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In the second part of the article (the first one has been published in the previous
issue of journal) there is suggested a new and simple method to obtain the known a
priori estimation of solution from W

1
2 of the mixed problem for the multidimensional

wave equation in a half plane with boundary conditions of an oblique derivative type.
The method combines elements of the Fourier–Laplace transform technique as well as the
energy integrals technique. For the case of the mixed problem for the multidimensional
wave equation in a coordinate corner, a domain of values of the boundary conditions
parameters is selected out where the a priori estimation of solution from W

1
2 without loss

of generality is valid.
Total list of the literature has been adduced in the first part of the article.

1. Mixed problem for the wave equation

(the real coefficients case)

In this section, the following mixed problem for the wave equation in the domain t > 0,
(x, y, z) ∈ Rn+2

+ , n ≥ 1 is considered:

L(τ, ξ, η, ζ1, . . . , ζn)u = utt − uxx − uyy − ∆zu = 0, t > 0, x > 0, (1.1)

ut − aux − buy − (c, ζu) = 0, x = 0, (1.2)

u = ϕ(x, y, z), ut = ψ(x, y, z), t = 0. (1.3)

Here

z = (z1, . . . , zn), τ =
∂

∂t
, ξ =

∂

∂x
, η =

∂

∂y
,

ζ = (ζ1, . . . , ζn)T , ζk =
∂

∂zk

, k = 1, n,
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∆z = (ζ, ζ) =
n∑

k=1

ζ2
k =

n∑

k=1

∂2

∂z2
k

,

c = (c1, . . . , cn)T , (c, ζu) =
n∑

k=1

ck

∂u

∂zk

;

a, b, ck, k = 1, n are real numbers. Without loss of generality we will assume that cn 6= 0,
Rn+2

+ = {(x, y, z); x > 0, (y, z) ∈ Rn+1}.
Remark 1.1. We will assume that for the problem (1.1)–(1.3) the uniform Lopatinski

condition (ULC) holds. Mixed problem (1.1)–(1.3) is said to satisfy ULC on a boundary if:

τ̂ + a
√

τ̂ 2 + |γ|2 − ibγ0 − i

n∑

k=1

ckγk 6= 0

when Reτ̂ ≥ 0, |τ̂ |2 + |γ|2 6= 0 (for more details about ULC see [17, 27]).
Here τ̂ is a complex number.

γ = (γ0, γ1, . . . , γn), |γ|2 = (γ, γ),

γα, α = 0, n are real numbers. It can be shown that in the case when ULC fails there exist the

examples of ill-posedness of Hadamard’s type for problem (1.1)–(1.3) or the problems close to
it. In terms of the boundary condition coefficients from (1.2), ULC can be written as (see [27]):

{
a > 0,

b2 + |c|2 < 1.
(1.4)

Remark 1.2. By straightfoward manipulations problem (1.1)–(1.3) can be put in a more
simple way. The essence of these manipulations is the following. Let T be a real orthogonal
matrix of order (n+1). Then by replacement of the initial differential operators (i.e., by passing
from the initial differential operators to their linear combinations):

µ =




µ0

µ1
...

µn


 = T ∗ ·

(
η

ζ

)
, (1.5)

we obtain the following relations:

τ 2 − ξ2 − η2 −
n∑

k=1

ζ2
k = τ 2 − ξ2 −

n∑

α=0

µ2
α,

τ − aξ − bη −
n∑

k=1

ckζk = τ − aξ −
(

T ∗ ·
(

b

c

)
, µ

)
= τ − aξ − b̃µ0.

The latter relation is true since there exists such an orthogonal matrix T that

(b, c1, . . . , cn) · T = (b̃, 0, . . . , 0),

where b̃ = sign(cn)
√

b2 + |c|2. With the above-mentioned relations taken into account, initial
problem (1.1)–(1.3) can be reduced to the following so called canonical form.
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Problem I. We seek the solution of the wave equation

utt − uxx − uyy − ∆zu = 0, t > 0, (x, y, z) ∈ Rn+2
+ . (1.1′)

which satisfies at x = 0 the boundary condition

ut − aux − buy = 0, t > 0, (y, z) ∈ Rn+1, (1.2′)

and at t = 0 the initial data (1.3) (while formulating Problem I, we return to the former
notations). The uniform Lopatinski condition for Problem I is formulated as

a > 0, b2 < 1. (1.4′)

The study of Problem I is the matter the present section.
In Problem I we carry out the Fourier transform with respect to the variables zk, k = 1, n.

Then Problem I looks like

ûtt − ûxx − ûyy + 4π2|ξ|2û = 0, t > 0, (x, y) ∈ R2
+, (1.1′′)

ût − aûx − bûy = 0, t > 0, y ∈ R1, x = 0, (1.2′′)

û = ϕ̂(x, y, ξ), ût = ψ̂(x, y, ξ), (x, y) ∈ R2
+. (1.3′)

Here

û = û(t, x, y, ξ) =

∫

Rn

e−2πi(z,ξ)u(t, x, y, z)dz

is Fourier transform of the function u, ξ = (ξ1, . . . , ξn) ∈ Rn, ϕ̂, ψ̂ are Fourier transforms of
the functions ϕ and ψ (see (1.3)).

