ЧИСЛЕННЫЕ РАСЧЕТЫ ДВИЖЕНИЯ ПОРШНЯ ПРИ БЕЗУДАРНОМ СЖАТИИ КОНУСА С ИДЕАЛЬНЫМ ГАЗОМ*[†]

Т. Н. Бронина

Институт математики и механики УрО РАН Екатеринбург, Россия

Приведено описание методики численного построения формы подвижного поршня, обеспечивающего безударное сжатие идеального газа в конусе. Описано построение поля скоростей при безударном сжатии газа методом характеристик. Предложены алгоритмы, уточняющие сетку характеристик, построенную методом Массо. Приведены результаты методических расчетов, показывающих эффективность предлагаемых алгоритмов, а также значения давлений на заданные моменты времени в выделенных на поршне точках.

1. Введение

Процессы неограниченного безударного сжатия газов (НБСГ) интересны тем, что являются энергетически выгодными при получении больших плотностей сжатого газа и при этом не приводят к большому росту температуры и кинетической энергии [1]. В монографии [2] приведены оценки степени кумуляции при безударном сжатии плоского слоя, цилиндра и шара, а в [1, 3] описано построение процессов безударного сжатия газа, находящегося внутри призм, тетраэдров и конусообразных тел специальных форм. Показано, что при НБСГ в таких телах степень кумуляции существенно выше, чем при НБСГ в цилиндре и шаре.

В данной работе приводится описание методики численного построения формы подвижного поршня, обеспечивающего безударное сжатие идеального газа в конусе. Численно алгоритм построения формы поршня распадается на две относительно независимые вычислительные задачи, одна из которых — решение гиперболического уравнения второго порядка, описывающего поле скоростей, другая — решение системы обыкновенных дифференциальных уравнений для получения формы поршня. Задача о построении части профиля поршня по полю течений, построенному методом характеристик, сформулирована в [3, 4].

^{* ©} Т. Н. Бронина, 1996.

[†]Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, грант №95-01-00721.

2. Постановка задачи

В начальный момент времени t = 0 политропный газ покоится внутри тела вращения с образующей ABO (ось z — ось вращения, ||OB|| = 1, $OB \perp AB$) (рис. 1, a). Предполагается, что скорость звука в газе = 1. Угол α связан с показателем адиабаты γ соотношением $\tan \alpha = \sqrt{(2 - \gamma)/(\gamma + 1)}$ (случай согласованных α и γ).

Рис. 1. Схема сечения сжимаемого тела и положения поршня в промежуточный момент времени (a) и расчетной области при построении сетки характеристик (b).

Линия AB соответствует начальному положению подвижного поршня R_t , который с нулевой начальной скоростью начинает вдвигаться в газ. При безударном сжатии возмущенное движение является потенциальным с потенциалом скоростей $\Phi(t, z, r)$. Решение задачи о сжатии в области DGHFE строится [4] в классе конических автомодельных течений газа в переменных $\xi = z/\tau$, $\eta = r/\tau$. Уравнение конических течений для осесимметричного случая получено в [3] и имеет вид

$$\Psi_{\xi\xi}(\Psi_{\xi} + \xi)^{2} + 2\Psi_{\xi\eta}(\Psi_{\xi} + \xi)(\Psi_{\eta} + \eta) + \Psi_{\eta\eta}(\Psi_{\eta} + \eta)^{2} - (\gamma - 1)\left(\Psi - \xi\Psi_{\xi} - \eta\Psi_{\eta} - \frac{1}{2}\Psi_{\eta}^{2} - \frac{1}{2}\Psi_{\xi}^{2}\right)\left(\Psi_{\xi\xi} + \Psi_{\eta\eta} + \frac{\Psi_{\eta}}{\eta}\right) = 0,$$
(1)

где $\Phi = -\tau \Psi(\xi, \eta)$, $\tau = t - 1$.

В автомодельных координатах (ξ, η) области возмущений DGHFE (рис. 1, *a*) соответствует область B'H'G'A', линии GE соответствует G'E' (рис. 1, *b*). В области E'G'A' известно [4] точное решение, в области B'H'G'E' поле скоростей строится численно.

