transit was calculated using collocation method and QZ-algorithm. It was shown that in supersonic range of the calculated values of Re_{cr} may be within two orders of magnitude higher than similar values for subsonic Mach numbers.

Key words: energy theory, hydrodynamic stability, two-temperature gas dynamics equations, critical Reynolds number, collocation method, QZ-algorithm.

Введение

В работе [1] на основе нелинейной энергетической теории исследовалась устойчивость дозвукового плоского течения Куэтта колебательно неравновесного молекулярного газа. Выполненное обобщение теории позволило в реальном для двухатомных газов диа-

^{*}Работа выполнена при финансовой поддержке РФФИ (грант № 11-01-00064).

пазоне параметров режима получить значения критических чисел Рейнольдса Re_{cr} . При этом найденные значения Re_{cr} по порядку величины совпадали с результатами, полученными в аналогичной постановке для несжимаемого течения [2]. Это подтвердило известное представление о том, что дозвуковое течение Куэтта можно считать практически несжимаемым. Вместе с тем немногочисленные исследования [3–5], выполненные в постановке классической линейной теории, показывают, что в рамках данного подхода вопрос гидродинамической устойчивости течения Куэтта сжимаемого совершенного газа до последнего времени не имеет однозначного решения. В частности, в работе [3] констатированы абсолютное стабилизирующее влияние вязкости и отсутствие неустойчивости вплоть до чисел $\text{Re} = 5 \cdot 10^6$ при сверхзвуковых числах Маха $M = 2 \div 5$. В то же время в более поздних публикациях [4, 5] были рассчитаны критические числа Рейнольдса в пределах $\text{Re}_{cr} \simeq (2 \div 5) \cdot 10^4$ при числах $M = 3 \div 12$.

Таким образом, исходя из результатов численных расчётов [3-5] имеет место следующая ситуация. В рамках линейной теории устойчивости течение Куэтта совершенного газа устойчиво в ближней сверхзвуковой области M < 3 и может проявлять неустойчивость при дальнейшем возрастании числа Маха. Это определило интерес к продолжению начатых в [1] исследований при сверхзвуковом диапазоне $M = 2 \div 5$, которым посвящена настоящая работа. Полученные данные для зависимостей критических чисел Рейнольдса от параметров течения представляют самостоятельный интерес. Кроме того, использованная в работе модель двухтемпературной газодинамики при отсутствии возбуждения колебательной моды переходит в модель совершенного газа, что позволяет провести сравнение полученных результатов с данными линейной теории устойчивости [4, 5].

1. Постановка задачи

1.1. Исходные уравнения

Задача устойчивости течения Куэтта колебательно-возбужденного двухатомного газа рассматривается в расчётной области Ω , представляющей собой прямоугольный параллеленииед, грани которого параллельны координатным плоскостям декартовой системы (x_1, x_2, x_3) , а центр совпадает с началом координат. Непроницаемые пластины, вдоль которых направлено основное течение, перпендикулярны оси x_2 .

Исходной математической моделью служит система уравнений двухтемпературной газовой динамики. В соответствии с физическими представлениями [6-8] эта система описывает течения колебательно-возбуждённого молекулярного газа, когда диссоциацией и возбуждением верхних колебательных уровней молекул, а также поправками на ангармонизм колебаний можно пренебречь.

Как характерные величины для обезразмеривания выбраны полуширина канала L по оси x_2 , модуль скорости потока U_0 на непроницаемых стенках канала, постоянные плотность ρ_0 и температура T_0 основного потока, время $\tau_0 = L/U_0$ и давление $p_0 = \rho_0 U_0^2$.

В качестве невозмущённого потока рассматривается плоское течение Куэтта с линейным профилем скорости и однородным распределением плотности и температур

$$\mathbf{U}_{s}(x_{2}) = (x_{2}, 0, 0), \quad T_{s}(x_{2}) = T_{v,s}(x_{2}) = \rho_{s}(x_{2}) = 1, \quad p_{s}(x_{2}) = 1/(\gamma M^{2}),$$

где p_s — статическое давление, постоянное поперёк канала.

Представление мгновенных значений гидродинамических величин возмущённого течения в виде

$$\rho = 1 + \rho', \quad u_i = U_{s,i} + u'_i, \quad T = 1 + T', \quad T_v = 1 + T'_v, \quad p = 1/(\gamma M^2) + p'$$