Following [5, 17, 27], for the vector

U =




ût

ûx

ûy




we write the symmetric system (its validity on the solutions of (1.1′′) is easily verified):

{A0τ − B0ξ − C0η}U + 4π2|ξ|2ûF = 0, (1.6)

where

A0 =




k l m

l k in

m −in k


 = T ∗

0 ·
(

H O2

O2 H

)
· T0,

B0 =




l k in

k l m

−in m −l


 = T ∗

0 ·
(

O2 −H

−H O2

)
· T0,

C0 =




m −in k

in −m l

k l m


 = T ∗

0 ·
(

−H O2

O2 H

)
· T0,
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F =




k

l

m


 , T0 =

1√
2




1 0 −1
0 −1 0
0 −1 0
1 0 1


 ,

H =

(
k − m −l − in

−l + in k + m

)
,

O2 is the zero matrix of order 2; k, l, m, n are certain real constants. A0, B0, C0, H are the
Hermitian matrices. System (1.6) can also be rewritten in the form

{Ā0τ − B̄0ξ − C̄0η}Ū + 4π2|ξ|2 ¯̂uF = 0. (1.6′)

Here the bar means the complex conjugation.
Let us multiply system (1.6) scalarly by Ū and system (1.6′) by U and sum up the expres-

sions. Finally we obtain the following identity:

(Ū, A0U)t − (Ū, B0U)x − (Ū, C0U)y+

+ 4π2|ξ|2{k(|û|2)t + l(|û|2)x + m(|û|2)y} = 0. (1.7)

Here |û|2 = û · ¯̂u. Let integrate (1.7) over the domain R2
+, assuming that

|U|2 = (Ū,U) → 0, |û|2 → 0 as r → ∞,

where r =
√

x2 + y2. As a consequence, we obtain

d

dt
Ĵ1(t) +

∫

R1

{(Ū, B0U) − 4π2|ξ|2l|û|2}
∣∣∣
x=0

dy = 0. (1.8)

Here

Ĵ1(t) =

∫∫

R2
+

{(Ū, A0U) + 4π2|ξ|2k|û|2}dxdy.

Now let us consider the forms (Ū, A0U) and (Ū, B0U)
∣∣
x=0

. The form

(Ū, A0U) =

(
V̄,

(
H O2

O2 H

)
· V

)
=

= (V̄I , H · VI) + (V̄II , H · VII) > 0

if H > 0, i.e. k > 0, k2 − m2 − l2 − n2 > 0. Here

V = T0 · U =

(
V

I

V
II

)
,

V
I =

1√
2

(
ût − ûy

−ûx

)
, V

II =
1√
2

(
−ûx

ût + ûy

)
.

Preparatory to considering the form (Ū, B0U)
∣∣
x=0

, let us rewrite the boundary conditions
(1.2′′) in the way

V
I = S · VII , x = 0, (1.2′′′)
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where

S =


 − 2a

1 + b
−1 − b

1 + b

1 0


 .

Note that the matrix S is the Hurwitz one if ULC is true (i.e. its eigen-values lie on the left
complex semi-plane).

The form

(Ū, B0U)
∣∣
x=0

=

(
V̄,

(
O2 −H

−H O2

)
· V

)∣∣∣∣∣
x=0

=

= −(V̄I , H · VII)
∣∣
x=0

− (V̄II , H · VI)
∣∣
x=0

= −(V̄II , [S∗H + HS] · VII)
∣∣
x=0

.

Let

S∗H + HS = −G,

where G = G∗ > 0 is a certain matrix. Then

(Ū, B0U)
∣∣
x=0

= (V̄II , G · VII)
∣∣
x=0

> 0. (1.9)

Remark 1.3. If S is the Hurwitz matrix, then the Lapunov matrix equation

S∗H + HS = −G (1.10)

is uniquely solvable with respect to H for any Hermitian matrix G = G∗. As this takes place
(if G > 0), then H = H∗ > 0 (about the solution of the Lapunov matrix equation see, for
example, [25]).

Presenting (1.10) as

(
−s1 1
−s2 0

)(
k − m −l − in

−l + in k + m

)
+

(
k − m −l − in

−l + in k + m

)(
−s1 −s2

1 0

)
=

=

(
g1 −g2 − ig3

−g2 + ig3 g4

)
, g1,4 > 0, g1g4 − g2

2 − g2
3 > 0,

we easily find that

l = −g4
1 + b

2(1 − b)
< 0. (1.11)

Here s1 = 2a
1 + b

, s2 = 1 − b
1 + b

.

In view of (1.9), (1.11), it follows from (1.8):

d

dt
Ĵ1(t) ≤ 0. (1.12)

Since

d

dt

{∫∫

R2
+

|û|2dxdy

}
≤ Ĵ0(t), (1.13)
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summing up (1.12) and (1.13), we can obtain

d

dt

{
Ĵ1(t) +

∫∫

R2
+

|û|2dxdy
}
≤ Ĵ0(t) ≤ M1 ·

{
Ĵ1(t) +

∫∫

R2
+

|û|2dxdy

}
. (1.14)

Here

Ĵ0(t) =

∫∫

R2
+

{|U|2 + (4π2|ξ|2 + 1)|û|2}dxdy,

M1 = max

{
1,

1

k −
√

l2 + m2 + n2

}
.

(1.14) yields:
Ĵ0(t) ≤ M1M2Ĵ0(0)eM1t, t > 0, (1.15)

where M2 = max {1, k+
√

l2 + m2 + n2. In view of the Parceval equality, we obtain the desired

a priori estimate for the solutions of Problem I at last:

∫

Rn

Ĵ0(t)dξ =

∫

Rn+2
+

{u2(t, x, y, z) + u2
x(t, x, y, z)+

+u2
y(t, x, y, z) + u2

t (t, x, y, z) + |ζu(t, x, y, z)|2}dxdydz ≤

≤ M1M2e
M1t

∫

Rn+2
+

{ϕ2(x, y, z) + ϕ2
x(x, y, z)+

+ψ2(x, y, z) + ϕ2
y(t, x, y, z) + |ζϕ(x, y, z)|2}dxdydz, t > 0

or
‖u(t)‖2

W 1
2
(Rn+2

+
)
+ ‖ut(t)‖2

L2(Rn+2
+

)
≤

≤ M1M2e
M1t{‖ϕ‖2

W 1
2
(Rn+2

+
)
+ ‖ψ‖2

L2(R
n+2
+

)
}, t > 0 (1.16)

Here W 1
2 is the Sobolev space (see [5]).

