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IN COORDINATE DOMAINS.
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A formal solution from the class W 1
2 (R2

+) to the mixed problem for the classic wave
equation in the coordinate corner R3

+ = {(t, x, y)|t > 0, x > 0, y > 0} with boundary
conditions of an oblique derivative type is found in the first part of this article. The
solution is found for all values of parameters of the boundary conditions such that the
Lopatinsky condition is fulfilled on every boundary. The energy inequality (an a priori
estimation in W 1

2 (R2
+)) without loss of generality is proved provided that the right hand

sides are finite and the uniform Lopatinsky condition is fulfilled.

The second part of this article will be published in the next issue of journal.

In recent years mixed problems for hyperbolic equations and systems in domains with non-
smooth boundaries attract attention of mathematicians since mathematical modelling of many
actual processes generates such problems (examples can be found, say, in [31]).

We note that to the present time problems for hyperbolic systems with boundary conditions
which do not contain t-derivatives of solution are well investigated ([9, 19, 21]). Such problems
admit application of results of the well-developed theory of elliptic equations for domains with
singularities on boundaries [22], whereas the appearance of a t-derivative in a boundary operator
generates additional and essential difficulties.

In the authors’ opinion, in this situation it makes sense to investigate the simplest (in the
sense of formulation) mixed problem for the wave equation in the quadrant R2

+ =
{(x, y)|x, y > 0}, boundary conditions are of an oblique derivative type, and to select its
singularities. In the first chapter of the work we give some results on investigation of this
problem.

Using ideas of Miyatake ([28]), M. Taniguchi ([36]) has proved the well-posedness of the
above-mentioned problem for the wave equation in a particular case: a = β, b = α (see §1);
and H. Reisman [32] has proved its well-posedness in W 1

2 in the case when instead of the
oblique derivative the Dirichlet condition is given on one of the boundaries. The main element
in Reisman’s investigation is application of properties of an operator similar to the Kreiss’s
“symmetrizer” [23].

∗ c© A. M. Blokhin, D. L. Tkachev, 1996.
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G. Eskin in [12] has obtained a solution of the problem in dual variables of the Fourier-
Laplace transform for the case of the higher orders boundary operators. However, the obtained
in [12] a priori estimation of solution has an essential disadvantage: it is the loss of smoothness.

Authors express their gratitude to A. Artushin [2], who suggested to use integrals of Cauchy
type for investigation of the problem.

As a result of long-standing researches, authors formed the opinion that the complete inves-
tigation of the problem under consideration becomes possible if ideas of both theory of elliptic
equations (the behavior of solution in a neighborhood of the corner point) and theory of hyper-
bolic equations (the time influence) are applied. So, it is reasonable, on the one hand, to use
advantages of the natural for hyperbolic problems method of energy integrals (“symmetriza-
tion” [15]) and, on the other hand, to find the image of the solution trace on a bound which
satisfies certain boundary problem for analytic functions. A. P. Calderon [7] seems to be the
first who began to use regularly properties of a boundary operator (Calderon’s operator).

In § 2, 3 of the first chapter with the help of potentials there is obtained a solution to
the above mentioned problem provided that the right hand sides are finite and the uniform
Lopatinsky condition is fulfilled. In passing the authors have managed to answer a question
which occupied them for a long time: “Why do we have the loss of smoothness as coefficients
come to the domain where just Lopatinsky conditions are fulfilled?” It occurs that in this
case we have to add an analog of a side wave into the formula of solution, this causes the
deterioration of its differential properties.

Finally, § 4 of the first chapter is dedicated to the deducing of an a priori estimate of
solution in W 1

2 (R2
+) without loss of smoothness provided that the uniform Lopatinsky condition

is fulfilled and the right hand sides satisfy some additional requirements.
Now we begin to detail the announced results of the present paper.

1. Formulation of the problem. The main results

We consider the following test formulation: in the domain R3
+ = {(t, x, y)|t > 0, x > 0, y > 0}

we seek the solution to the wave equation

utt − uxx − uyy = f(t, x, y), (t, x, y) ∈ R3
+, (1.1)

which satisfies the boundary conditions:

ut − aux − buy = 0,

x = 0, (t, y) ∈ R2
+ = {(t, y)|t > 0, y > 0}; (1.2)

ut − αuy − βux = 0,

y = 0, (t, x) ∈ R2
+ (1.3)

and the initial data:
u|t=0 = φ(x, y), ut|t=0 = ψ(x, y),

(x, y) ∈ R2
+, (1.4)

where a, b, α, β are real numbers.
It is known [15, 28, 33] that the uniform Lopatinsky condition is fulfilled for problem (1.1)–

(1.4) if:
1) a > 0, |b| < 1; (1.5)
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2) α > 0, |β| < 1. (1.6)

The following assertions are valid.
Theorem 1. Let the coefficients of problem (1.1)–(1.4) satisfy inequalities (1.5), (1.6),

the right hand sides, finite with respect to x, y, satisfy, if necessary, conditions (2.26), (2.29),
(2.31). Then we have the integral representation of the solution

u(t, x, y) =
θ(t −

√
x2 + y2)

2π
√

t2 − x2 − y2
∗

t,x,y
f(t, x, y) +

∂

∂t

[
θ(t −

√
x2 + y2)

2π
√

t2 − x2 − y2
∗

x,y
ϕ(x, y)

]
+

+
θ(t −

√
x2 + y2)

2π
√

t2 − x2 − y2
∗

x,y
ψ(x, y) −

(
∂

∂x
+

1

a

∂

∂t
− b

a

∂

∂y

)[
θ(t −

√
x2 + y2)

2π
√

t2 − x2 − y2
∗
t,y

v(t, y)

]
−

−
(

∂

∂y
+

1

α

∂

∂t
− β

α

∂

∂x

)[
θ(t −

√
x2 + y2)

2π
√

t2 − x2 − y2
∗
t,x

z(t, x)

]
,

where θ(z) is the Heaviside function; v(t, y) is determined, for example, as follows:

v(t, y) =

+∞∫

0

+∞∫

0

[
θ(t −

√
z2
1 + (z2 − y)2)√

t2 − z2
1 − (z2 − y)2

K(t, y, z1, z2)+

+
θ(t −

√
z2
1 + (z2 + y)2)√

t2 − z2
1 − (z2 + y)2

M(t, y, z1, z2)

]
∗
t
f(t, z1, z2) dz1 dz2+

+
∂

∂t

+∞∫

0

+∞∫

0

[
θ(t −

√
z2
1 + (z2 − y)2)√

t2 − z2
1 − (z2 − y)2

K(t, y, z1, z2)+

+
θ(t −

√
z2
1 + (z2 + y)2)√

t2 − z2
1 − (z2 + y)2

M(t, y, z1, z2)

]
ϕ(z1, z2) dz1 dz2+

+

+∞∫

0

+∞∫

0

[
θ(t −

√
z2
1 + (z2 − y)2)√

t2 − z2
1 − (z2 − y)2

K(t, y, z1, z2)+

+
θ(t −

√
z2
1 + (z2 + y)2)√

t2 − z2
1 − (z2 + y)2

M(t, y, z1, z2)

]
ψ(z1, z2) dz1 dz2, (1.7)

K(t, y, z1, z2) =
1

π

z1t(tz1 + 1
a
(z2

1 + (z2 − y)2) + b
a
t(y − z2))+

(tz1 + 1
a
(z2

1 + (z2 − y)2) + b
a
t(y − z2))2+

+(y − z2)(y − z2 − b
a
z1)(t

2 − z2
1 − (z2 − y)2)