позволяет получить [1] из системы уравнений двухтемпературной газовой динамики уравнения для возмущений ρ' , u'_i , p', T', T'_v основного течения без ограничения на их амплитуды:

$$\frac{\partial \rho'}{\partial t} + u_i \frac{\partial \rho'}{\partial x_i} + \rho \frac{\partial u'_i}{\partial x_i} = 0, \qquad (1)$$

$$\rho\left(\frac{\partial u_i'}{\partial t} + u_j'\frac{\partial u_i'}{\partial x_j} + U_{s,j}\frac{\partial u_i'}{\partial x_j} + u_j'\frac{\partial U_{s,i}}{\partial x_j}\right) = -\frac{\partial p'}{\partial x_i} + \frac{1}{\operatorname{Re}}\frac{\partial^2 u_i'}{\partial x_j^2} + \frac{1}{\operatorname{Re}}\left(\alpha_1 + \frac{1}{3}\right)\frac{\partial^2 u_j'}{\partial x_i\partial x_j}, \quad (2)$$

$$\rho \left(\frac{\partial T'}{\partial t} + u'_{j} \frac{\partial T'}{\partial x_{j}} + U_{s,j} \frac{\partial T'}{\partial x_{j}} \right) + \gamma(\gamma - 1) M^{2} p \frac{\partial u'_{i}}{\partial x_{i}} = \frac{\gamma}{\operatorname{Re} \operatorname{Pr}} \frac{\partial^{2} T'}{\partial x_{i}^{2}} + \frac{\gamma_{v} \rho(T'_{v} - T')}{\tau} + \frac{\gamma(\gamma - 1) M^{2}}{2\operatorname{Re}} \left[\left(\frac{\partial u'_{i}}{\partial x_{j}} + \frac{\partial u'_{j}}{\partial x_{i}} \right)^{2} + 2 \left(\frac{\partial U_{s,i}}{\partial x_{j}} + \frac{\partial U_{s,j}}{\partial x_{i}} \right) \left(\frac{\partial u'_{i}}{\partial x_{j}} + \frac{\partial u'_{j}}{\partial x_{i}} \right) + \left(\frac{\partial U_{s,i}}{\partial x_{j}} + \frac{\partial U_{s,j}}{\partial x_{i}} \right)^{2} + 2 \left(\alpha_{1} - \frac{2}{3} \right) \left(\frac{\partial u'_{i}}{\partial x_{i}} \right)^{2} \right], \quad (3)$$

$$\gamma_{v}\rho\left(\frac{\partial T'_{v}}{\partial t} + u'_{j}\frac{\partial T'_{v}}{\partial x_{j}} + U_{s,j}\frac{\partial T'_{v}}{\partial x_{j}}\right) = \frac{20}{33}\frac{\gamma\gamma_{v}}{\operatorname{Re}\operatorname{Pr}}\frac{\partial^{2}T'_{v}}{\partial x_{i}^{2}} - \frac{\gamma_{v}\rho(T'_{v} - T')}{\tau},\tag{4}$$

$$\gamma M^2 p' = \rho T' + \rho', \quad i = 1, 2, 3, \quad j = 1, 2, 3.$$
 (5)

Здесь $\rho', u'_i, p', T', T'_v$ — возмущения плотности и компонент вектора скорости, давления, статической и колебательной температуры газа соответственно. В (1)–(4) и далее по повторяющимся индексам подразумевается суммирование.

Параметры, входящие в уравнения (1)–(5), определяются следующим образом: α_1 — относительный коэффициент объёмной вязкости, γ_v — параметр, характеризующий степень неравновесности колебательной моды, γ — показатель адиабаты, Re, M, Pr — числа Рейнольдса, Маха и Прандтля несущего потока соответственно. Предполагается, что коэффициент α_1 и время τ в системе (1)–(5) не зависят от статической и колебательной температуры потока и постоянны.

В качестве краевых условий в задаче устойчивости принималось, что при $x_1 = \pm x_0/2$ и $x_3 = \pm z_0/2$ возмущения гидродинамических переменных удовлетворяют периодическим граничным условиям, а на непроницаемых границах $x_2 = \pm 1$ принимают нулевые значения. В расчётах размеры области Ω по периодическим (однородным) координатам x_1, x_3 полагались равными длине волны возмущения по соответствующей координате: $x_0 = 2\pi/\alpha, z_0 = 2\pi/\delta$ (α, δ — модули проекций волнового вектора возмущения **k** на оси координат x_1, x_3).

1.2. Уравнение энергетического баланса возмущений

В работе [1] из системы (1)–(5) было выведено уравнение энергетического баланса, которое записывается следующим образом:

$$\frac{dE_t}{dt} \equiv \Phi = -\int_{\Omega} \left\{ (1+\rho')u_i'u_j' \frac{\partial U_{s,i}}{\partial x_j} + \frac{\gamma_v}{\tau} (1+\rho')(T_v'-T')^2 + \frac{\rho'}{\gamma M^2} \frac{\partial \rho' u_i'}{\partial x_i} + \right.$$