В работе [4] также указывается, что искомая подвижная поверхность поршня строится интегрированием на построенном поле скоростей (u_z, u_r) уравнения характеристик

$$\frac{dr}{d\tau} = u_r , \ \frac{dz}{d\tau} = u_z, \tag{2}$$

с начальными данными на кривой ABH. Тогда поверхность R_t , которая задается уравнением F(z,r,t) = 0 и удовлетворяет условию непротекания $F_z u_z + F_r u_r + F_t = 0$, можно в каждый фиксированный момент времени t "собрать" из характеристик (2), фиксируя их положение в момент t. Таким образом, построив течение с заданными свойствами, по (2) можно восстановить закон движения поршня, который бы обеспечил безударное сжатие газа.

3. Построение поля течений методом характеристик

Уравнение (1) — гиперболического типа во всей интересующей нас области за исключением точки H'. В области E'G'A' известно [4] точное решение. Далее описывается алгоритм построения поля течений в области B'H'G'E'. Характеристика H'G', заданная уравнением $\xi = (\eta + \cos^{-1} \alpha)/\tan \alpha$, является слабым разрывом, и на ней должны выполняться условия [3]

$$\Psi_{\xi} = 0 , \ \Psi_{\eta} = 0 , \ \Psi = -\frac{1}{\gamma - 1}.$$

Для согласованного случая уравнение характеристики G'E'имеет вид $\eta=-\xi\tan\alpha+\sqrt{3/(\gamma+1)}$ и на ней

$$\Psi = -\frac{2-\gamma}{\gamma+1}\xi^2 - \frac{1}{2}\eta^2 + 3\frac{\gamma-1}{\gamma+1}\xi_0\xi + \frac{3(\gamma-1)}{2(\gamma+1)}\xi_0^2 , \ \xi_0 = \frac{2\sqrt{2-\gamma}}{\sqrt{3}(\gamma-1)}.$$
(3)

Наличие двух известных характеристик, принадлежащих к разным семействам, а также необходимых условий на них позволяет решать в области B'H'G'E' задачу Гурса.

Подробное описание решения уравнения гиперболического типа методом характеристик дано, например, в [5]. Записав (1) в виде

$$A\Psi_{\xi\xi} + 2B\Psi_{\xi\eta} + C\Psi_{\eta\eta} = F,\tag{4}$$

где A, B, C, F — функции, зависящие от $\xi, \eta, \Psi_{\xi}, \Psi_{\eta}, \Psi$, для уравнения (4) легко получить уравнения характеристик и дифференциальные соотношения на них. Для численного построения характеристик использовался метод Массо [5], в основе которого лежит замена дифференциальных уравнений характеристик соответствующими конечно-разностными уравнениями. Численно это сводится к решению систем уравнений

$$\eta_{3}^{(1)} - \eta_{1} = \lambda_{11}^{(1)}(\xi_{3}^{(1)} - \xi_{1}),$$

$$\eta_{3}^{(1)} - \eta_{2} = \lambda_{22}^{(1)}(\xi_{3}^{(1)} - \xi_{2});$$

$$A_{1}[(\Psi_{\xi3}^{(1)} - \Psi_{\xi1}) + \lambda_{21}^{(1)}(\Psi_{\eta3}^{(1)} - \Psi_{\xi1})] - \Psi_{(1)}(\xi_{3}^{(1)} - \xi_{1}) = 0,$$

$$A_{2}[(\Psi_{\xi3}^{(1)} - \Psi_{\xi2}) + \lambda_{12}^{(1)}(\Psi_{\eta3}^{(1)} - \Psi_{\xi2})] - \Psi_{(2)}(\xi_{3}^{(1)} - \xi_{(2)}) = 0,$$

$$\Psi_{3}^{(1)} - \frac{\Psi_{1} - \Psi_{2}}{2} = \frac{1}{2}[\Psi_{\xi1}(\xi_{3}^{(1)} - \xi_{1}) + \Psi_{\eta1}(\eta_{3}^{(1)} - \eta_{1})] + \frac{1}{2}[\Psi_{\xi2}(\xi_{3}^{(1)} - \xi_{1}) + \Psi_{\eta2}(\eta_{3}^{(1)} - \eta_{1})], \quad (6)$$