+(y − z2 − b
a
z1)2(t2 − z2

1 − (z2 − y)2)
,

M(t, y, z1, z2) =
1

π
Re

{
[−β

α
tz1 + 1

α
(z2

1 + (z2 + y)2) − t(y + z2)+

[−β
α
tz1 + 1

α
(z2

1 + (z2 + y)2) + t(y + z2)+

+i(−β
α
(y + z2) + z1)

√
t2 − z2

1 − (z2 + y)2]

+i(−β
α
(y + z2) − z1)

√
t2 − z2

1 − (z2 + y)2]
×
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×
[−i(y + z2) + z1t√

t2−z2
1−(z2+y)2

]

[tz1 + 1
a
(z2

1 + (z2 + y)2) + b
a
t(y + z2) + i(y + z2 − b

a
z1)

√
t2 − z2

1 − (z2 + y)2]




 ;

formulae for z(t, x) look analogously with the corresponding replacement of a by α, b by β, y
by x, the symbol ∗ stands for the convolution with respect to corresponding variables which
are specified below.

We introduce the following notations:

‖f(t, x, y)‖2
L2(R2

+) =

∫∫

R2
+

f 2(t, x, y) dx dy,

‖u(t, x, y)‖2
W 1

2 (R2
+) =

∫∫

R2
+

(u2(t, x, y) + u2
x(t, x, y) + u2

y(t, x, y) + u2
t (t, x, y)) dx dy.

Theorem 2. Provided that the conditions of Theorem 1 are fulfilled, the solution to problem
(1.1)–(1.4) satisfies the a priori estimation

‖u(t, x, y)‖W 1
2 (R2

+) ≤ C1(t)‖u(0)‖W 1
2 (R2

+) + C2(t) max
0≤τ≤t

‖f(τ)‖L2(R2
+),

where Ci(t) > 0, i = 1, 2.
Remark 1.1. In this paper we give a method which allows to obtain an a priori estimate

without loss of smoothness for the case when the boundary operators in (1.2), (1.3) are homo-
geneous and have the higher order. It suffices to reduce this problem to a mixed problem for
the vector wave equation ([17]).

2. Construction of the formal solution to

problem (1.1)–(1.4) and its uniqueness

We take into consideration very important in elliptic theory agreement on the coefficients a and
α of boundary conditions (1.2), (1.3) [14]: a 6= 0, α 6= 0. We also assume that the initial data
of the problem satisfy the requirements: f(t, x, y) ∈ C∞([0,∞); C∞

0 (R2
+)), ϕ(x, y), ψ(x, y) ∈

C∞
0 (R2

+).
We denote

u(t, 0, y) = v(t, y), u(t, x, 0) = z(t, x), u(t, 0, 0) = H(t)

and continue all the considered functions by zero outside of the domains of their definition.
Then, applying the Fourier–Laplace transform to general equation (1.1) and integrating by
parts, we obtain the relation:

û(s, ξ, η)(ξ2 + η2 + s2) = f̂(s, ξ, η) + sϕ̂(ξ, η) + ψ̂(ξ, η)+

+(b + β)Ĥ(s) + v̂(s, η)(iξ − as + biη) + ẑ(s, ξ)(iη − αs + βiξ), (2.1)

where

a =
1

a
, b = − b

a
, α =

1

α
, β = −β

α
. (2.2)



A MIXED PROBLEM FOR THE WAVE EQUATION 17

In view of finiteness with respect to x and y of the functions f(t, x, y), ϕ(x, y, ), ψ(x, y),
the accepted restriction on the growth with respect to t of the functions f , H, and u, and the
boundedness of the velocity of perturbations propagation which enter equation (2.1), the func-
tions û(s, ξ, η), f̂(s, ξ, η); ϕ̂(ξ, η), ψ̂(ξ, η), v̂(s, η), ẑ(s, ξ), Ĥ(s) are analytic, correspondingly, in
the domains Re s > σ, Im ξ > 0, Im η > 0; Im ξ > 0, Im η > 0; Re s > σ, Im η > 0; Re s > σ,
Im ξ > 0; Re s > σ.

Let x < 0. We apply the inverse Fourier transform with respect to x, Jordan lemma [26]
and the Cauchy theorem to equation (2.1). As a result we have

e
√

η2+s2xv̂(s, η)(−
√

η2 + s2 − as + biη) + (iη − αs − β
√

η2 + s2)×

×
∞∫

0

exp{−|x − p|
√

η2 + s2} ẑ(s, p) dp +

+

∞∫

0

exp{−|x − p|
√

η2 + s2}[f̂(s, p, η) + sϕ̂(s, p) + ψ̂(s, p) + (b + β)Ĥ(s)] dp = 0, (2.3)

the branch
√

z is chosen such that Re
√

z > 0.
Passing to the limit x → −0 in formula (2.3), we will have the relation which shows the

connection between boundary values v(t, y) and z(t, x):

v̂(s, η)(−
√

η2 + s2 − as + biη) + (iη − αs − β
√

η2 + s2)

∞∫

0

exp{−p
√

η2 + s2} ẑ(s, p) dp +

+

∞∫

0

exp{−p
√

η2 + s2}[f̂(s, p, η) + sϕ̂(s, p) + ψ̂(s, p) + (b + β)Ĥ(s)] dp = 0. (2.4)

Then, by the analytic continuation principle [26, 34], the integral

∞∫

0

exp{−p
√

η2 + s2} ẑ(s, p) dp,

provided that

iη − αs − β
√

η2 + s2 6= 0, =η = 0,

is an analytic function in the upper half-plane Imη > 0 iff

v̂(s, η)(
√

η2 + s2 + as − biη) − F̂ (s, i
√

η2 + s2, η)

iη − αs − β
√

η2 + s2
=

=
v̂(s,−η)(

√
η2 + s2 + as + biη) − F̂ (s, i

√
η2 + s2,−η)

−iη − αs − β
√

η2 + s2
, η ∈ R. (2.5)

Here

F̂ (k,m, n) = f̂(k,m, n) + kϕ̂(m,n) + ψ̂(m,n) + (b + β)Ĥ(k).
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We reduce equation (2.5) to the Riemann boundary problem. We put

v0(s, η
2) = v̂(s, η).

Consequently, the function v0(s, λ) is defined on the whole complex plane with a cut along the
positive real axis. We choose the branch

√
λ such that

√
λ > 0 at λ > 0 and introduce the

notations:

v+
0 (s, λ) = lim

ε→+0
v0(s, λ + iε) = v̂(s,

√
λ),

v−
0 (s, λ) = lim

ε→−0
v0(s, λ − iε) = v̂(s,−

√
λ).