$$+\left((\gamma-1)(1+T')-\frac{1}{\gamma M^{2}}\right)(1+\rho')T'\frac{\partial u_{i}'}{\partial x_{i}}-\frac{\gamma(\gamma-1)M^{2}T'}{2Re}\left[\left(\frac{\partial u_{i}'}{\partial x_{j}}+\frac{\partial u_{j}'}{\partial x_{i}}\right)^{2}+\right.\\\left.+2\left(\frac{\partial u_{i}'}{\partial x_{j}}+\frac{\partial u_{j}'}{\partial x_{i}}\right)\left(\frac{\partial U_{s,i}}{\partial x_{j}}+\frac{\partial U_{s,j}}{\partial x_{i}}\right)+\left(\frac{\partial U_{s,i}}{\partial x_{j}}+\frac{\partial U_{s,j}}{\partial x_{i}}\right)^{2}+2\left(\alpha_{1}-\frac{2}{3}\right)\left(\frac{\partial u_{i}'}{\partial x_{i}}\right)^{2}\right]+\\\left.+\frac{1}{Re}\left[\left(\frac{\partial u_{i}'}{\partial x_{j}}\right)^{2}+\left(\alpha_{1}+\frac{1}{3}\right)\left(\frac{\partial u_{i}'}{\partial x_{i}}\right)^{2}+\frac{\gamma}{Pr}\left(\left(\frac{\partial T'}{\partial x_{i}}\right)^{2}+\frac{20\gamma_{v}}{33}\left(\frac{\partial T'_{v}}{\partial x_{i}}\right)^{2}\right)\right]\right\}d\Omega.$$
(6)

Квадратичная форма

$$E_t(t) = \frac{1}{2} \int_{\Omega} \left[\rho \left(u_i^{\prime 2} + T^{\prime 2} + \gamma_v T_v^{\prime 2} \right) + \frac{\rho^{\prime 2}}{\gamma M^2} \right] d\Omega$$

определяет полную пульсационную энергию возмущений. В последней строке уравнения (6) содержится группа положительно определённых слагаемых, поэтому с уменьшением числа Рейнольдса, начиная с некоторого критического значения Re_{cr} , правая часть этого уравнения становится отрицательной. При этом $dE_t/dt < 0$ и любые начальные возмущения затухают. Критическое число Рейнольдса Re_{cr} соответствует условию $dE_t/dt = 0$ и вычисляется как минимум функционала в правой части энергетического уравнения.

Дальнейшее упрощение уравнения (6) состояло в пренебрежении корреляциями возмущений четвёртого порядка и в частичном разделении переменных под знаком интеграла [1, 8]. При этом зависимости возмущений скорости, плотности и температуры от периодической координаты x_3 представлялись в виде

$$u_1' = u_1''(x_1, x_2)\cos(\delta x_3), \quad u_2' = u_2''(x_1, x_2)\cos(\delta x_3), \quad u_3' = u_3''(x_1, x_2)\sin(\delta x_3),$$

$$\rho' = \rho''(x_1, x_2)\cos(\delta x_3), \quad T' = T''(x_1, x_2)\cos(\delta x_3), \quad T_v' = T_v''(x_1, x_2)\cos(\delta x_3).$$
(7)

Подстановка (7) в уравнение (6) и интегрирование по переменной x_3 в интервале $[-\pi/\delta; \pi/\delta]$ приводят к энергетическому уравнению для функций от переменных x_1, x_2

$$\begin{split} \frac{dE_t''}{dt} &\equiv \Phi'' = -\int_S \left\{ u_1'' u_2'' + \frac{1}{\operatorname{Re}} \left[\left(\frac{\partial u_1''}{\partial x_1} \right)^2 + \left(\frac{\partial u_1''}{\partial x_2} \right)^2 + \left(\frac{\partial u_2''}{\partial x_1} \right)^2 + \left(\frac{\partial u_2''}{\partial x_2} \right)^2 + \left(\frac{\partial u_3''}{\partial x_1} \right)^2 + \right. \\ \left. + \left(\frac{\partial u_3''}{\partial x_2} \right)^2 + \delta^2 \left(u_1''^2 + u_2''^2 + u_3''^2 \right) + \left(\alpha_1 + \frac{1}{3} \right) \left(\frac{\partial u_1''}{\partial x_1} + \frac{\partial u_2''}{\partial x_2} + \delta u_3'' \right)^2 + \frac{\gamma}{\operatorname{Pr}} \left\{ \left(\frac{\partial T''}{\partial x_1} \right)^2 + \left(\frac{\partial T''}{\partial x_1} \right)^2 + \left(\frac{\partial T''}{\partial x_2} \right)^2 + \delta^2 T''^2 \right] \right\} - 2\gamma(\gamma - 1) \operatorname{M}^2 T'' \left(\frac{\partial u_1''}{\partial x_2} + \frac{\partial u_2''}{\partial x_2} \right) \right] \\ \left. + \left(\frac{\partial u_2''}{\partial x_2} \right)^2 + \frac{\gamma_v \left(T_v'' - T'' \right)^2}{\tau} + \left(\gamma - \frac{1 + \gamma \operatorname{M}^2}{\gamma \operatorname{M}^2} \right) T'' \left(\frac{\partial u_1''}{\partial x_1} + \frac{\partial u_2''}{\partial x_2} + \delta u_3'' \right) \right\} dS. \end{split}$$

В результате варьируемый функционал Φ'' в правой части становится квадратичным по функциям возмущений u''_i , T'', T''_v и их производным.