где $(\xi_3^{(1)}, \eta_3^{(1)})$ — первое приближение значений координат искомой точки, $\xi_i, \eta_i, (i = 1, 2)$ — координаты точек, взятых на известных характеристиках разных семейств, $\Psi_i, \Psi_{\xi i}, \Psi_{\eta i}$ — значения функции и ее производных в этих точках, тангенсы наклонов характеристик λ_i вычисляются как $\lambda_i = B \pm \sqrt{B^2 - AC}/A, (i = 1, 2)$. В результате решения систем уравнений (5)–(6) получаем новую точку $(\xi_3^{(1)}, \eta_3^{(1)}, \Psi_3^{(1)}, \Psi_{\xi 3}^{(1)}, \Psi_{\eta 3}^{(1)})$ поля характеристик. В работе [5] приводится способ уточнения координат этой точки и значения функции и ее производных в полученной точке. Пересчитывая угловые коэффициенты по формулам

$$\lambda_{11}^{(2)} = \frac{1}{2} (\lambda_{11}^{(1)} + \lambda_{13}^{(1)}) , \ \lambda_{22}^{(2)} = \frac{1}{2} (\lambda_{22}^{(1)} + \lambda_{23}^{(1)}),$$

где второй нижний индекс обозначает номер точки, и решая систему (5), находим второе приближение координат (ξ_3^2, η_3^2) точки. Аналогично, пересчитывая коэффициенты уравнения (4) и решая систему (6) с новыми коэффициентами, находим $\Psi_{\xi3}^{(2)}, \Psi_{\eta3}^{(2)}, \Psi_3^{(2)}$. Процесс пересчета продолжается до выполнения условия

$$|\xi_3^{(j)} - \xi_3^{(j-1)}| < \varepsilon, |\eta_3^{(j)} - \eta_3^{(j-1)}| < \varepsilon,$$
(7)

но не более n_{ε} раз. В силу особенностей уравнения (1) описанный выше стандартный алгоритм построения сетки характеристик не позволил получить поле течений во всей области B'H'G'E'. Поэтому в эту стандартную методику введены два момента, позволяющие улучшить сетку характеристик, полученную по вышеописанной схеме.

4. Поворот системы координат

При возникновении в расчетах углов наклона характеристик, близких к $\pi/2$, возникает ситуация, при которой качество сетки либо ухудшается, либо счет вообще становится невозможен. В этом случае вычисления ведутся в системе координат, повернутой относительно исходной на угол φ , где φ вычисляется как $\varphi = |\alpha_{11} - \alpha_{22}|/2$, $\alpha_{ii} = \arctan(\lambda_{ii})$. Системы уравнений (5)–(6) решаются в новой системе координат и далее осуществляется возврат в старую систему координат. Определение момента перехода в другую систему координат происходит для каждой рассчитываемой точки сетки. Предельно допустимый наклон λ_p , по достижении которого применяется алгоритм поворота, устанавливается экспериментально.

Рис. 2. Поведение функции $\sin(u, s)$ вблизи стенки *s* для сеток с различными λ_p : 2.5 (*a*), 57.5 (*б*) и 100.5 (*в*).

В качестве примера различия в сетках, построенных с разными λ_p , приведем пример поведения функции $\sin(\bar{u}, \bar{s})$ (\bar{u} — вектор скорости течения, построенный по исследуемой сетке, \bar{s} — направляющий вектор условной стенки — линии H'B') на сетках с различными λ_p . На рис. 2 представлены графики зависимости $\sin(\bar{u}, \bar{s})$ от η при различных допустимых λ_p . При построении сетки для тестирования выбраны $\lambda_p = 2.5$ (рис. 2, *a*), 57.5 (рис. 2, *б*) и 100 (рис. 2, *в*). Уже при сравнительно малых η ($\eta < -2$) для $\lambda_p = 57.5$ наблюдается нарушение "гладкости" функции исследуемого угла.