Then it follows from (2.5) that v0(s, λ) is the solution to boundary problem (K): on the
complex plane cut along the positive real axis we seek the piece-wise smooth analytic function
v0(s, λ) satisfying the conjunction condition at λ > 0:

(K) v+
0 (s, λ)

√
λ + s2 + as − bi

√
λ

i
√

λ − αs − β
√

λ + s2
− v−

0 (s, λ)

√
λ + s2 + as + bi

√
λ

−i
√

λ − αs − β
√

λ + s2
=

=
F̂ (s, i

√
λ + s2,

√
λ)

i
√

λ − αs − β
√

λ + s2
− F̂ (s, i

√
λ + s2,−

√
λ)

−i
√

λ − αs − β
√

λ + s2
. (2.6)

Remark 2.1. By analogy, we formulate a boundary problem to find z0(s, λ). The conjunc-
tion condition, for example, looks like:

z+
0 (s, λ)

√
λ + s2 + αs − βi

√
λ

i
√

λ − as − b
√

λ + s2
− z−0 (s, λ)

√
λ + s2 + αs + βi

√
λ

−i
√

λ − as − b
√

λ + s2
=

=
F̂ (s,

√
λ, i

√
λ + s2)

i
√

λ − as − b
√

λ + s2
− F̂ (s,−

√
λ, i

√
λ + s2)

−i
√

λ − as − b
√

λ + s2
. (2.6′)

Preliminary to solving problem (2.6) we have to check if the coefficients

√
λ + s2 + as − bi

√
λ

i
√

λ − αs − β
√

λ + s2
and

√
λ + s2 + as + bi

√
λ

−i
√

λ − αs − β
√

λ + s2

turn into zero on the contour λ ≥ 0. It obviously suffices to find real zeros of the functions√
η2 + s2 +as−biη and iη−αs−β

√
η2 + s2. It is easy to derive that complex roots η = η1 +η2

of the equation √
η2 + s2 + as − biη = 0 (2.7)

are as follows

η1,2 =
−abi ±

√
a2 − b

2 − 1

b
2
+ 1

s, and as1 + bη2 < 0, (2.8)

where s = s1 + is2.
We select two cases

1) a2 − b
2 − 1 > 0, (2.9)

2) a2 − b
2 − 1 ≤ 0. (2.10)
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If inequality (2.9) is valid, then expression (2.8) for the solutions of (2.7) can be rewritten in
the form:

η1,2
1 =

abs2 ± s1

√
a2 − b

2 − 1

b
2
+ 1

,

η1,2
2 =

− abs1 ± s2

√
a2 − b

2 − 1

b
2
+ 1

.

(2.11)

Of natural interest for us is a variant when the roots lie in the upper half-plane, i.e., the
relation is fulfilled

−abs1 ± s2

√
a2 − b

2 − 1 ≥ 0. (2.12)

Analysing conditions (2.9), (2.11), (2.12), we conclude that for

a2 − b
2 − 1 > 0, a < 0 (2.13)

roots of equation (2.7) are on the real axis.
In the case (2.10), the real and complex components of the roots to (2.7) are derived from

the formulae:

η1,2
1 =

ab ±
√

1 − a2 + b

b
2
+ 1

s2,

η1,2
2 =

− ab ±
√

1 − a2 + b
2

b
2
+ 1

s1 ≥ 0.

(2.14)

Consequently, again at a = −1 at least one of the roots is real.
Remark 2.2. It is known [28, 33] that for the problem with one boundary (x = 0)√

η2 + s2 + as − biη is the Lopatinsky determinant and its turning into zero at η ∈ R, s1 =
Res > σ is equivalent to the assertion that the corresponding mixed problem with conditions
(1.1), (1.2), (1.4) is ill-posed in the sense of L2.

Remark 2.3. Thus, if

1) a2 − b
2 − 1 > 0, a < 0;

2) a = −1
(2.15)

then for the problem with one boundary the Lopatinsky condition is not fulfilled (see also [15]).
The equation

iη − αs − β
√

s2 + η2 = 0,

is solved analogously, and as it follows from (2.6) it is sufficient to suppose that β 6= 0 and to
consider the equality √

η2 + s2 +
α

β
s − 1

β
iη = 0. (2.16)

So, the solution of equation (2.16) is real if one of the equalities is true:

1) α2 − β
2 − 1 > 0, αβ < 0;

2) a = −β.
(2.17)
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In what follows we will suppose that the coefficients of the boundary conditions a, b, β,
α are such that the Lopatinsky condition is valid and inequalities (2.17) are broken. Such
assumption allows to reduce problem (K) to the canonical Riemann problem [13, 30], after
representation of condition (2.6) in the classical form:

(R) v+
0 (s, λ) =

(
√

λ + s2 + as + bi
√

λ)(i
√

λ − αs − β
√

λ + s2)

(
√

λ + s2 + as − bi
√

λ)(−i
√

λ − αs − β
√

λ + s2)
v−

0 (s, λ)+

+
F̂ (s, i

√
λ + s2,

√
λ)

i
√

λ − αs − β
√

λ + s2
− F̂ (s, i

√
λ + s2,−

√
λ)(i

√
λ − αs − β

√
λ + s2)

(
√

λ + s2 + as − bi
√

λ)(−i
√

λ − αs − β
√

λ + s2)
.

Let us derive the index of problem (2.18) [13]. The formula [5] is true

√
η2 + s2 = r + is1s2/r, (2.19)

where r = ((((s2
1 − s2

2 + η2) + 4s2
1s

2
2)

1/2 + s2
1 − s2

2 + η2)/2)1/2. Consequently, as η increases,
Re

(√
η2 + s2

)
+ as1 increases too. Besides,

√
η2 + s2 + as + biη − (η + as + biη) → 0 as η → +∞. (2.20)

From relations (2.19), (2.20) we obtain, for example, the increment of the argument as η varies
from 0 to +∞ at

a > −1, b ≥ 0 (2.21)
[
∆arg

√
η2 + s2 + as + biη√
η2 + s2 + as − biη

]η=+∞

η=0

= 2 arctg b. (2.22)

Below we derive the increment of argument of coefficient for the problem (R) and the index
for case (2.21)

1) β ≥ 0, α > −β,

1

2π

[
∆arg

(
√

η2 + s2 + as + biη)(iη − αs − β
√

η2 + s2)

(
√

η2 + s2 + as − biη)(−iη − αs − β
√

η2 + s2

]η=+∞

η=0
=

arctgb − arctg 1
β

π
,

a) b <
1

β
, κ = [

∆

2π
] = −1;

b) b ≥ 1

β
, κ = 0;

2) β < 0, α < −β,
∆

2π
=

arctgb − arctg 1
β

2π
, κ = 0;

3) β ≥ 0, α < −β,
∆

2π
= 1 +

arctgb − arctg 1
β

π
,

a) b <
1

β
, κ = 0;

b) b ≥ 1

β
, κ = 1;
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4) β < 0, α > −β,
∆

2π
=

arctgb − arctg 1
β

2π
− 1, κ = −1.

For another values of the parameters a, b, α, β calculations are carried out in a similar way.
We note that κ can take the values −2, −1, 0, 1, 2.