Remark 1.4. Replacement (1.5) and Fourier transform are just an auxiliary expedient.
Therefore estimate (1.16) also holds true for initial problem (1.1)–(1.3) provided that ULC
(1.4) is fulfilled.

2. Mixed problem for the wave equation

the complex coefficients case

Let in boundary condition (1.2) the coefficients a, b, c1, . . . , cn be complex numbers: a =
a′ + ia′′, b = b′ + ib′′, ck = c′k + ic′′k, k = 1, n. Without loss of generality, we will assume that
c′′n 6= 0. In terms of coefficients of boundary condition (1.2) ULC can be formulated in rather
sophisticated way (see [27]), and this situation is not discussed here.

Once again we will try to simplify initial problem (1.1)–(1.3) by a replacement of operators.
To this end, first we turn the vector (b′′, c′′1, . . . , c′′n) to make all its components, except for
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the first one, equal to zero and then turn the vector (c̃′1, . . . , c̃′n) (its components are defined
below). As a consequence, problem (1.1)–(1.3) can be reduced to the following canonical form.

Problem II. We seek the solution of the wave equation

utt − uxx − uyy − ∆zu = 0, t > 0, (x, y, z) ∈ Rn+2
+ , (1.1)

which satisfy at x = 0 the boundary condition

ut − aux − b̃uy − ˜̃c1uz1
= 0, t > 0, (y, z) ∈ Rn+1, (2.1)

and at t = 0 the initial data (1.3′). Here b̃ = b̃′ + ib̃′′, and

b̃′′ = sign(c′′n)
√

(b′′)2 + |c′′|2, b̃′ =
b′b′′ + (c′, c′′)

b̃′′
,

c
′ = (c′1, . . . , c′n), c

′′ = (c′′1, . . . , c′′n),

˜̃c1 = sign(c̃′n)|c̃′|, c̃
′ = (c̃′1, . . . , c̃′n),

c̃′n = sign(c′′n)
c′′n−1c

′

n − c′n−1c
′′

n√
(c′′n−1)

2 + (c′′n)2
,

c̃′k =

c′k−1

n∑
j=k

(c′jc
′′

j ) − c′k−1

n∑
j=k

(c′′j )
2

√
n∑

j=k−1

(c′′j )
2

n∑
j=k

(c′′j )
2

, k = 1, n − 1,

(c0 = b). In what follows we will again denote b̃, ˜̃c1 by b and c1. Note that u, ϕ, ψ are
complex-valued functions.

Remark 2.1. Following [27], we formulate ULC for Problem II as the requirement of the
positive definiteness for the matrix made up from the coefficients of boundary condition (2.1):




a′ 0 −Re(ab̄) −a′c1

0 a′ ib′′ 0

−Re(ab̄) −ib′′ a′ 0

−a′c1 0 0 a′




> 0,

i.e. 



a′ > 0,

(a′)2 − (b′′)2 − (Re(ab̄))2 > 0,

(1 − c2
1)[(a

′)2 − (b′′)2] − (Re(ab̄))2 > 0.

(2.2)

It follows from (2.2), for example, that c2
1 < 1.

Remark 2.2. In Problem II we make the following replacement of operators τ, ζ1:

τ =
1√

1 − c2
1

{τ ′ + c1ζ
′

1}, ζ1 =
1√

1 − c2
1

{c1τ
′ + ζ ′

1},

or

τ ′ =
1√

1 − c2
1

{τ − c1ζ1}, ζ ′

1 =
1√

1 − c2
1

{ζ1 − c1τ},
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Then the relations

τ 2 − ξ2 − η2 −
n∑

k=1

ζ2
k = (τ ′)2 − ξ2 − η2 − (ζ ′

1)
2 −

n∑

k=2

ζ2
k ,

τ − aξ − bη − c1ζ1 =
√

1 − c2
1τ

′ − aξ − bη

are valid. With these relations taken into account, Problem II can be formulated as

{(τ ′)2 − ξ2 − η2 − (ζ ′

1)
2 −

n∑

k=2

ζ2
k}u = 0, t > 0, (x, y, z) ∈ Rn+2

+ ,

{τ ′ − âξ − b̂η}u = 0, t > 0, x = 0, (y, z) ∈ Rn+1. (2.1′)

Here

â =
a√

1 − c2
1

, b̂ =
b√

1 − c2
1

.

In Problem II we carry out the Fourier transform with respect to the variables zk, k = 2, n.
Then we obtain the problem

{(τ ′)2 − ξ2 − η2 − (ζ ′

1)
2 + 4π2|ξ′|2}û = 0, (1.1′′)

t > 0, (x, y, z1) ∈ R3
+,

{τ ′ − âξ − b̂η}û = 0, t > 0, x = 0, (y, z1) ∈ R2, (2.1′′)

û = ϕ̂(x, y, z1, ξ
′), ût = ψ̂(x, y, z1, ξ

′), (x, y, z) ∈ R3
+. (1.3′′)

Here

û = û(t, x, y, z1, ξ
′) =

∫

Rn−1

e−2πi(z′,ξ′)u(t, x, y, z1, z
′)dz′

are Fourier transform of the function u, ξ′ = (ξ2, . . . , ξn), z
′ = (z2, . . . , zn), ϕ̂, ψ̂ are Fourier

transforms of the functions ϕ and ψ (see (1.3)).
Following [5, 17, 27], for the vector

U =




τ ′û

ξû

ηû

ζ ′

1û




we write the corresponding symmetric system (by direct calculations one can easily obtain the
validity of this system on the solutions (1.1)):

{Ãτ ′ − Bξ − Cη − C̃1ζ
′

1}U + 4π2|ξ′|2û ~F = 0, (2.3)

or
{Aτ − Bξ − Cη − C1ζ1}U + 4π2|ξ′|2ûF = 0, (2.3′)

where

Ã =

(
A0 0
0 k

)
, B =

(
B0 0
0 −l

)
, C =

(
C0 0
0 −m

)
,
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C̃1 =

(
O3 F

F ∗ 0

)
, F =

(
F

0

)
;

the matrices A0, B0, C0, the vector F are described above (see the section 1).