5. Изменение шага расчетов

Линии характеристик, выходящие из точек прямой G'E', оканчиваются в окрестности прямой G'H', и длина каждой новой характеристики этого семейства больше предыду-

щей (рис 3, *a*), то есть от точки к точке увеличивается первоначальный шаг расчета по характеристикам этого семейства. Естественно, на некотором этапе расчетов возникает необходимость корректировки шага расчета $h_{G'H'}$. Сигналом к изменению шага служит невыполнение неравенств (7) при построении какой-либо точки сетки. Итак, если при заданных ε и числе итераций n_{ε} неравенства (7) не выполнены за заданные n_{ε} шагов, то происходит уменьшение шага расчета по характеристике семейства G'H'. Делается это добавлением точек на характеристику с помощью линейной интерполяции. Например, при расчетах координат точки с номером $j_0 + 1$ (см. рис. 1, δ) неравенства (7) оказались не выполнены за заданное число шагов. Тогда, начиная с точки с номером j_0 характеристики $G'_2H'_2$, вставляются дополнительные точки с координатами

$$\xi_g = \frac{\xi_{j_0+k} + \xi_{j_0+k+1}}{2}, \quad \eta_g = \frac{\eta_{j_0+k} + \eta_{j_0+k+1}}{2}, \quad k = 0, 1, \dots, M - 1.$$

Все точки характеристики $G'_2H'_2$ заново перенумеровываются и строится характеристика $G'_3H'_3$ по характеристике $G'_2H'_2$ с добавленными точками (см. рис. 1, б). Если соотношение (7) не выполняется уже для первой расчетной точки характеристики $G'_3H'_3$, то необходимо менять шаг и по характеристике G'E'.

Рис. 3. Начальный фрагмент сетки характеристик при решении задачи Гурса (a) и поле скоростей в области H'G'E' (b).

С целью выяснения степени улучшения качества сеток при уменьшении величины первоначальных шагов проведены расчеты относительных погрешностей $E\eta o, Epo, Eqo$ координаты η и производных расчетной функции для сеток с различными значениями первоначальных шагов. На рис. 4 представлены результаты сравнения по координате η сеток характеристик, полученных при различных величинах первоначальных шагов по обеим характеристикам, как с применением алгоритма изменения шага расчета, так и без него. Для сравнения выбрано четыре сетки. Для первой из них по характеристике G'H'выбиралось 32 точки (длина шага $h_{G'H'} \approx 0,09$), по характеристике G'E' длина шага $h_{G'E'} \approx 0,15$. Для последующих сеток шаг по каждой из характеристик выбирался вдвое меньше, чем для предыдущей сетке, так что для четвертой сетки на G'H' задано 256 точек ($h_{G'H'} \approx 0,011$), шаг $h_{G'E'} \approx 0,19$. За контрольную характеристику взята характеристика семейства G'H', выходящая с G'E', для которой $\eta = -52$ на G'E'. Относительные погрешности Epo, Eqo, Eyo вычислялись следующим образом:

$$E\eta o^{i,i+1} = \frac{|\eta_j^i - \eta_k^{i+1}|}{|\eta_j^i|} , \ Ep o^{i,i+1} = \frac{|\Psi_{\xi j}^i - \Psi_{\xi k}^{i+1}|}{|\Psi_{\xi j}^i|} , \ Eq o^{i,i+1} = \frac{|\Psi_{\eta j}^i - \Psi_{\eta k}^{i+1}|}{|\Psi_{\eta j}^i|}, \tag{8}$$
$$i = 1, 2, 3, 4,$$

здесь i — номер сетки, j — номер точки сетки i, k — номер точки на сетке i + 1, соответствующий j-й точке сетки i.

Рис. 4. Относительная погрешность $E\eta o$ для сеток, полученных с применением алгоритма деления шага (сплошные кривые 1, 2, 3) и без уменьшения первоначальных шагов расчета (пунктирные кривые 1, 2, 3).