Using the factorization method [13] and the canonical function X(s, η)

ln X(s, η) =
η2 + s2

2πi

+∞∫

0

ln G(s, λ)2λ

(λ2 + s2)(λ2 − η2)
dλ,

where

G(s, η) =
(
√

η2 + s2 + as + biη)(iη − αs − β
√

η2 + s2)

(
√

η2 + s2 + as − biη)(−iη − αs − β
√

η2 + s2)
,

theorems on asymptotic representation of Cauchy integrals in a neighborhood of the end of the
integration interval [13, 20, 30], we write the solution to problem (R) in the form:

1)
1

2
≤ ∆

2π
− κ < 1,

a) κ ≥ −1,

v̂(s, η) =
X(s, η)(η2 + s2)κ+1

2πi

+∞∫

0

h(s, λ)2λ dλ

(λ2 + s2)κ+1X+(s, λ)(λ2 − η2)
+ K̂(s, η), (2.24)

where

h(s, λ) =
F̂ (s, i

√
λ2 + s2, λ)√

λ2 + s2 + as − biλ
− F̂ (s, i

√
λ2 + s2,−λ)(iλ − αs − β

√
λ2 + s2)

(−iλ − αs − β
√

λ2 + s2)(
√

λ2 + s2 + as − biλ)
,

K̂(s, η) is the solution to the corresponding homogeneous problem (at κ = −1, K̂(s, η) = 0);
b) κ = −2

v̂(s, η) =
X(s, η)(η2 + s2)−1

2πi

+∞∫

0

h(s, λ)2λ dλ

(λ2 + s2)−1X+(s, λ)(λ2 − η2)
, (2.25)

besides
∞∫

0

h(s, λ)λ dλ

X+(s, λ)
= 0; (2.26)

2) 0 ≤ ∆

2π
− κ <

1

2
,

a) κ ≥ 0,

v̂(s, η) =
X(s, η)(η2 + s2)κ

2πi

+∞∫

0

h(s, λ)2λ dλ

(λ2 + s2)κX+(s, λ)(λ2 − η2)
+ Ǩ(η, s); (2.27)
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b) κ = −1,

v̂(s, η) =
X(s, η)(η2 + s2)−1

2πi

+∞∫

0

h(s, λ)2λ dλ

(h2 + s2)−1X+(s, λ)(λ2 − η2)
, (2.28)

provided that
∞∫

0

h(s, λ)λ dλ

X+(s, λ)
= 0; (2.29)

c) κ = −2,

v̂(s, η) =
X(s, η)(η2 + s2)−2

2πi

+∞∫

0

h(s, λ)2λ dλ

(λ2 + s2)−1X+(s, λ)(λ2 − η2)
(2.30)

and
∞∫

0

h(s, λ)λ dλ

(λ2 + s2)−2X+(s, λ)(λ2 + s2)k
= 0, k = 1, 2. (2.31)

Remark 2.4. It is obvious that if the index κ is negative, then we can eliminate a singularity
of the analytic function v̂(s, η) at the point η2 = −s2, subtracting corresponding members of
the Laurent series, however, it will lower its smoothness. G. Eskin also pointed at this fact,
connecting the index of solution smoothness with the index of the boundary Riemann problem
with a shift considered in [12].

Direct calculations show that if the uniform Lopatinsky condition (1.5), (1.6) is fulfilled,

then κ is negative excluding the case a > 0, −1 < b ≤ 0; α > 0, −1 < β ≤ 0,
a

b
≥ β

α
with κ = 0.

However, v(t, y) ∈ W 1/2(R2
+) implies the existence of only trivial solution to the homogeneous

boundary problem, formulae (2.24)–(2.32) present a trace of u(t, x, y) on the edge x = 0 in dual
coordinates s and η.

In a similar way, we derive the function ẑ(s, ξ) and, in view of (2.1), û(s, ξ, η), the solution
to investigated problem (1.1)–(1.4).

Remark 2.5. The suggested method after insignificant changes can be used in order to find
exact solutions to another problems, for example, when a, b, α, β are complex or the Dirichlet
conditions are taken instead of (1.2), (1.3).

3. Integral representation of functions v(t, y) and z(t, x)

It suffices to consider only one function (say, v(t, y)). By relations (2.24) (2.27) and Sokhotsky-
Plemelj formulae, we have

v̂(s, y) =
1

2π

+∞∫

−∞

eiyηv̂(s, η)dη,
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where

v(s, η) =






1

2
h(s, η) +

X+(s, η)(η2 + s2)k

2πi

+∞∫

0

h(s, λ)2λdλ

(λ2 + s2)kX+(s, λ)(λ2 − η2)
, η > 0,

−1

2
h(s,−η)

(
√

η2 + s2 + as + biη)(iη − αs − β
√

η2 + s2)

(
√

η2 + s2 + as − biη)(−iη − αs − β
√

η2 + s2)
+

+
X+(s, η)(η2 + s2)k

2πi

+∞∫

0

h(s, λ)2λdλ

(λ2 + s2)kX+(s, λ)(λ2 − η2)
, η < 0,

k equals either κ + 1 or κ. Consequently,

v̂(s, y) =
1

2π

0∫

−∞

e−iyηdη
[
−1

2
h(s,−η)

(
√

η2 + s2 + as + biη)(iη − αs − β
√

η2 + s2)

(
√

η2 + s2 + as − biη)(−iη − αs − β
√

η2 + s2)
+

+
X+(s, η)(η2 + s2)k

2πi

+∞∫

0

h(s, λ)2λdλ

(λ2 + s2)kX+(s, λ)(λ2 − η2)

]
+

+
1

2π

∞∫

0

e−iyηdη
[1

2
h(s, η) +

X+(s, η)(η2 + s2)k

2πi

+∞∫

0

h(s, λ)2λdλ

(λ2 + s2)kX+(s, λ)(λ2 − η2)

]
.

Let first y < 0. Changing the order of integration and using an idea from the proof of
Jordan lemma [34], we obtain:

v̂(s, y) =
1

2π

∞∫

0

e−iyλ
[1

2
h(s, λ) − 1

2
h(s, λ)

]
dλ+

+
1

2π

∞∫

0

eiyλ

[
− 1

2
h(s, λ)

(
√

λ2 + s2 + as − biλ)(−iλ − αs − β
√

λ2 + s2)

(
√

λ2 + s2 + as + biλ)(iλ − αs − β
√

λ2 + s2)
+

+
1

2
h(s, λ)

X+(s,−λ)

X+(s, λ)

]
dλ.

From definition of the canonical function X(s, η) (2.23) it follows that

v̂(s, y) = 0, if y < 0. (3.1)

Let us consider the case y > 0. As in previous situation, we come to the relation

v̂(s, y) =
1

2π

∞∫

0

e−iyλh(s, λ)dλ +
1

2π

∞∫

0

eiyλ

(
− h(s, λ)×
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×(
√

λ2 + s2 + as − biλ)(−iλ − αs − β
√

λ2 + s2)

(
√

λ2 + s2 + as + biλ)(iλ − αs − β
√

λ2 + s2)

)
dλ.

Making an obvious change of variable in the last integral, we have

v̂(s, y) =
1

2π

+∞∫

−∞

e−iyλh(s, λ)dλ for y > 0. (3.2)

Equalities (3.1) and (3.2) give the representation which defines the function v̂(s, y) at every
point, exception for y = 0:

v̂(s, y) =






1

2π

+∞∫

−∞

e−iyλh(s, λ)dλ, y > 0,

0, y < 0.

(3.3)

Remark 3.1. If κ + 1 < 0 (or κ < 0), then analysis of formulae (2.25) (or (2.28), (2.30))
leads again to representation (3.3) for the function v̂(s, y), although in this case we have to
take into account the existence of a pole of the function v̂(s, y) at the point η = is.

Finally, taking into account an asymptotic representation of the Cauchy integral [30], we
can find the function v̂(s, y) at the point y = 0 [2]:

Ĥ(s) = lim
y→+0

1

2π

+∞∫

−∞

e−yλv̂(s, λ)dλ. (3.4)

It occurs that Ĥ(s) ≡ 0 (see also [31]).
By (3.3) and (3.4), the function is completely defined by the formulae

v̂(s, y) =






1

2π

+∞∫

−∞

e−iyλh(s, λ)dλ, y > 0,

0, y ≤ 0,

Ĥ(s) ≡ 0. (3.5)

Now we directly proceed to solving the main problem of this section, i.e, seeking of the
function v(t, y). In relation (3.5) we pass from the dual coordinates s, λ to the initial Cartesian
t and y. For this purpose we use Cargniard-de Hoop method (see [11]).