A =
1√

1 − c2
1

{c1C̃1 + Ã} > 0 if H > 0,

i.e., k > 0, k2 − l2 − m2 − n2 > 0 (c2
1 < 1!);

C1 =
1√

1 − c2
1

{c1Ã + C̃1}.

System (2.3′) can also be rewritten as follows:

{Āτ − B̄ξ − C̄η − C̄1ζ1}Ū + 4π2|ξ′|2ûF = 0, (2.3′′)

Multiply system (2.3′) scalarly by Ū and system (2.3′′) by U and sum up the expressions:

(Ū, AU)t − (Ū, BU)x − (Ū, CU)y − (Ū, C1U)z1
+

+4π2|ξ′|2
{ k√

1 − c2
1

(|û|2)t −
kc1√
1 − c2

1

(|û|2)z1
+ l(|û|2)x + m(|û|2)y

}
= 0. (2.4)

We integrate (2.4) over the domain R3
+, assuming that |U|2 = (Ū,U) → 0, |û|2 → 0 as r → ∞

where r =
√

x2 + y2 + z2
1 . In the end, we obtain

d

dt
Ĵ1(t) +

∫

R2

{(Ū, BU) − 4π2|ξ′|2l|û|2}
∣∣
x=0

dydz1 = 0. (2.5)

Here

Ĵ1(t) =

∫

R3
+

{(Ū, AU) +
k√

1 − c2
1

4π2|ξ′|2l|û|2}dxdydz1.

The form (Ū, AU) > 0, if H > 0. The form

(Ū, BU)
∣∣
x=0

= (Ū′, B0U
′)
∣∣
x=0

− l|ζ ′

1û|2
∣∣
x=0

,

where

U
′ =




τ ′û

ξû

ηû


 .

And the form

(Ū′, B0U
′)
∣∣
x=0

= −(V̄II , [S∗H + HS]VII)
∣∣
x=0

,

where

S =


 − 2â

1 + b̂
−1 − b̂

1 + b̂
1 0


 , V =

(
V

I

V
II

)
= T0U

′.
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Note that if ULC (2.2) is true, the matrix S is the Hurwitz one. Hence the Lyapunov matrix
equation

S∗H + HS = −G (2.6)

is uniquely solvable with respect to H for any Hermitian matrix G = G∗ > 0, and H = H∗ > 0.
Then

(Ū′, B0U
′)
∣∣
x=0

= −(V̄II , GV
II) > 0. (2.7)

Remark 2.3. As in the section 1, we can show that l > 0. Let

H−1 =

(
h1 h2

h̄2 h3

)
.

Then equation (2.6) can be rewritten as

H−1S∗ + SH−1 = −H−1GH−1.

Since

H−1S∗ + SH−1 =

(
−2h1Res1 − 2Re(h2s̄2) h1 − s1h2 − s2h3

h1 − s̄1h̄2 − s̄2h3 h2 + h̄2

)
< 0,

where s1 =
2â

1 + b̂
, s2 =

1 − b̂

1 + b̂
, the inequality 2Reh2 < 0 is true. It is easy to show that

Reh2 =
l

k2 − l2 − m2 − n2
, i.e. l < 0.

In view of (2.7) and Remark 2.3, (2.5) yields

d

dt
Ĵ1(t) ≤ 0. (2.8)

Further reasonings are analogous to that presented at the end of section 1. That leads us to
estimate (1.16) again. Remark 1.4 from section 1 remains also true.

In fact, since
(Ū, AU) = (W̄, ÂW),

where

U = ΓW, Γ =
1

d̂




1 0 0 −c1

0 d̂ 0 0

0 0 d̂ 0
−c1 0 0 1


 ,

W =




τ û

ξû

ηû

ζ1û


 , d̂ =

√
1 − c2

1, Â = ΓAΓ;

then
λmin(Â)(W̄,W) ≤ (Ū, AU) ≤ λmax(Â)(W̄,W). (2.9)

Here λmin(Â), λmax(Â) are minimal and maximal eigen-values of matrix Â. Since

d

dt

{∫∫

R3
+

∫
|û|2dxdydz1

}
≤ Ĵ0(t), (2.10)
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summing up (2.8) and (2.10), in view of (2.9), we finally obtain

d

dt

{
Ĵ1(t) +

∫∫

R3
+

∫
|û|2dxdydz1

}
≤ Ĵ0(t) ≤

≤ M3

{
Ĵ1(t) +

∫∫

R3
+

∫
|û|2dxdydz1

}
. (2.11)

Here

Ĵ0(t) =

∫∫

R3
+

∫
{|W|2 + (4π2|ξ′|2 + 1)|û|2}dxdydz1,

M3 = max
{

1,
1

λmin(Â)

}
.

It follows from (2.11):
Ĵ0(t) ≤ M3M4Ĵ0(0)eM3t, t > 0, (2.12)

where M4 = max {1, λmax(Â)}. Regarding the Parceval equality, from (2.12) we obtain the
desired a priori estimate for the solutions of Problem II in the form of (1.6).