На рис. 4 представлены результаты поточечного сравнения сеток по формулам (8) для $E\eta o$: *i*-й кривой, изображенной сплошной линией, соответствует относительная погрешность при сравнении *i*-й и *i* + 1-й сеток, полученных без деления шага; кривым, изображенным пунктиром, соответствует относительная погрешность при сравнении сеток, построенных с делением шагов. По оси абсцисс — координаты ξ точек контрольной характеристики. Кроме явного уменьшения погрешности расчетов изменение шага непосредственно в ходе расчетов позволяет получить более полную картину поля скоростей в области прямой H'B' (рис. 3, δ). На рис. 3, *a* и 3, δ показаны начальный фрагмент сетки характеристик и поле течений для уравнения (1), построенные с применением всех вышеописанных алгоритмов. Для наглядности сетка характеристик построена с большими первоначальными шагами расчета, а в приводимом на рис. 3, б поле течений изображены не все расчетные точки.

6. Построение профиля сжимающего поршня

Профиль поршня строится интегрированием системы уравнений (2), где $u_r = -\Psi_{\xi}$, $u_z = -\Psi_{\eta}$ рассчитаны по полю характеристик уравнения (1). На рис. 1, *а* прямая AB — начальное положение поршня. Поршень вдвигается, сжимая газ к точке O. В момент τ_i положение поршня — линия $DEQ_j^i F$. На прямой AB выбирается K_Q точек $Q_j^0(z_j^0, r_j^0)$, $(j = 1, \ldots, K_Q)$. Фиксируется точка $Q_{j_0}^0$. Система (2) интегрируется при следующих начальных и граничных условиях:

$$au_0 = -1, \; u_r = 0, \; u_z = 0, \; r = r_{j_0}^0, \; z = z_{j_0}^0.$$

Для удобства записи нижний индекс далее опущен. Система уравнений (2) решается методом добавочного полушага [6]:

$$r_{i+\frac{1}{2}}^{j} = u_{r}^{j}(z_{i}, r_{i})\frac{h_{i}^{\tau}}{2} + r_{i}^{j} \quad z_{i+\frac{1}{2}}^{j} = u_{z}^{j}(z_{i}, r_{i})\frac{h_{i}^{\tau}}{2} + z_{i}^{j},$$

$$r_{i+1}^{j} = u_{r}^{j}(z_{i+\frac{1}{2}}, r_{i+\frac{1}{2}})h_{i}^{\tau} + r_{i}^{j} \quad z_{i+1}^{j} = u_{z}^{j}(z_{i+\frac{1}{2}}, r_{i+\frac{1}{2}})h_{i}^{\tau} + z_{i}^{j}, \quad i = 1, k_{\tau}.$$
(9)

Верхний индекс указывает на принадлежность к точке Q_j . Сделав k_{τ} шагов, получим множество точек $\{z_i^j, r_i^j\}_{i=1,k_{\tau}}$, которое описывает движение точки Q_j от момента $\tau = -1$ до $\tau = \tau_{k_{\tau}}$. Решив систему (9) k_Q раз, получаем k_Q наборов $\{\{z_i^j, r_i^j\}_{i=1}^{k_Q}\}_{j=1}^{k_Q}$. Тогда положение поршня на момент τ_i описывается множеством $\{z_i^j, r_i^j\}_{i=1}^{k_Q}$.

При решении системы уравнений (9) на каждом шаге необходимо знать

$$u_r(z_i, r_i) = -\Psi_\eta(\xi_i, \eta_i), \ u_z(z_i, r_i) = -\Psi_\xi(\xi_i, \eta_i).$$

Производные Ψ_{η} , Ψ_{ξ} вычисляются с помощью двумерной линейной интерполяции сетки характеристик. Для удобства изложения переобозначим $\Psi_{\eta} = q$, $\Psi_{\xi} = p$. Поле характеристик рассматривается как совокупность треугольников. Для интерполяции ищется треугольник, в котором лежит точка (ξ_i, η_i) . Если вершины этого треугольника обозначить через $(\xi_1, \eta_1), (\xi_2, \eta_2), (\xi_3, \eta_3)$, а значения производных в этих точках через $(p_1, q_1), (p_2, q_2), (p_3, q_3)$, то p_i вычисляются по формулам

$$p_{i} = a_{0} + a_{1}\xi_{i} + a_{2}\eta_{i},$$

$$a_{2} = \frac{\xi_{2}(p_{3} - p_{1}) + \xi_{1}(p_{2} - p_{3}) + \xi_{3}(p_{1} - p_{2})}{\xi_{2}(\eta_{3} - \eta_{1}) + \xi_{1}(\eta_{2} - \eta_{3}) + \xi_{3}(\eta_{1} - \eta_{2})},$$

$$a_{1} = \frac{p_{2} - p_{1} - a_{2}(\eta_{3} - \eta_{1})}{\xi_{2} - \xi_{1}}, \quad a_{0} = p_{1} - a_{1}\xi_{1} - a_{2}\eta_{2}.$$

Аналогично вычисляются q_i .