Because of analogy, it suffices to consider only the first addendum from (3.5) (see (2.24)).
We have:

I =

+∞∫

−∞

e−iyλ dλ

[ +∞∫

0

+∞∫

0

e−
√

λ2+s2z1+iλz2F̂ (s, z1, z2)√
λ2 + s2 + as − biλ

dz1dz2

]
. (3.6)

Changing the variable λ = sk and the order of integration, we come to

I =

+∞∫

0

+∞∫

0

F̂ (s, z1, z2) dz1dz2

1
s∞∫

0

e−s
√

k2+1z1+skiz2−skiy

√
k2 + 1 + a − bik

dk +
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+

+∞∫

0

+∞∫

0

F̂ (s, z1, z2) dz1dz2

0∫

−1
s∞

e−s
√

k2+1z1+skiz2−skiy

√
k2 + 1 + a − bik

dk = I1 + I2.

Let us investigate the first integral, namely, the inner part of this integral

J1 =

1
s
∞∫

0

e−s(
√

k2+1z1−kiz2+kiy)

√
k2 + 1 + a − bik

dk.

We introduce a new integration variable t > 0 by the formula
√

k2 + 1z1 − kiz2 + kiy = t. (3.9)

Equation (3.9) has two roots

k1,2 =
−it(y − z2) ± z1

√
t2 − z2

1 − (z2 − y)2

z2
1 + (z2 − y)2

.

We choose the plus before the radical and thus obtain the explicit relation between t and k:

k =
−it(y − z2) + z1

√
t2 − z2

1 − (z2 − y)2

z2
1 + (z2 − y)2

. (3.10)

The contour of integration (see Fig. 1) consists of:

1) a half-line which connects the points 0 and
1

s
∞, its equation is

k = t
1

s
, t ≥ 0;

2) a curve parametrically given by (3.10);
3) a curve satisfying

Re(−s
√

k2 + 1z1 + skiz2 − skiy) < 0

at its points.
At y > z2 the integration contour looks like.
We require the fulfilment of the uniform Lopatinsky condition, i.e., a > |b|. It occurs that

in this case the integrand in J1 does not have singularities on the interval (−i, i). The Cauchy
theorem gives

J1 =





√
z2
1+(z2−y)2∫

z1

+

∞∫

√
z2
1+(z2−y)2



 e−st

z1t√
t2−z2

1−(z2−y)2
− i(y − z2)

tz1 + a(z2
1 + (z2 − y)2) − bt(y − z2)−

dt

−i(y − z2 + bz1)
√

t2 − z2
1 − (z2 − y)2

. (3.11)

By analogy, for y > z2 on the contour.

J2 =

0∫

− 1
s
∞

e−s
√

k2+1z1+skiz2−skiy

√
k2 + 1 + a − bik

dk =

1
s
∞∫

0

e−s(
√

k2+1z1+kiz2−kiy)

√
k2 + 1 + a + bik

dk
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0

n = Im k
1

s
∞

m = Re kk =
(y − z2)i√

z2
1 + (z2 − y)2

γ

n = −(y − z2)m

z1

Figure 1. The integration contour for J1 at y > z2.

=

√
z2
1+(z2−y)2∫

z1

+

∞∫

√
z2
1+(z2−y)2

e−st

z1t√
t2−z2

1−(z2−y)2
+ i(y − z2)

tz1 + a(z2
1 + (z2 − y)2) − bt(y − z2) +

dt

+ i(y − z2 + bz1)
√

t2 − z2
1 − (z2 − y)2

. (3.12)

From (3.11) and (3.12) it follows that

I =
1

π

+∞∫

0

+∞∫

0

F̂ (s, z1, z2)dz1dz2

∞∫

√
z2
1+(z2−y)2

e−stRe
i(y − z2) +

tz1 + a(z2
1 + (z2 − y)2) − bt(y − z2) +

+ z1t√
t2−z2

1−(z2−y)2

+ i(y − z2 + bz1)
√

t2 − z2
1 − (z2 − y)2

dt.

Consequently, a perturbation on y = 0 which we will call a "direct wave" (in the variables s
and η it corresponds to the first addendum in (3.5)) is derived as follows:

v1(t, y) =

+∞∫

0

+∞∫

0

[
θ(t −

√
z2
1 + (z2 − y)2)√

t2 − z2
1 − (z2 − y)2

K(t, y, z1, z2)

]
∗
t
f(t, z1, z2) dz1 dz2 +
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0

n = Im k

m = Re k

k =
(y − z2)i√

z2
1 + (z2 − y)2

γ̂

γ̂

γ̂0

n = −(y − z2)m

z1
1

s
∞

Figure 2. The integration contour for J2 at y > z2.

+

+∞∫

0

+∞∫

0

θ(t −
√

z2
1 + (z2 − y)2)√

t2 − z2
1 − (z2 − y)2

K(t, y, z1, z2)ψ(z1, z2) dz1 dz2+

+
∂

∂t

+∞∫

0

+∞∫

0

θ(t −
√

z2
1 + (z2 − y)2)√

t2 − z2
1 − (z2 − y)2

K(t, y, z1, z2)ϕ(z1, z2) dz1 dz2. (3.13)

Here θ(z) is the Heaviside function,
∂

∂t
is the operator of generalized differentiation with respect

to t, and the kernel K(t, y, z1, z2) is of the form

K(t, y, z1, z2) =
1

π

z1t(tz1 + a(z2
1 + (z2 − y)2)) − bt(y − z2))+

(tz1 + a(z2
1 + (z2 − y)2) − bt(y − z2))2+

+(y − z2)(y − z2 + bz1)(t
2 − z2

1 − (z2 − y)2)

+(y − z2 + bz1)(t2 − z2
1 − (z2 − y)2)

.

The same method is used to find a "reflected wave" (the second addendum in (3.5); α/β >
1/|β|) which takes into account also the influence of the solution behavior on the edge x = 0.
Briefly this perturbation is characterized in such a way

v2(t, y) =

+∞∫

0

+∞∫

0

[
θ(t −

√
z2
1 + (z2 − y)2)√

t2 − z2
1 − (z2 + y)2

M(t, y, z1, z2)

]
∗
t
f(t, z1, z2) dz1 dz2+
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+
∂

∂t

+∞∫

0

+∞∫

0

θ(t −
√

z2
1 + (z2 + y)2)√

t2 − z2
1 − (z2 + y)2

M(t, y, z1, z2)ϕ(z1, z2) dz1 dz2+

+

+∞∫

0

+∞∫

0

θ(t −
√

z2
1 + (z2 + y)2)√

t2 − z2
1 − (z2 + y)2

M(t, y, z1, z2)ψ(z1, z2) dz1 dz2. (3.14)

Here

M(t, y, z1, z2) =
1

π
Re

{
[βtz1 + α(z2

1 + (z2 + y)2) − t(y + z2)+

[βtz1 + α(z2
1 + (z2 + y)2) + t(y + z2)+

+i(β(y + z2) + z1)
√

t2 − z2
1 − (z2 + y)2]×

+i(β(y + z2) − z1)
√

t2 − z2
1 − (z2 + y)2]×

×[−i(y + z2) + z1t√
t2−z2

1−(z2+y)2
]

×[tz1 + a(z2
1 + (z2 + y)2) − bt(y + z2) + i(y + z2 + bz1)

√
t2 − z2

1 − (z2 + y)2]




 .