1.3. Спектральная задача

Из условия экстремума функционала Ф" на множестве допустимых функций следуют уравнения Эйлера – Лагранжа, определяющие обобщённую дифференциальную задачу на собственные значения со спектральным параметром Re:

$$\Delta u_1'' + \left(\alpha_1 + \frac{1}{3}\right) \frac{\partial D}{\partial x_1} - \gamma(\gamma - 1) M^2 \frac{\partial T''}{\partial x_2} - \frac{Re}{2} \left[u_2'' - \left(\gamma - \frac{1 + \gamma M^2}{\gamma M^2}\right) \frac{\partial T''}{\partial x_1} \right] = 0,$$

$$\Delta u_2'' + \left(\alpha_1 + \frac{1}{3}\right) \frac{\partial D}{\partial x_2} - \gamma(\gamma - 1) M^2 \frac{\partial T''}{\partial x_1} - \frac{Re}{2} \left[u_1'' - \left(\gamma - \frac{1 + \gamma M^2}{\gamma M^2}\right) \frac{\partial T''}{\partial x_2} \right] = 0,$$

$$\Delta u_3'' - \delta \left(\alpha_1 + \frac{1}{3}\right) D - \frac{Re}{2} \left(\gamma - \frac{1 + \gamma M^2}{\gamma M^2}\right) \delta T'' = 0,$$

$$\frac{\gamma}{Pr} \Delta T'' + \gamma(\gamma - 1) M^2 \left(\frac{\partial u_1''}{\partial x_2} + \frac{\partial u_2''}{\partial x_1} \right) - \frac{Re}{2} \left[2 \gamma_v \frac{T'' - T_v''}{\tau} + \left(\gamma - \frac{1 + \gamma M^2}{\gamma M^2}\right) D \right] = 0,$$

$$\frac{\gamma}{Pr} \Delta T_v'' - \frac{Re}{2} \frac{33 \left(T_v'' - T''\right)}{10 \tau} = 0.$$
(8)

Здесь

$$D = \frac{\partial u_1''}{\partial x_1} + \frac{\partial u_2''}{\partial x_2} + \delta u_3'', \quad \Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} - \delta^2.$$

Амплитудные функции u''_i , ρ'' , T'', T''_v при $x_1 = \pm \pi/\alpha$ удовлетворяют периодическим граничным условиям, а на непроницаемых границах $x_2 = \pm 1$ принимают нулевые значения.

Для периодических по координате x_1 возмущений

$$\varphi''(x_1, x_2) = (u_1'', u_2'', u_3'', T'', T_v'') = \varphi(x_2) \exp(i\alpha x_1),$$

где $\varphi = (u, v, w, \theta, \theta_v), \alpha$ — проекция вещественного волнового вектора на координатную ось x_1, i — мнимая единица, спектральная задача (8) сводится к системе обыкновенных дифференциальных уравнений для амплитуд пульсаций $u, v, w, \theta, \theta_v$:

$$\begin{split} u'' + i\alpha \left(\alpha_1 + \frac{1}{3}\right) v' - \left[\alpha^2 \left(\alpha_1 + \frac{4}{3}\right) + \delta^2\right] u + i\alpha\delta \left(\alpha_1 + \frac{1}{3}\right) w - \gamma(\gamma - 1) \mathbf{M}^2 \theta' = \\ &= \frac{\mathrm{Re}}{2} \left[v + \left(1 - \gamma + \frac{1}{\gamma \mathbf{M}^2}\right) i\alpha\theta \right], \\ &\left(\alpha_1 + \frac{4}{3}\right) v'' + i\alpha \left(\alpha_1 + \frac{1}{3}\right) u' + \delta \left(\alpha_1 + \frac{1}{3}\right) w' - k^2 v - \gamma(\gamma - 1) \mathbf{M}^2 i\alpha\theta = \\ &= \frac{\mathrm{Re}}{2} \left[u + \left(1 - \gamma + \frac{1}{\gamma \mathbf{M}^2}\right) \theta' \right], \\ &w'' - \delta \left(\alpha_1 + \frac{1}{3}\right) v' - i\alpha\delta \left(\alpha_1 + \frac{1}{3}\right) u - \left[\delta^2 \left(\alpha_1 + \frac{4}{3}\right) + \beta^2\right] w = \\ &= -\frac{\mathrm{Re}}{2} \left(1 - \gamma + \frac{1}{\gamma \mathbf{M}^2}\right) \delta\theta, \end{split}$$

$$\frac{\gamma}{\Pr} \left(\theta'' - k^2 \theta\right) + \gamma(\gamma - 1) M^2 \left(u' + i\alpha v\right) =$$

$$= \frac{\operatorname{Re}}{2} \left[\frac{2\gamma_v}{\tau} \left(\theta - \theta_v\right) - \left(1 - \gamma + \frac{1}{\gamma M^2}\right) \left(v' + i\alpha u + \delta w\right) \right],$$

$$\frac{\gamma}{\Pr} \left(\theta_v'' - k^2 \theta_v\right) = -\frac{\operatorname{Re}}{2} \frac{33 \left(\theta - \theta_v\right)}{10 \tau}, \quad k^2 = \alpha^2 + \delta^2. \tag{9}$$