Remark 2.4. The matrix Â looks like

Â =




k̃ l m −k̃c1

l k̃ iñ 0

m −iñ k̃ 0

−k̃c1 0 0 k̃


 , k̃ =

k

d̂
, ñ =

n

d̂
(Â > 0).

Then
λmin(Â) = k̃ − Q, λmax(Â) = k̃ + Q,

where

Q =

√√√√q0 +
√

q2
0 − 4ñ2k̃2c2

1

2
, q0 = m2 + ñ2 + l2 + k̃2c2

1.

3. Mixed problem for the wave equation

in a domain with a corner

In this section, the mixed problem for the wave equation in the domain

t > 0, (x, y, z) ∈ Rn+2
++ , n ≥ 1

is studied (the case n = 0 has been considered in [4, 5]):

utt − uxx − uyy − ∆zu = 0 at t > 0, x > 0, y > 0, (3.1)

ut − aux − buy − (c, ζu) = 0 at x = 0, (3.2)

ut − αuy − βux − (d, ζu) = 0 at y = 0, (3.3)
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u = ϕ(x, y, z), ut = ψ(x, y, z) at t = 0. (3.4)

Here d = (d1, . . . , dn)T ; a, b, ck, α, β, dk, k = 1, n are real numbers. Without loss of generality,
we will assume cn 6= 0; Rn+2

++ = {(x, y, z) : x > 0, y > 0, z ∈ Rn}.
Following the idea of section 1, we simplify problem (3.1)–(3.4) by an appropriate replace-

ment of the initial differential operators. For this purpose let us first turn the vector c, making
all its components equal to zero except for the first one. Then we make the analogous turn of the
vector (d̃2, . . . , d̃n) (the components of this vector will be defined below). As a consequence,
the problem (3.1)–(3.4) can be put in the following canonical form.

Problem III. We seek the solution of the wave equation

utt − uxx − uyy − ∆zu = 0, t > 0, (x, y, z) ∈ Rn+2
++ , (3.1′)

satisfying at x = 0 and y = 0 the boundary conditions

ut − aux − buy − c̃1uz1
= 0, t > 0, (y, z) ∈ Rn+1

+ , (3.2′)

ut − αuy − βux − d̃1uz1
− d̃2uz2

= 0, t > 0, (y, z) ∈ Rn+1
+ , (3.3′)

and at t = 0 the initial data (3.1). Here

c̃1 = sign(cn)|c|, d̃1 = sign(cn)
(c,d)

|c| , d̃n = sign(cn)
dncn−1 − dn−1cn√

c2
n−1 + c2

n

,

d̃k =

ck−1

n∑
j=k

(cjdj) − dk−1

n∑
j=k

c2
j

√
n∑

j=k

c2
j ·

n∑
j=k−1

c2
j

, k = 2, n − 1,

˜̃
d2 = sign(d̃n)|d̃′|, d̃

′ = (d̃2, . . . , d̃n).

In the subsequent discussion c̃1, d̃1,
˜̃
d2 will be again denoted as c1, d1, d2. In addition, we will

assume d2 6= 0.
Remark 3.1. ULC on the boundary x = 0 for Problem III can be written as (see (1.4)):

a > 0, b2 + c2
1 < 1, (3.5)

and for the boundary y = 0 as follows:

α > 0, β2 + d2
1 + d2

2 < 1. (3.6)

Remark 3.2. In Problem III we make the following replacement of the operators τ, ζ1,2:




τ

ζ1

ζ2


 = T




τ ′

ζ ′

1

ζ ′

2


 ,

where T = (tkj), k, j = 1, 3 is the matrix of real coefficients tkj. We will assume that the
following relations hold:

τ 2 − ζ2
1 − ζ2

2 = (τ ′)2 − (ζ ′

1)
2 − (ζ ′

2)
2,
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τ − c1ζ1 = rτ ′ − r1ζ
′

1,

τ − d1ζ1 − d2ζ2 = rτ ′ − r2ζ
′

1,

where r, r1,2 are certain constants which will be defined below. Then for the coefficients of
matrix T and the quantities r, r1,2 we obtain the following system:

t211 − t221 − t231 = 1,

t212 − t222 − t232 = −1,

t213 − t223 − t233 = −1,

t11t12 − t21t22 − t31t32 = 0,

t11t13 − t21t23 − t31t33 = 0,

t12t13 − t22t23 − t32t33 = 0,

t11 − c1t21 = r,

t12 − c1t22 = −r1,

t13 − c1t23 = 0,

t11 − d1t21 − d2t31 = r,

t12 − d1t22 − d2t32 = −r2,

t13 − d1t23 − d2t33 = 0.

Solving this system, we find:

t13 = c1t23, t33 = ρt23, t223 =
1

∆
, ∆ = 1 − c2

1 + ρ2, ρ =
c1 − d1

d2

;

t12 =
c1r

∆
, t11 = r

1 + ρ2

∆
, t31 =

c1rρ

∆
, r2 =

∆

1 + ρ2
;

t21 = 0, t22 = − gρ

1 + ρ2
, t32 =

g

1 + ρ2
,

r1 = − c1ρg

1 + ρ2
, g =

r2 − r1

d2

, g2 = 1 + ρ2.

The matrix T−1 looks like

T−1 =




1

r
− c1

r(1 + ρ2)
− c1ρ

r(1 + ρ2)

0 −ρ
g

1
g

− c1

∆t23

1

∆t23

ρ

∆t23




.