В переменных (ξ , η) расчетная область уходит на бесконечность, поэтому расчет в полной области составляется из фрагментов, каждый из которых рассчитывается по схеме решения задачи Гурса и сопряжен с предыдущим фрагментом по характеристике, выходящей с G'E'.

7. Численный пример расчета положений поршня

Расчет проведен для показателя адиабаты $\gamma = 1.66$. Для построения сетки характеристик задавалось 256 точек на характеристике G'H' и шаг $h_{\eta} = 0.026 G'E'$.

Время	P_{Q_1}	P_{Q_4}	P_{Q_9}	$P_{Q_{19}}$
0.6000	$8.353 \cdot 10^{-2}$	$8.632 \cdot 10^{-2}$	$1.242 \cdot 10^{-1}$	$9.365 \cdot 10^{-1}$
0.9650	7.172	$1.734 \cdot 10^{1}$	$9.857 \cdot 10^{2}$	$8.571 \cdot 10^{3}$
0.9900	$9.168 \cdot 10^{1}$	$1.743 \cdot 10^{3}$	$1.084 \cdot 10^{4}$	$9.337 \cdot 10^{5}$
0.9965	$7.244 \cdot 10^2$	$8.798\cdot 10^4$	$5.469 \cdot 10^{6}$	$4.757 \cdot 10^{7}$
0.9990	$7.718 \cdot 10^{3}$	$8.981 \cdot 10^{6}$	$5.582 \cdot 10^{8}$	$5.182 \cdot 10^{9}$

Значения давлений в 4-х точках на поршне в выделенные моменты времени

Для расчета положения поршня было выбрано $k_Q = 18$ точек. Форма поршня рассчитывалась на 387 моментов времени ($k_{\tau} = 387$). Конечный момент времени $\tau_{\text{кон}} = 0.001$ (t = 0.999). Движение точки A(D) (см. рис. 1, a) не рассчитывалось по сетке характеристик. Закон движения этой точки указан в [4].

Рис. 5. Положение сжимающего поршня на 6 моментов времени.

На рис. 5 изображены профили поршня на моменты $t_1 = 0.6$; $t_2 = 0.9$; $t_3 = 0.99$; $t_4 = 0.9965$; $t_5 = 0.999$. В таблице приведены значения давлений на указанные моменты времени. Давление вычислялось как

$$P = p_0 \left[\frac{c^2 \rho_0}{\gamma p_0} \right]^{\frac{\gamma}{\gamma - 1}}, \ p_0 = 0.03, \ \rho_0 = 0.05, \ \gamma = 1.66,$$
$$c^2 = (\gamma - 1) \left(\Psi - \xi \Psi_{\xi} - \eta \Psi_{\eta} - \frac{1}{2} \Psi_{\eta}^2 - \frac{1}{2} \Psi_{\xi}^2 \right).$$

Для каждого момента времени выписаны значения давлений в 4-х точках на поршне. На рис. 5 выделенные точки обозначены следующим образом: знак \bigwedge относится к точке Q_{19} на поршне, знак $\bigvee - \kappa$ точке Q_9 , знак $\mid - \kappa$ точке Q_4 , знак $\bullet - \kappa$ точке Q_1 . На рис. 5 эти точки показаны только для t = 0. Как уже отмечалось, в области E'G'A'известно точное решение [4]. Для оценки погрешности расчетов по методу характеристик в области E'G'A' были проведены расчеты построения формы поршня и с применением описанного выше метода по сеткам характеристик. При вычислении положения поршня для t = 0.999 для всех расчетных точек поршня за исключением точки H величины Ψ_{ξ}, Ψ_{η} определяются по области E'G'A'. Это позволило провести оценку относительной погрешности составляющих скорости по формулам, приведенным в [4]:

$$\Psi_{\xi} = \frac{-2(2-\gamma)\xi + 3(\gamma-1)\xi_0}{\gamma+1} , \ \Psi_{\eta} = -\eta , \ \xi_0 = \frac{2\sqrt{2-\gamma}}{\sqrt{(3)(\gamma-1)}}.$$