Uniting (3.13) and (3.14), we come to the important conclusion which gives a qualitative
characteristic of the phenomenon: the function v(t, y) which describes the behavior of solution
on x = 0 is a superposition of two waves: direct and reflected from the edge Γ = {(t, 0, 0)|t ≥ 0}.

Remark 3.2. Let the condition a > |b| be broken. Then the integrand in J1 (3.8) can have
poles of the first order at (−i, i).

Let consider, for example, the case a > 0, b > 0 and a < b. Then the singularity is placed
on the interval (0,−i)

k =
i(−ba −

√
1 − a2 + b

2
)

b
2
+ 1

= k0.

and we have to add

−πiRes
k=k0

[
e−s(

√
k2+1z1−kiz2+kiy)

√
k2 + 1 + a − bik

]
= −πi

e−s((bik0−a)z1+k0i(y−z2))

k0

bik0−a
− bi

=

= e
−s

(
−a+b

√
1−a2+b

2

b
2
+1

z1+
ba+

√
1−a2+b

2

b
2
+1

(y−z2)

)

π(a − b

√
1 − a2 + b

2
)

(b
2
+ 1)

√
1 − a2 + b

2

into (3.11), y − z2 − ba +

√
1 − a + b

2

b
2
+ 1

√
z2
1 + (z2 − y)2 ≥ 0. In common J1 and J2 give a

supplement into (3.8):

e
−s(

−a+b

√
1−a2+b

2

b
2
+1

z1+
ba+

√
1−a2+b

2

b
2
+1

(y−z2)) 2π(a − b

√
1 − a2 + b

2
)

(b
2
+ 1)

√
1 − a2 + b

2
.

As a result, formula (3.13) has to be complemented by the addend (from the f -th side):

a − b

√
1 − a2 + b

2

(b
2
+ 1)

√
1 − a2 + b

2

∞∫

0

∞∫

0

f

(
t −

−a + b

√
1 − a2 + b

2

b
2
+ 1

z1−
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−
ba +

√
1 − a2 + b

2

b
2
+ 1

(y − z2)z1, z2

)
θ

(
y − z2 −

ba +

√
1 − a + b

2

b
2
+ 1

√
z2
1 + (z2 − y)2

)
dz1dz2.

(3.16)
Initial deviation and velocity also bring their contributions:

a − b

√
1 − a2 + b

2

(b
2
+ 1)

√
1 − a2 + b

2

∞∫

0

∞∫

0

δ(t −
−a + b

√
1 − a2 + b

2

b
2
+ 1

z1−

−
ba +

√
1 − a2 + b

2

b
2
+ 1

(y − z2))ψ(z1, z2)θ

(
y − z2 −

ba +

√
1 − a + b

2

b
2
+ 1

√
z2
1 + (z2 − y)2

)
dz1dz2+

(3.17)

+
a − b

√
1 − a2 + b

2

(b
2
+ 1)

√
1 − a2 + b

2

∂

∂t

∞∫

0

∞∫

0

δ(t −
−a + b

√
1 − a2 + b

2

b
2
+ 1

z1−

−
ba +

√
1 − a2 + b

2

b
2
+ 1

(y − z2))ϕ(z1, z2)θ

(
y − z2 −

ba +

√
1 − a + b

2

b
2
+ 1

√
z2
1 + (z2 − y)2

)
z1dz2 =

=
a − b

√
1 − a2 + b

2

(b
2
+ 1)

√
1 − a2 + b

2

{ tγ∫

0

dz1ψ(z1, y − t
b2 + 1

ab +

√
1 − a2 + b

2
+

+
−a + b

√
1 − a2 + b

2

ab +

√
1 − a2 + b

2
z1) +

∂

∂t

( tγ∫

0

dz1ϕ(z1, y − t
b2 + 1

ab +

√
1 − a2 + b

2
+

+
−a + b

√
1 − a2 + b

2

ab +

√
1 − a2 + b

2
z1)

)}
,

where γ =



 − a + b

√
1 − a2 + b

2

b
2
+ 1

+
(ba +

√
1 − a2 + b

2
)2/(b

2
+ 1)2

(1 − (ba +

√
1 − a2 + b

2
)2/(b

2
+ 1)2)1/2





−1

.

It is interesting to note that the planes

t −
−a + b

√
1 − a2 + b

2

b
2
+ 1

x −
ba +

√
1 − a2 + b

2

b
2
+ 1

y = const

are the characteristics of the wave equation (1.1).
In the aggregate, formulae (3.16), (3.17) are an analog of a “side wave” ([24]; A. Yu. Chinilov

in [10] has analyzed its properties for the half-plane case (see also [15])).
Remark 3.3. If α > |β|, then in (3.14), the representation of the reflected wave, addends

which correspond to the side wave are absent.
That completes the proof of Theorem I.
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4. A priori estimates of solutions

Proceeding to obtaining of estimates, we note the important fact: under conditions on the right
hand sides from §2 the generalized solution (see Theorem 1) becomes the classical solution of the
problem since after usual changes of variables one can carry out differentiation in the integrals
as many times as one wants.

To prove Theorem 2 we reduce problem (1.1)–(1.4) to a mixed problem for the symmetric
system [12]: {

A0
∂

∂t
− B0

∂

∂x
− C0

∂

∂y

}
U = 0, t > 0, (x, y) ∈ R2

+, (4.1)

u1 − au2 − bu3 = 0, x = 0, (t, y) ∈ R2
+, (4.2)

u1 − βu2 − αu3 = 0, y = 0, (t, x) ∈ R2
+, (4.3)

U =





ψ(x, y)

∂

∂x
ϕ(x, y)

∂

∂y
ϕ(x, y)




, t = 0, (x, y) ∈ R2

+. (4.4)

Here the matrices A0, B0, C0 are as follows

A0 =




k l m
l k 0
m 0 k



 , B0 =




l k 0
k l m
0 m −l



 , C0 =




m 0 k
0 −m l
k l m



 ,

U =




u1

u2

u3



 =




ut

ux

uy



 ,

and k, l,m are some real numbers satisfying two inequalities

1) k > 0,

2) k2 − m2 − l2 > 0.
(4.5)

Note that conditions (4.5) provide the matrix A0 with the positive definiteness.
From system (4.1) we easily derive the principal identity:

d

dt

{∫∫

R2
+

(A0U,U) dxdy

}
+

∫

R+
1

(B0U,U)
∣∣∣
x=0

dy+

+

∫

R+
1

(C0U,U)
∣∣∣
y=0

dx = 0, (4.6)

Let us turn again to formulae (3.13), (3.14) and transform the expression for the direct wave
(accounted is yet the perturbation caused by the right hand side f(t, x, y) of the equation):

v1(t, y) =
1

π

+∞∫

0

+∞∫

0

dz1dz2
z1t(z1t + a(z2

1 + (z2 − y)2) − bt(y − z2))+

(z1t + a(z2
1 + (z2 − y)2) − bt(y − z2))2+
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+(y − z2)(y − z2 + bz1)(t
2 − z2

1 − (z2 − y)2)

+(y − z2 + bz1)2(t2 − z2
1 − (z2 − y)2)

θ(t −
√

z2
1 + (z2 − y)2)√

t2 − z2
1 − (z2 − y)2

∗
t
f(t, z1, z2) =

=
1

π

t∫

0

dτ

∫∫

z2
1+(z2−y)2≤(t−τ)2,

z1>0

dz1dz2
z1(t − τ)(z1(t − τ) + a(z2

1 + (z2 − y)2) − b(t − τ)(y − z2))+

(z1(t − τ) + a(z2
1 + (z2 − y)2) − b(t − τ)(y − z2))2+

+(y − z2)(y − z2 + bz1)((t − τ)2 − z2
1 − (z2 − y)2)

+(y − z2 − bz1)2((t − τ)2 − z2
1 − (z2 − y)2)

f(τ, z1, z2)√
(t − τ)2 − z2

1 − (z2 − y)2
.