Здесь и далее штрихи у неизвестных функций означают их прозводные соответствующего порядка по переменной x₂. Задача (9) замыкается граничными условиями

$$u|_{x_2=\pm 1} = v|_{x_2=\pm 1} = w|_{x_2=\pm 1} = \theta|_{x_2=\pm 1} = \theta_v|_{x_2=\pm 1} = 0.$$
 (10)

Как было показано в [1], спектральная задача (9), (10) имеет вещественный спектр собственных значений $\operatorname{Re}(\alpha, \delta)$, симметричный относительно осей $\alpha = 0$, $\delta = 0$ на плоскости волновых чисел (α, δ). Кроме того, путём сведения системы (9) к спектральному пучку третьего порядка обыкновенных дифференциальных операторов для функции $\vartheta = \theta - \theta_v$ в длинноволновом приближении была получена асимптотическая формула для зависимости критического числа Рейнольдса от параметров задачи

$$\operatorname{Re}_{cr} = \pi^2 \left(\frac{a_0}{\tau^3} + \frac{b_0}{\tau M_0^4 (\alpha_1 + 4/3)} \right)^{-1/3},\tag{11}$$

где a_0, b_0 — некоторые положительные постоянные порядка O(1).

2. Численный метод

Для произвольных значений волновых чисел α , δ (длин волн возмущений) спектральная задача (9), (10) решалась численно с помощью метода коллокаций [9], в основе которого лежит алгебраическое интерполирование искомого решения по некоторой чебышевской системе функций. В данном случае использовался инструментарий математического пакета Matlab, где в случае непериодических функций применяется интерполяция полиномами Чебышева

$$T_k(x_2) = \cos(k \arccos x_2), \quad k = 0, 1, 2, \dots$$

Такой выбор обеспечивает экспоненциально быструю сходимость аппроксимирующего ряда для произвольных граничных условий, по крайней мере, в классе бесконечно дифференцируемых функций. На практике этим достигается высокая точность вычислений даже на грубых сетках.

В качестве узлов коллокации (интерполяции) выбирались точки Гаусса — Лобатто $x_{2,n} = \cos(\pi n/N), n = 0, 1, ..., N$, в которых полином Чебышева N-й степени имеет экстремумы на отрезке [-1, 1]. Дифференциальные операторы первого порядка, входящие в спектральную задачу (9), (10), аппроксимируются на данной сетке матрицей коллокационных производных D_N^1 размером $(N + 1) \times (N + 1)$ [9]:

$$D_{N,lj}^{1} = \begin{cases} (-1)^{l+j} s_l / [s_j(z_l - z_j)], & l \neq j, \\ -z_j / [2(1 - z_j^2)], & 1 \le l = j \le N - 1, \\ (2N^2 + 1)/6, & l = j = 0, \\ -(2N^2 + 1)/6, & l = j = N, \end{cases} \quad s_j = \begin{cases} 2, & j = 0, N, \\ 1, & j = 1, 2, \dots, N - 1. \\ -(2N^2 + 1)/6, & l = j = N, \end{cases}$$

При этом элементы *l*-й строки матрицы D_N^1 являются коэффициентами разностной аппроксимации первой производной в *l*-м узле коллокации на шаблоне $\{x_{2,n}\}$. Дифференциальные операторы второго порядка аппроксимируются суперпозицией $D_N^2 = D_N^1 D_N^1$.

В терминах введённых аппроксимаций задача (9), (10) сводится к обобщённой задаче на собственные значения (линейному матричному пучку) относительно спектрального параметра $\lambda = \text{Re}$:

$$\sum_{j=0}^{5N+4} (G_{ij} - \lambda F_{ij}) q_j = 0, \quad i = 0, 1, \dots, 5N+4.$$
(12)

Здесь вектор неизвестных **q** размером 5(N+1) состоит из значений собственных функций в узлах коллокации:

$$\mathbf{q} = (u_0, u_1, \dots, u_N, v_0, v_1, \dots, v_N, w_0, w_1, \dots, w_N, \theta_0, \theta_1, \dots, \theta_N, \theta_{v,0}, \theta_{v,1}, \dots, \theta_{v,N}).$$

Матрицы G, F размером 5(N+1)×5(N+1) вычисляются с использованием специальной процедуры Matlab по формулам

$$G = A \otimes D_N^2 + B_1 \otimes D_N^1 + C_1 \otimes I_N, \quad F = B_2 \otimes D_N^1 + C_2 \otimes I_N,$$