Due to all the above stated, Problem III can be reformulated as

{(τ ′)2 − ξ2 − η2 − (ζ ′

1)
2 − (ζ ′

2)
2 −

n∑
k=3

ζ2
k}u = 0, t > 0, (x, y, z) ∈ Rn+2

++ ; (3.1′′)
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{rτ ′ − aξ − bη − r1ζ
′

1}u = 0, t > 0, x = 0, (y, z) ∈ Rn+1
+ ; (3.2′′)

{rτ ′ − αξ − βη − r2ζ
′

1}u = 0, t > 0, y = 0, (x, z) ∈ Rn+1
+ . (3.3′′)

We carry out the Fourier transform with respect to the variables zk, k = 3, n in Problem III.
Then we obtain

{(τ ′)2 − ξ2 − η2 − (ζ ′

1)
2 − (ζ ′

2)
2 + 4π2|ξ′′|2}û = 0, t > 0, (x, y, z1, z2) ∈ R4

++; (3.1′′′)

{rτ ′ − aξ − bη − r1ζ
′

1}û = 0, t > 0, x = 0, (y, z1, z2) ∈ R3
+; (3.2′′′)

{rτ ′ − αη − βη − r2ζ
′

1}û = 0, t > 0, y = 0, (x, z1, z2) ∈ R3
+. (3.3′′′)

û = ϕ̂(x, y, z1, z2, ξ
′′), ût = ψ̂(x, y, z1, z2, ξ

′′), (x, y, z1, z2) ∈ R4
++. (3.4′)

Here

û = û(t, x, y, z1, z2, ξ
′′) =

∫

Rn−2

e−2πi(z′′,ξ′′)u(t, x, y, z1, z2, z
′′)dz′′

is Fourier transform of the function u, ξ′′ = (ξ3, . . . , ξn), z
′′ = (z3, . . . , zn).

For the vector

U =




τ ′û

ξû

ηû

ζ ′

1û

ζ ′

2û




we write down the following symmetric system (its validity can be easily verified by the straight-
forward calculations):

{Ãτ ′ − Bξ − Cη − C̃1ζ
′

1 − C̃2ζ
′

2}U + 4π2|ξ′′|2ûF = 0, (3.7)

or
{Aτ − Bξ − Cη − C1ζ1 − C2ζ2}U + 4π2|ξ′′|2ûF = 0, (3.7′)

where

Ã =

(
A0 0
0 k

)
, B =

(
B0 0
0 −l

)
, C =

(
C0 0
0 −m

)
,

C̃1 =

(
D0 0
0 −n

)
, C̃2 =

(
O4 F

F ∗ 0

)
, F =

(
F

0

)
,

A0 =




k l m n

l k 0 0
m 0 k 0
n 0 0 k


 , B0 =




l k 0 0
k l m n

0 m −l 0
0 n 0 −l


 ,

C0 =




m 0 k 0
0 −m l 0
k l m n

0 0 n m


 , D0 =




n 0 0 k

0 −n 0 l

0 0 −n m

k l m n


 ,

F =




k

l

m

n


 , A =

1

r
Ã +

c1

∆t23
C̃2,
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C1 =
c1

r(1 + ρ2)
Ã − ρ

g
C̃1 +

1

∆t23
C̃2, C2 =

c1ρ

r(1 + ρ2)
Ã +

1

g
C̃1 +

ρ

∆t23
C̃2;

k, l,m, n, are real constants. Note that the matrix A > 0 if k > 0, k2 − l2 −
−m2 − n2 > 0 and r =

√
∆

1 + ρ2 , r > 0. Rewrite system (3.7′) as

{Aτ − Bξ − Cη − C1ζ1 − C2ζ2}Ū + 4π2|ξ′′|2 ¯̂uF = 0. (3.7′′)

Multiply scalarly system (3.7′) by Ū, and system (3.7′′) by U , and sum up the expressions:

(Ū, AU)t − (Ū, BU)x − (Ū, CU)y − (Ū, C1U)z1
− (Ū, C2U)z2

+

+4π2|ξ′′|2
{k

r

[
(|û|2)t −

c1

1 + ρ2
(|û|2)z1

− c1ρ

1 + ρ2
(|û|2)z2

]
+

+l(|û|2)x + m(|û|2)y +
n

g
[−ρ(|û|2)z1

+ (|û|2)z2
]
}

= 0. (3.8)

Integrate (3.8) over the domain R4
++, assuming that |U|2 → 0, |û|2 → 0 at r̃ → ∞, where

r̃ =
√

x2 + y2 + z2
1 + z2

2 . In the end, we obtain

d

dt
Ĵ1(t) +

∫∫

R3
+

∫
{(Ū, BU) − 4π2|ξ′′|2l|û|2}

∣∣
x=0

dydz1dz2+

+

∫∫

R3
+

∫
{(Ū, CU) − 4π2|ξ′′|2m|û|2}

∣∣
y=0

dxdz1dz2 = 0. (3.9)

Here

Ĵ1(t) =

∫

R4
++

{
(Ū, AU) +

k

r
4π2|ξ′′|2|û|2

}∣∣
x=0

dxdydz1dz2.

The form (Ū, AU) > 0 if k > 0, k2 − l2 − m2 − n2 > 0. The form

(Ū, BU)
∣∣
x=0

= (Ū′, B0U
′)
∣∣
x=0

− l|ζ ′

2û|2
∣∣
x=0

.

Analogously, the form

(Ū, CU)
∣∣
y=0

= (Ū′, C0U
′)
∣∣
y=0

− m|ζ ′

2û|2
∣∣
y=0

.

Here

U
′ =




τ ′û

ξû

ηû

ζ ′

1û


 .