Making the change of variables

{
z1 = ξ1(t − τ),

z2 − y = ξ2(t − τ),

we come to

v1(t, y) =
1

π

t∫

0

(t − τ) dτ

∫∫

ξ21+ξ22≤1

ξ1≥0

ξ1(ξ1 + a(ξ2
1 + ξ2

2) + bξ2) + ξ2(ξ2 − bξ1)(1 − ξ2
1 − ξ2

2)

(ξ1 + a(ξ2
1 + ξ2

2) + bξ2)2 + (ξ2 − bξ1)2(1 − ξ2
1 − ξ2

2)
×

×f(τ, (t − τ)ξ1, y + (t − τ)ξ2)√
1 − ξ2

1 − ξ2
2

dξ1dξ2. (4.7)

We seek for zeros of the determinant of the kernel from presentation (4.7), i.e. of the function

ξ1(ξ1 + a(ξ2
1 + ξ2

2) + bξ2) + ξ2(ξ2 − bξ1)(1 − ξ2
1 − ξ2

2)

(ξ1 + a(ξ2
1 + ξ2

2) + bξ2)2 + (ξ2 − bξ1)2(1 − ξ2
1 − ξ2

2)
.

Let first ξ2
1 + ξ2

2 6= 1. Then the denominator in (4.7) comes into zero if simultaneously

{
ξ2 − bξ1 = 0,

ξ1 − a(ξ2
1 + ξ2

2) + bξ2 = 0,
(4.8)

what is possible if

{
ξ1 = 0,
ξ2 = 0,

or a 6= 0,






ξ1 = −1

a
,

ξ2 = − b

a
.

(4.9)

It is apparent that of interest is only the second case. It appears that under a2 > b
2
+ 1, a < 0

(see(2.13)) the kernel of the presentation has a singularity of the first order inside the domain
of integration.

If ξ2
1 + ξ2

2 = 1, then the system

{
ξ1 + a(ξ2

1 + ξ2
2) + bξ2 = 0,

ξ2
1 + ξ2

2 = 1,
(4.10)
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0

a

b

a = −b a = b

G

Q −1

F

Figure 3. The representation of the domains G, Q, F .

provided that a2 ≤ 1 + b
2
, has two solutions:






ξ1 =
− a ± b

√
1 − a2 + b

2

1 + b
2 ,

ξ2 =
− ab ±

√
1 − a2 + b

2

1 + b
2 .

(4.11)

It is easy to verify that in the domain G = {(a, b)
∣∣a > |b|} conditions ξ2

2 + ξ2
1 = 1, ξ1 ≥ 0 are

broken.
By results of analysis of formulae (4.8)–(4.11) we divide R2, (a, b)–coordinates plane into

three parts (see the Fig. 3), they are

1) the above described domain G, its inherent property is that the closed semicircle
ξ2
1 + ξ2

2 ≤ 1, ξ1 ≥ 0 does not contain singularities of the integrand function;

2) a closed domain Q bounded by parts of the lines a = −b, a = b and the hyperbolic curve

a2 = b
2
+ 1, a < 0. Here singularities of the integrand function from (4.6) are situated

strictly on the semicircle ξ2
1 + ξ2

2 = 1, ξ1 ≥ 0; the line a = −1 belongs to Q;

3) a domain F such that if (a, b) ∈ F , then a singularity of the integrand function is an
interior point of the unit semicircle.
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We will concentrate our attention on the case (a, b) ∈ G. From (4.7) for the wave v1(t, y)
we obtain:

v1(t, y) =
1

π

t∫

0

(t − τ) dτ

1∫

0

dξ1

√
1−ξ2

1∫

−
√

1−ξ2
1

ξ1(ξ1 + a(ξ2
1 + ξ2

2) + bξ2)+

(ξ1 + a(ξ2
1 + ξ2

2) + bξ2)2+

+ξ2(ξ2 − bξ1)(1 − ξ2
1 − ξ2

2)

+(ξ2 − bξ1)2(1 − ξ2
1 − ξ2

2)

f(τ, (t − τ)ξ1, y + (t − τ)ξ2)√
1 − ξ2

1 − ξ2
2

dξ2 =

=
1

π

t∫

0

(t − τ) dτ

1∫

0

dξ1

√
1−ξ2

1∫

0

[
ξ1(ξ1 + a(ξ2

1 + ξ2
2) + bξ2) + ξ2(ξ2 − bξ1)(1 − ξ2

1 − ξ2
2)

(ξ1 + a(ξ2
1 + ξ2

2) + bξ2)2 + (ξ2 − bξ1)2(1 − ξ2
1 − ξ2

2)
−

− ξ1

ξ1 + a + b
√

1 − ξ2
1

]
f(τ, (t − τ)ξ1, y + (t − τ)ξ2)√

1 − ξ2
1 − ξ2

2

dξ2+

+
1

π

t∫

0

(t − τ) dτ

1∫

0

dξ1

√
1−ξ2

1∫

0

ξ1

(ξ1 + a + b
√

1 − ξ2
1)

√
(1 − ξ2

1 − ξ2
2)
×

×f(τ, (t − τ)ξ1, y + (t − τ)ξ2) dξ2+

+
1

π

t∫

0

(t − τ) dτ

1∫

0

dξ1

0∫

−
√

1−ξ2
1

[
ξ1(ξ1 + a(ξ2

1 + ξ2
2) + bξ2) + ξ2(ξ2 − bξ1)(1 − ξ2

1 − ξ2
2)

(ξ1 + a(ξ2
1 + ξ2

2) + bξ2)2 + +(ξ2 − bξ1)2(1 − ξ2
1 − ξ2

2)
−

− ξ1

ξ1 + a − b
√

1 − ξ2
1

]
f(τ, (t − τ)ξ1, y + (t − τ)ξ2)√

1 − ξ2
1 − ξ2

2

dξ2+

+
1

π

t∫

0

(t − τ) dτ

1∫

0

dξ1

0∫

−
√

1−ξ2
1

ξ1

(ξ1 − a + b
√

1 − ξ2
1)

√
(1 − ξ2

1 − ξ2
2)
×

×f(τ, (t − τ)ξ1, y + (t − τ)ξ2) dξ2 = I1 + I2 + I3 + I4. (4.12)

Functions in I1 and I3 do not possess singularities, so estimates for them can be found in
traditional manner with the use of the generalized Minkowski and Hölder equalities:

‖Ii(t)‖L2;y ≤ C̃i

t∫

0

(t − τ)1/2‖f(τ, x, y)‖L2;(x,y)dτ, i = 1, 3, (4.13)

where

C̃2
1 =

1

π2

1∫

0

dξ1






√
1−ξ2

1∫

0

dξ2

[
ξ1(ξ1 + a(ξ2

1 + ξ2
2) + bξ2) + ξ2(ξ2 − bξ1)(1 − ξ2

1 − ξ2
2)

(ξ1 + a(ξ2
1 + ξ2

2) + bξ2)2 + (ξ2 − bξ1)2(1 − ξ2
1 − ξ2

2)
−
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− ξ1

ξ1 + a + b
√

1 − ξ2
1

]
1√

1 − ξ2
1 − ξ2

2

}2

,

C̃2
3 =

1

π2

1∫

0

dξ1






0∫

−
√

1−ξ2
1

dξ2

[
ξ1(ξ1 + a(ξ2

1 + ξ2
2) + bξ2) + ξ2(ξ2 − bξ1)(1 − ξ2

1 − ξ2
2)

(ξ1 + a(ξ2
1 + ξ2

2) + bξ2)2 + (ξ2 − bξ1)2(1 − ξ2
1 − ξ2

2)
−

− ξ1

ξ1 + a − b
√

1 − ξ2
1

]
1√

1 − ξ2
1 − ξ2

2

}2

.