где матрицы A, B_1, C_1, B_2, C_2 размером 5×5 имеют вид

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \alpha_1 + \frac{4}{3} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0 & a \end{pmatrix}, \quad B_1 = \begin{pmatrix} 0 & i\alpha \left(\alpha_1 + \frac{1}{3}\right) & 0 & -b & 0 \\ i\alpha \left(\alpha_1 + \frac{1}{3}\right) & 0 & \delta \left(\alpha_1 + \frac{1}{3}\right) & 0 & 0 \\ 0 & -\delta \left(\alpha_1 + \frac{1}{3}\right) & 0 & 0 & 0 \\ b & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

 I_N — единичная матрица размером $(N + 1) \times (N + 1)$, а знак \otimes означает прямое (тензорное) произведение матриц [10].

Однородные граничные условия (10) учитываются неявно через оператор D_N^1 [9] и на дискретном уровне реализуются заменой матриц D_N^l (l = 1, 2) на окаймлённые матрицы размером $(N-1) \times (N-1)$. Последние получаются при выполнении условий

$$D_{0,j}^{l} = D_{N,j}^{l} = 0, \quad D_{i,0}^{l} = D_{i,N}^{l} = 0, \quad i = 0, \dots, N, \quad j = 0, \dots, N, \quad l = 1, 2.$$

Для нахождения всех собственных значений и функций обобщённой спектральной задачи (12) использовалась процедура Matlab, реализующая QZ-алгоритм [11], который позволяет одновременным ортогональным преобразованием привести пару матриц G, F к обобщённой верхней треугольной форме. В результате применения данной процедуры для фиксированных значений числа Маха M, коэффициента α_1 , степени неравновесности колебательной энергии γ_v , времени колебательной релаксации τ и каждой пары волновых чисел (α , δ) получался набор из (N + 1) собственных значений, среди которых находилось минимальное по модулю число Рейнольдса $\text{Re}(\alpha, \delta) = |\lambda_{\min}(\alpha, \delta)|$. Значение критического числа Рейнольдса Re_{cr} для данных M, α_1, γ_v, τ принималось равным минимальному значению Re во всем диапазоне волновых чисел $\text{Re}(\alpha, \delta)$: $\text{Re}_{cr} = \min_{(\alpha, \delta)} [\text{Re}(\alpha, \delta)]$. Затем вычислялись соответствующие Re_{cr} собственные функции $u, v, w, (\alpha, \delta)$.

Расчёты спектров собственных значений $\lambda(\alpha, \delta, M, \alpha_1, \gamma_v, \tau)$ проводились в диапазоне волновых чисел $\alpha = 0 \div 10, \delta = 0 \div 10$ при следующих значениях параметров: $\gamma_v = 0.111 \div 0.667, \tau = 1 \div 4, \alpha_1 = 0 \div 2, M = 2 \div 5, Pr = 3/4, \gamma = 7/5$. Шаги изменения волновых чисел были выбраны равными $h_{\alpha} = h_{\delta} = 0.1$. В большинстве расчётов число узлов коллокации в интервале [-1, 1] принималось равным N + 1 = 50. Для проверки точности расчётов на основе симметрии спектра выполнялись расчёты в диапазоне волновых чисел $\alpha = -10 \div 10, \delta = -10 \div 10$ и варьировалось число узлов коллокации: $N + 1 = 32 \div 100$.

3. Результаты расчётов и их обсуждение

Выполненные расчёты показали, что при всех рассмотренных значениях параметров задачи минимальные по модулю собственные значения $\operatorname{Re}(\alpha, \delta) = |\lambda_{\min}(\alpha, \delta)|$ достигаются на оси $\alpha \neq 0$ при $\delta = 0$ в плоскости волновых чисел (α, δ) . Изолинии $\operatorname{Re}(\alpha, \delta)$ приведены на рис. 1.

Как и в случае дозвуковых чисел Маха [1], наиболее "опасными" являются возмущения продольной моды. С учётом периодичности полученного решения по продольной координате x_1 эти возмущения представляют собой пары двумерных вихрей, вращающихся в противоположных направлениях, с осями, перпендикулярными несущему потоку. Распределение завихренности вычисляется по формуле

$$\frac{\omega(x_1, x_2)}{\omega_0} = -\frac{1}{w_0} \left[\left(\alpha v_i + \frac{du_r}{dx_2} \right) \cos \alpha x_1 - \left(\alpha v_r - \frac{du_i}{dx_2} \right) \sin \alpha x_1 \right].$$

Здесь $u_r(x_2)$, $u_i(x_2)$, $v_r(x_2)$, $v_i(x_2)$ — вещественные и мнимые части собственных функций u, v, а нормировочный множитель ω_0 представляет собой безразмерный поток за-