In view of (3.2′′′), (3.3′′′), the conditions

(Ū′, B0U
′)
∣∣
x=0

> 0,

(Ū′, C0U
′)
∣∣
y=0

> 0
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can be reformulated as the requirement of the positive definiteness for the following matrices:




2kâ + l(â2 + 1) b̂(lâ + k) + m ĉ(lâ + k) + n

b̂(lâ + k) + m −l(1 − b̂2) lb̂ĉ

ĉ(lâ + k) + n lb̂ĉ −l(1 − ĉ2)


 > 0 (3.10)

â =
a

r
, b̂ =

b

r
, ĉ =

r1

r
,




−m(1 − β̂2) β̂(mα̂ + k) + l mβ̂γ̂

β̂(mα̂ + k) + l 2kα̂ + m(α̂2 + 1) γ̂(mα̂ + k) + n

mβ̂γ̂ γ̂(mα̂ + k) + n −m(1 − γ̂2)


 > 0 (3.11)

α̂ =
α

r
, β̂ =

β

r
, γ̂ =

r2

r
.

Besides, we require

k > 0, m < 0, l < 0, k2 − m2 − l2 − n2 > 0. (3.12)

Then with regard to (3.10), (3.11), (3.12) it follows from (3.9) that

d

dt
Ĵ1(t) ≤ 0. (3.13)

Further reasonings are analogous to that at the end of the sections 1, 2. Actually, since

(Ū, AU) = (W̄, ÂW),

where
U = ΓW, Â = Γ∗AΓ,

Γ =




1

r
0 0 − c1

r(1 + ρ2)
− c1ρ

r(1 + ρ2)
0 1 0 0 0
0 0 1 0 0

0 0 0
ρ

g

1

g

− c1

∆t23
0 0

1

∆t23

ρ

∆t23




,

W =




τ û

ξû

ηû

ζ1û

ζ2û




,

then
λmin(Â)(W̄,W) ≤ (Ū, AU) ≤ λmax(Â)(W̄,W). (3.14)

Since
d

dt

{ ∫

R4
++

|û|2dxdydz1dz2

}
≤ Ĵ0(t), (3.15)
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summing up (3.13), (3.15) and using (3.14), we finally obtain

d

dt

{
Ĵ1(t) +

∫

R4
++

|û|2dxdydz1dz2

}
≤ Ĵ0(t) ≤

≤ M5

{
Ĵ1(t) +

∫

R4
++

|û|2dxdydz1dz2

}
. (3.16)

Here

Ĵ0(t) =

∫

R4
++

{|W|2 + 4π2|û|2|ξ′′|2 + |û|2}dxdydz1dz2,

M5 = max
{

1,
1

λmin(Â)
,
k

r

}
.

From (3.16) it follows that

Ĵ0(t) ≤ M5M6Ĵ0(0)eM5t, t > 0, (3.17)

where M6 = max {1, λmax(Â), k
r }. Regarding the Parceval equality, from (3.17) we obtain in

the end the desired a priori estimate for the solutions of Problem III from (1.16). Remark 1.4
from section 1 remains true.

Remark 3.3. A priori estimate (3.17) was obtained under conditions that matrices (3.10),
(3.11) are positive definite and unequalities (3.12) hold. It has not been shown yet that ULC
(3.5), (3.6) are sufficient for the existance of such real numbers k, l,m, n that (3.12) is true and
the matrices (3.10), (3.11) are positive definite. The special examples have been considered in
the diploma thesis of A. A. Beljaev, a student of the Novosibirsk University.

4. Mixed problem for the vector wave equation

In this section, the mixed problem for the wave equation in the domain t > 0, (x, y, z) ∈ Rn+2
+ ,

n ≥ 1 is briefly discussed (the case n = 0 has been considered in [18]):

L(τ, ξ, η, ζ1, . . . , ζn)U = Utt − Uxx − Uyy − ∆zU = 0 at t > 0, x > 0; (4.1)

J1Ut − A1Ux − B1Uy = 0, at x = 0; (4.2)

U = Φ(x, y, z), Ut = Ψ(x, y, z) at t = 0. (4.3)

Here J1, A1, B1 are the constant complex matrices of order N .
Remark 4.1. We will assume that for problem (4.1)–(4.3) ULC holds. In terms of the

coefficients of boundary conditions (4.2) ULC can be written as follows (see [18]):
a) the matrix J1 + B1 is not degenerate,
b) all the eigen-values of the matrix

S =

(
−S1 −S2

IN ON

)
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lie strictly in the left semi-plane, i.e.

Reλi(S) < 0, i = 1, 2N.

Here S1 = 2(J1 + B1)
−1A1, S2 = (J1 + B1)

−1(J1 − B1). Note that the characteristic equation
for S

det(S − λI2N) = 0

can be written as
det(λ2IN + λS1 + S2) = 0.

In problem (4.1)–(4.3) we make the Fourier transform with respect to the variables zk,
k = 1, n. In the end, we obtain:

Ûtt − Ûxx − Ûyy + 4π2|ξ|2Û = 0, t > 0, (x, y) ∈ R2
+, (4.1′)

J1Ût − A1Ûx − B1Ûy = 0, t > 0, y ∈ R1, x = 0, (4.2′)

Û = Φ̂(x, y, ξ), Ût = Ψ̂(x, y, ξ), (x, y) ∈ R2
+. (4.3′)

For the vector

W =




Ût

Ûx

Ûy




we write the symmetric system

{A0τ − B0ξ − C0η}W + 4π2|ξ|2FÛ = 0. (4.4)