The situation with the integrals I2 and I4 is somewhat more difficult. Obviously it suffices
to consider one of them, let it be I2. Using the known theorem on convolution operator norm
in L2 [25, 35] and the generalized Minkowski inequality, we obtain the estimate:

||I2(t)||L2;y ≤ 1

π

t∫

0

(t−τ)dτ

∫ 1

0

dξ1
ξ1

ξ1 + a + b
√

1 − ξ2
1

∣∣ sup
η∈R

M̂(η)
∣∣ ‖f(τ, (t−τ)ξ1, y)‖L2;y. (4.14)

Here the function M(ξ2) is determined by the formula:

M(ξ2) =






1√
1 − ξ2

1 − ξ2
2

, if 0 < ξ2 <
√

1 − ξ2
1 ,

0, if ξ2 < 0.

or, in other way,

M(ξ2) =
1

2
[K1(ξ2) + K2(ξ2)],

where

K1(ξ2) =

{
(1 − ξ2

1 − ξ2
2)

−1/2, |ξ2| <
√

1 − ξ2
1 ,

0, |ξ2| >
√

1 − ξ2
1 ,

and

K2(ξ2) =

{
sgn ξ2(1 − ξ2

1 − ξ2
2)

−1/2, |ξ2| <
√

1 − ξ2
1 ,

0, |ξ2| >
√

1 − ξ2
1 .

In [6] we found formulae, the result of application of the Fourier transform to the functions
K1(ξ2) and K2(ξ2):

K̂1(η) =
√

πΓ

(
1

2

)
J0(

√
1 − ξ2

1 |η|), (4.15)

K̂2(η) = i
√

πΓ

(
1

2

)
sgn ηH0(

√
1 − ξ2

1 |η|). (4.16)

Here J0(x) =
∞∑

k=0

(−1)k(x
2
)2k

k!(k + 1)!
is a zero order Bessel function, H0(x) =

∞∑

k=0

(−1)k(x
2
)2k+1

[Γ(k + 3
2
)]2

is a

zero order Struve function, and Γ(x) is a gamma-function [3]. In [1, 3] asymptotic expansions
of these functions at infinity are given.

J0(x) =

√
2

πx
{cos(x − π

4
+ O(x−3/2)} as x → +∞, (4.17)
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Y0(x) =

√
2

πx
{sin(x − π

4
) + O(x−3/2)} as x → +∞,

Y0(x) is the Neumann function;

H0(x) = Y0(x) +
1

π

m−1∑

k=0

Γ(k + 1/2)

Γ(1
2
− k)(x

2
)2k+1

+ Rm(x),

where Rm(x) = O(x−2m−1). From (4.14)–(4.17) the desired estimate follows:

‖I2(t)‖L2;y ≤ Č

t∫

0

(t − τ)1/2‖f(τ, x, y)‖L2;(x,y)dτ. (4.18)

Summing up equalities (4.13), (4.18), we have

‖v1(t, y)‖L2;y ≤ Ĉ

t∫

0

(t − τ)1/2‖f(τ, x, y)‖L2;(x,y)dτ. (4.19)

With account of perturbations caused by the initial deviation and velocity, a more refined
version for formula (4.19) is:

‖v1(t, y)‖L2;y ≤ A

t∫

0

(t − τ)1/2‖f(τ, x, y)‖L2;(x,y)dτ+ (4.20)

+At1/2‖ψ‖L2;(x,y) + Bt−1/2‖ϕ‖L2;(x,y)+

+Ct1/2‖ϕx‖L2;(x,y) + Dt1/2‖ϕy‖L2;(x,y).

In a similar way we investigate the reflected wave. Thus, we come to the aim of our
consideration, the following relation:

‖v(t, y)‖L2;y ≤ ‖v1(t, y)‖L2;y + ‖v2(t, y)‖L2;y ≤

≤ Ã

∫ t

0

(t − τ)1/2‖f(τ, x, y)‖L2;ydτ + Ãt1/2‖ψ‖L2;(x,y) + B̃t−1/2||ϕ||L2;(x,y)+

+C̃t1/2‖ϕx‖L2;(x,y) + D̃t1/2‖ϕy‖L2;(x,y). (4.21)

Inequality (4.21) and identity (4.6) yield an estimate with loss of smoothness.
Remark 4.1. (regarding to inequality (4.21)). For consideration of the perturbation gen-

erated by the initial deviation ϕ(x, y) estimation (4.20) becomes inconvenient since it contains
Bt−1/2‖ϕ‖L2;(x,y). But in the final part while obtaning the estimation one can reason in other
way using the following relation:

1∫

0

P̂ (η, ξ1)dξ1

tξ1∫

0

ϕ̂z(z, η)dz ≤ Ct1/2‖ϕ̂z(z, η)‖L2;z.
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Consequently, the following estimation holds for small t:

‖v(t, y)‖L2;y ≤ Ã

∫ t

0

(t − τ)‖f(τ, x, y)‖L2;(x,ydτ + Ãt‖ψ‖L2;(x,y)+

+C̃t1/2‖ϕx‖L2;(x,y) + D̃t1/2‖ϕy‖L2;(x,y). (4.22)

Inequalities (4.21), (4.22) and identity (4.6) allow to obtain a priori estimation with the loss of
smoothness.

It turns out, however, that if ā > |b̄| and ᾱ > ¯|β|, then the additional requirement on
smoothness of right parts of the problem are not required since a priori estimation without loss
of smoothness are valid.

Actually it suffices to apply the properties of the Fourier-Laplace transform of the function
θ(t) θ(t −

√
z2
1 + z2

2)√
t2 − z2

1 − z2
2

, i.e., Lt→s Fz2→η
θ(t) θ(t −

√
z2
1 + z2

2)√
t2 − z2

1 − z2
2

. This leads, for example, to the

following inequality:

sup
η∈R

s2=Im∈R

(∫ ∞

0

dz1|η|2|Ĥ(s, z1, η, )|2
)1/2

< ∞, (4.23)

where

H(t, z1, z2) =
z1t(z1t + a(z2

1 + z2
2) − btz2) + z2(z2 + bz1)(t

2 − z2
1 − z2

2)

(z1t + a(z2
1 + z2

2) − btz2)2 + (z2 + bz1)2(t2 − z2
1 − z2

2)
×

×θ(t) θ(t −
√

z2
1 + z2

2)√
t2 − z2

1 − z2
2

.

Thus Theorem 2 is completely proved.
Remark 4.2. If at least for one boundary just Lopatinsky condition is fulfilled, then in the

solution representation there appears a side wave (see formulae (3.16), (3.17)) what implies the
loss of smoothness in a priori estimate. However, the same situation takes place for the case
with one boundary ([15, 28, 33]).
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