Рис. 1. Изолинии поверхностей $\operatorname{Re}(\alpha, \delta)$ для M = 3 (a, δ, e) и M = 5 (e, ∂, e) при $\alpha_1 = 0$, $\tau = 2$ $(a, e - \gamma_v = 0; \delta, \partial - \gamma_v = 0.250; e, e - \gamma_v = 0.667;$ точки на линии $\delta = 0$ фиксируют критические значения числа Рейнольдса для данного режима)

вихренности через расчётную область (циркуляцию вектора скорости по границе), вычисляемый по формуле

$$\omega_0 = \int_{-\pi/\alpha}^{\pi/\alpha} dx_1 \int_{-1}^{1} dx_2 \ \omega(x_1, x_2).$$

На рис. 2 представлены примеры изолиний завихрённостей $\omega(x_1, x_2)$ при различных критических числах Рейнольдса $\operatorname{Re}_{cr}(\alpha, \alpha_1, \gamma_v, \tau, M)$ и значениях амплитуд возмущений скорости, составляющих 10 % значения модуля скорости несущего потока на непроницаемых границах.

Зависимость числа Рейнольдса для продольных мод возмущений от волнового числа α показана на рис. 3. Здесь штрихпунктирные линии соединяют значения абсолютных минимумов на параметризованных по γ_v и τ кривых $\text{Re}(\alpha)$, что позволяет проследить эволюцию Re_{cr} . На рис. 4 приведена зависимость Re_{cr} от степени неравновесности γ_v . Рисунки 1, 3, 4 позволяют констатировать, что с возрастанием параметров α_1 , γ_v , τ , M устойчивость течения (критическое число Re_{cr}) также возрастает, а соответствующие значения волновых чисел α сдвигаются в сторону более коротких волн. Сопоставление этих результатов с формулой (11) показывает, что длинноволновая асимптотика на качественном уровне правильно воспроизводит зависимость Re_{cr} от параметров течения в области волновых чисел $\alpha \sim O(1)$.

Критические значения числа Рейнольдса $\operatorname{Re}_{cr}(\alpha_1, \gamma_v, \tau, M)$ приведены в табл. 1, а соответствующие им значения волнового числа α — в табл. 2. Из таблицы 1 следует, что максимальный диапазон изменения Re_{cr} при рассмотренных вариациях параметров задачи приближается к полутора порядкам, что существенно больше, чем было получено в [1] для дозвукового течения. Действительно, если при $M \leq 1$ и тех же значениях других параметров режима, как и в настоящей работе, критические числа Рейнольдса находились в пределах $\operatorname{Re}_{cr} \simeq (1.5 \div 3.5) \cdot 10^1$, то в данном случае соответствующие пределы составляют $\operatorname{Re}_{cr} \simeq 0.5 \cdot 10^2 \div 1.5 \cdot 10^3$. Рассматривая степень влияния каждого параметра на Re_{cr} при фиксированных значениях остальных параметров, можно

Рис. 2. Изолинии завихренности критических возмущений $\omega(x_1, x_2)$ для M = 3, $\alpha_1 = 0$, $\tau = 2$ $(a - \gamma_v = 0, \text{Re}_{cr} = 106.1; \ \delta - \gamma_v = 0.667, \text{Re}_{cr} = 201.1;$ точки на линии $x_2 = 0$ фиксируют максимальное и минимальное значения ω для данного режима)

Рис. 3. Зависимость $\text{Re}(\alpha)$ для продольных мод возмущений при числах Маха M = 3 (*a*, *b*) и M = 5 (*b*, *c*) (*a*, *b* - α_1 = 0; *b*, *c* - α_1 = 2; 1, 1' - γ_v = 0.250; 2, 2' - γ_v = 0.429; 3, 3' - γ_v = 0.667; сплошные линии - τ = 1, штриховые - τ = 3, штрихпунктирные - зависимость критического числа Рейнольдса Re_{cr} от волнового числа α)

Рис. 4. Зависимость критического числа Рейнольдса Re_{cr} от степени неравновесности колебательной моды γ_v ($a - \alpha_1 = 0$; $\delta - \alpha_1 = 2$; 1, 1' – M = 2; 2, 2' – M = 3; 3, 3' – M = 4; 4, 4' – M = 5; сплошные линии – $\tau = 1$, штриховые – $\tau = 3$)

		$\tau = 1$		$\tau = 4$						
Μ	$\gamma_v = 0.111$	$\gamma_v = 0.250$	$\gamma_v = 0.667$	$\gamma_v = 0.111$	$\gamma_v = 0.250$	$\gamma_v = 0.667$				
$\alpha_1 = 0$										
2	48.22	53.02	59.82	59.82	69.42	82.98				
3	139.70	153.62	173.28	173.28	201.08	240.41				
4	328.80	361.54	407.81	407.81	473.25	565.80				
5	651.37	716.19	807.86	807.86	937.51	1120.85				
$\alpha_1 = 2$										
2	62.07	68.25	76.99	76.99	89.34	106.81				
3	179.83	197.72	223.03	223.03	258.82	309.44				
4	423.22	465.34	524.90	524.90	609.14	728.26				
5	838.40	921.84	1039.83	1039.83	1206.70	1442.69				