Значения Ψ_{ξ}, Ψ_{η} проверялись в точках с координатами (ξ, η) , соответствующих координатам (z, r) поршня. В результате проведенных расчетов для t = 0.999 относительная погрешность для u_z имеет порядок 10^{-5} , относительная погрешность для u_r — порядок 10^{-2} .

Отдельно остановимся на движении точки Q_1 . На линии OB не налагается никаких граничных условий и тем самым при сжатии не гарантируется, что точка Q_1 движется по стенке OB. Полученная в ходе расчетов картина поведения точки Q_1 (или F на рис. 1, a) представлена на рис. 6, где OB — предполагаемая стенка, точка 1 соответствует положению Q_1 в момент времени $t_1 = 0$, точка 2 — времени $t_2 = 0.355$, т. $3 - t_3 = 0.6$, т. $4 - t_4 = 0.77$, т. $5 - t_5 = 0.88$, т. $6 - t_6 = 0.965$, т. $7 - t_7 = 0.99$, т. $8 - t_8 = 0.9965$, т. $9 - t_9 = 0.999$. Отметим, что отклонение расчетной точки Q_1 от предполагаемой стенки сравнимо с точностью расчетов и может не давать истиной картины движения точки Q_1 , но течение вблизи этой точки и не влияет на образование струи сильного сжатия (см. таблицу).

Рис. 6. Движение точки $Q_1(F)$ вдоль предполагаемой стенки OB.

При решении уравнения (1) использовался комплекс программ решения уравнения 2-го порядка общего вида (4) с переменными коэффициентами, зависящими от τ , ξ , η , искомой функции и ее производных. Все вычислительные алгоритмы, уточняющие сетку характеристик, также рассчитаны для уравнения с произвольными коэффициентами. Чтобы воспользоваться предлагаемыми программами для решения методом характеристик уравнения 2-го порядка (в случае задания начальных данных по схеме задачи Гурса), необходимо задать уравнения двух характеристик разных семейств и начальные данные на них, коэффициенты A, B, C, F (уравнение (4)) в аналитическом виде и начальные величины шагов по заданным характеристикам. Комплекс программ позволяет решать методом характеристик и уравнения в случае задания исходных данных для 2-й смешанной задачи. По желанию пользователя предусмотрены возможности записи на диск получаемой сетки характеристик (или ее фрагментов), а также вывод фрагментов сетки и поля скоростей на экран в графическом режиме. Программы выполнены на Microsoft 5.1. Возможен счет на процессоре I860.

Список литературы

- [1] СИДОРОВ А. Ф. Некоторые оценки степени кумуляции энергии при плоском и пространственном безударном сжатии газа. Докл. АН СССР, **318**, №3, 1991, 548–552.
- [2] ЗАБАБАХИН Е. И., ЗАБАБАХИН И. Е. Явления неограниченной кумуляции. Наука, М., 1988.
- [3] Сидоров А. Ф. Оценки предельных степеней кумуляции энергии при безударном сжатии газа. Докл. АН СССР, **329**, №4, 1993.
- [4] СИДОРОВ А. Ф., ХАЙРУЛЛИНА О. Б. Процессы безударного конического сжатия и разлета газа. *ПММ*, **58**, Вып. 4, 1994, 81–92.
- [5] БЕРЕЗИН И. С., ЖИДКОВ Н. П. Методы вычислений. 2, Физматгиз, М., 1962.
- [6] БЕРЕЗИН И. С., ЖИДКОВ Н. П. Методы вычислений. 1, Физматгиз, М., 1962.

Поступила в редакцию 30 ноября 1995 г.