Here

A0 =




K L M

L K iN
M −iN K


 = T ∗

0 ·
(

H O2N

O2N H

)
· T0,

B0 =




L K iN
K L M

−iN M −L


 = T ∗

0 ·
(

O2N −H

−H O2N

)
· T0,

C0 =




M −iN K

iN −M L

K L M


 = T ∗

0 ·
(

−H O2N

O2N H

)
· T0,

F =




K

L

M


 , T0 =

1√
2




IN ON −IN

ON −IN ON

ON −IN ON

IN ON IN


 ,

H =

(
K − M −L − iN
−L + iN K + M

)
,

K, L,M,N are some arbitrary for the present Hermitian matrices of order N . System (4.4)
can also be written in the form

{Ā0τ − B̄0ξ − C̄0η}W̄ + 4π2|ξ|2F ¯̂
U = 0. (4.4′)
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Let multiply scalarly system (4.4) by W̄ and system (4.4′) by W. Sum up the expressions
obtained. In the end, we have:

(W̄, A0W)t − (W̄, B0W)x − (W̄, C0W)y+

+4π2|ξ|2{( ˆ̄
U, KÛ)t + ( ˆ̄

U, LÛ)x + ( ˆ̄
U,MÛ)y} = 0. (4.5)

Integrate (4.5) over R2
+, assuming that |W|2 = (W̄,W) → 0, |Û|2 → 0 as r → ∞ where

r =
√

x2 + y2. Thus, we obtain

d

dt
Ĵ1(t) +

∫

R1

{(W̄, B0W) − 4π2|ξ|2( ˆ̄
U, LÛ)}

∣∣∣
x=0

dy = 0. (4.6)

Here

Ĵ1(t) =

∫∫

R2
+

{(W̄, A0W) + 4π2|ξ|2( ˆ̄
U, KÛ)}dxdy.

Now we consider the forms (W̄, A0W) and (W̄, B0W)
∣∣
x=0

. The form

(W̄, A0W) =

(
V̄,

(
H O2N

O2N H

)
· V

)
=

= (V̄I , H · VI) + (V̄II , H · VII) > 0,

if H > 0. Here

V = T0 · W =

(
V

I

V
II

)
,

V
I =

1√
2

(
Ût − Ûy

−Ûx

)
, V

II =
1√
2

(
−Ûx

Ût + Ûy

)
.

We rewrite boundary conditions (4.2′) as:

V
I = S · VII , x = 0, (4.2′′)

The form

(W̄, B0W)
∣∣
x=0

=

(
V̄,

(
O2N −H

−H O2N

)
· V

) ∣∣
x=0

=

= −(V̄I , H · VII)
∣∣
x=0

− (V̄II , H · VI)
∣∣
x=0

= −(V̄II , [S∗H + HS] · VII)
∣∣
x=0

.

Let

S∗H + HS = −G,

where G = G∗ > 0 is a certain matrix. Then

(W̄, B0W)
∣∣
x=0

= (V̄II , G · VII)
∣∣
x=0

> 0. (4.7)

Now we assume that

L < 0. (4.8)
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Then from (4.6), in view of (4.7), (4.8), we obtain

d

dt
Ĵ1(t) ≤ 0. (4.9)

Since
d

dt

{∫∫

R2
+

(
¯̂
U, Û)dxdy

}
≤ Ĵ0(t), (4.10)

summing up (4.9) and (4.10), in the end we obtain

d

dt

{
Ĵ1(t) +

∫∫

R2
+

|Û|2dxdy

}
≤ Ĵ0(t) ≤ M7 ·

{
Ĵ1(t) +

∫∫

R2
+

|Û|2dxdy

}
. (4.11)

Here

Ĵ0(t) =

∫∫

R2
+

{|W|2 + (4π2|ξ|2 + 1)|Û|2}dxdy,

M7 = max

{
1,

1

λmin(A0)
,

1

λmin(K)

}
.

(4.11) yields:
Ĵ0(t) ≤ M7M8Ĵ0(0)eM7t, t > 0, (4.12)

where M8 = max {1, λmax(A0)}. With regard to the Parceval equality, from (4.12) we obtain
the desired a priori estimate for the solutions of problem (4.1)–(4.3):

‖U(t)‖2
W 1

2
(Rn+2

+
)
+ ‖Ut(t)‖2

L2(Rn+2
+

)
≤

≤ M7M8e
M7t

{
‖Φ‖2

W 1
2
(Rn+2

+
)
+ ‖Ψt‖2

L2(Rn+2
+

)

}
, t > 0.

Now we discuss the question of validity of equality (4.8). By virtue of the Lapunov theorem
(see [25]), ULC being true (see the Remark 4.1), the matrix equation

S∗H + HS = −G (4.13)

has the unique solution H = H∗ > 0 for any right-hand side G = G∗ > 0. Here

G =

(
G1 G2

G∗

2 G3

)
, H =

(
H1 H2

H∗

2 H3

)
,

G1,3 = G∗

1,3 > 0, H1,3 = H∗

1,3 > 0,

and

K = K∗ =
1

2
(H1 + H3),

M = M∗ =
1

2
(H3 − H1),

L = L∗ = −1

2
(H2 + H∗

2 ),
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N = N ∗ = − i

2
(H∗

2 − H2).

Rewrite the matrix equation (4.13) as

H1S1 + S∗

1H1 = G1 + H2 + H∗

2 ,

H∗

2S2 + S∗

2H2 = G3,

H3 − H1S2 − S∗

1H2 = −G2,

H3 − S∗

2H1 − H∗

2S1 = −G∗

2. (4.13′)

On the whole, the question of validity of (4.8) remains open. However, it is possible to point
out such boundary conditions (4.2) for which this question can be easily solved. Indeed, let
B1 = ON . Then S2 = IN , and second subsystem (4.13′) can be written as

H∗

2 + H2 = G3,

i.e.

L = −1

2
(H2 + H∗

2 ) = −1

2
G3 < 0.
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