Таблица 1. Критические значения числа Рейнольдса $\operatorname{Re}_{cr}(\alpha_1, \gamma_v, \tau, M)$

Т а б л и ц а 2. Значения волнового числа α , соответствующие критическим значениям числа Рейнольдса $\operatorname{Re}_{cr}(\alpha_1, \gamma_v, \tau, M)$

		$\tau = 1$		au = 4							
Μ	$\gamma_v = 0.111$	$\gamma_v = 0.250$	$\gamma_v = 0.667$	$\gamma_v = 0.111$	$\gamma_v = 0.250$	$\gamma_v = 0.667$					
$\alpha_1 = 0$											
2	0.672	0.733	0.855	0.855	1.099	1.587					
3	0.718	0.784	0.914	0.914	1.175	1.698					
4	0.868	0.947	1.105	1.105	1.421	2.052					
5	1,063	1,160	1.353	1.35319	1.739	2.513					
$\alpha_1 = 2$											
2	1.548	1.689	1.970	1.970	2.533	3.658					
3	1.656	1.806	2.107	2.107	2.709	3.913					
4	2.001	2.183	2.547	2.547	3.275	4.731					
5	2.450	2.673	3.118	3.119	4.009	5.791					

заметить, что наибольшее воздействие на возрастание Re_{cr} оказывает рост числа Маха (сжимаемость). При этом в диапазоне $M = 2 \div 5$ критическое число Рейнольдса увеличиваются более чем на порядок. В то же время при изменении числа Маха в дозвуковом диапазоне $M = 0.2 \div 0.8$ возрастание Re_{cr} лежит в пределах 10 %. Вместе с тем степень влияния коэффициента возбуждения γ_v и времени релаксации τ , определявших основное воздействие при $M \leq 1$, при переходе к сверхзвуковому режиму остаются на прежнем уровне. Тем не менее сделанный в [1] вывод о возможности управления потоком с помощью лазерного возбуждения колебательной моды остается в силе, так как в расчётных пределах изменения γ_v число Re_{cr} возрастает в этой работе приблизительно на 30 %.

В заключение отметим, что полученные значения Re_{cr} остаются более чем на порядок ниже критических чисел Рейнольдса, рассчитанных в рамках линейной теории устойчивости для совершенного газа [5]. Кроме того, имеется качественное различие в зависимостях $\text{Re}_{cr}(M)$. Если в рассмотренном случае Re_{cr} с ростом числа Маха в диапазоне $M = 2 \div 5$ монотонно возрастает, то в рамках линейной теории Re_{cr} в этом диапазоне, наоборот, убывает.

Список литературы

- ГРИГОРЬЕВ Ю.Н., ЕРШОВ И.В. Критические числа Рейнольдса в течении Куэтта колебательно возбужденного двухатомного газа. Энергетический подход // ПМТФ. 2012. Т. 53, № 4. С. 57–73.
- [2] ГОЛЬДШТИК М.А., ШТЕРН В.Н. Гидродинамическая устойчивость и турбулентность. Новосибирск: Наука. Сиб. отд-ние, 1977.
- [3] DUCK P.W., ERLEBACHER G., HUSSAINI M.Y. On the linear stability of compressible plane Couette flow // J. Fluid Mech. 1994. Vol. 258. P 131–165.
- [4] HU S., ZHONG X. Linear stability of viscous supersonic plane Couette flow // Phys. Fluids. 1998. Vol. 10, No. 3. P. 709–729.
- [5] MALIK M., DEY J., ALAM M. Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow // Phys. Rev. E. 2008. Vol. 77, iss. 3. P. 036322(15).
- [6] ЖДАНОВ В.М., АЛИЕВСКИЙ М.Е. Процессы переноса и релаксации в молекулярных газах. М.: Наука, 1989.
- [7] НАГНИБЕДА Е.А., КУСТОВА Е.В. Кинетическая теория процессов переноса и релаксации в потоках неравновесных реагирующих газов. СПб.: Изд-во С.-Петербургского гос. ун-та, 2003.
- [8] ГРИГОРЬЕВ Ю.Н., ЕРШОВ И.В. Устойчивость течений релаксирующих молекулярных газов. Новосибирск: Изд-во СО РАН, 2012.
- [9] CANUTO C., HUSSAINI M.Y., QUARTERONI A., ZANG T.A. Spectral Methods in Fluid Dynamics. Springer Ser. in Comput. Phys. Berlin: Springer-Verlag, 1988.
- [10] КОРН Г., КОРН Т. Справочник по математике. М.: Наука, 1973.
- [11] MOLER C.B., STEWART G.W. An algorithm for generalized matrix eigenvalue problems // SIAM J. Numer. Anal. 1973. Vol. 10, No. 2. P. 241–256.

Поступила в редакцию 30 октября 2013 г.