
Вычислительные технологии Том 21, № 4, 2016

A text mining system for creating electronic glossaries
with application to research of Church Slavonic language

N.Yu. Shokina, S. Mocken

Computing Center, Albert-Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
Corresponding e-mail: nina.shokina@gmail.com, susanne.mocken@rz.uni-freiburg.de

In this paper we present a text mining system for creating electronic glossaries with
application to research of Church Slavonic language. Preprocessing, core text mining
operation (pattern discovery), and postprocessing (automatic and manual lemmatiza-
tion) are described in detail. An original pattern recognition algorithm for the initial
discovery of text elements and the subsequent identification of the positions of tagged
elements (or sets of elements) within a TEI XML entry is presented. The application
of software design principles to the creation of our software is briefly described.

Keywords: digital humanities, text mining, pattern recognition, lemmatization,
software engineering, software design, TEI XML, Church Slavonic.

Introduction

Digital Humanities is the intersection between computing and humanities, currently being a
rapidly developing research area. The history of Digital Humanities started in 1949 [1], but
until now there is no standard definition for it. There even exists a web-site which provides
the definitions from participants of the so-called Day of Digital Humanities in 2009–2014 [2].
Every refresh of the page brings a new definition, and the creator of the web-site states
that the database contained 817 variants in January 2015. One frequently used definition
of Digital Humanities is given by an American scholar Kathleen Fitzpatrick: “For me it
has to do with the work that gets done at the crossroads of digital media and traditional
humanistic study. And that happens in two different ways. On the one hand, it’s bringing
the tools and techniques of digital media to bear on traditional humanistic questions. But
it’s also bringing humanistic modes of inquiry to bear on digital media. It’s a sort of moving
back and forth across those lines, thinking about what computing is, how it functions in our
culture, and then using those computing technologies to think about the more traditional
aspects of culture” [3].

Digital Humanities includes various interdisciplinary tasks, for instance, at the intersec-
tion of computer science and linguistics. The research of human cultural heritage entails
collecting a variety of materials (charters, manuscripts, books, etc.) and keeping them in an
appropriate place. Until a few years ago, archives and libraries were the main institutions
that provided access to older and contemporary documents. Doing research on site took and
still usually takes a lot of time and effort, especially if resources are either not available in

c© ICT SB RAS, 2016

3



4 N.Yu. Shokina, S. Mocken

one place or the research questions cover a huge field. These conditions have significantly
improved since more and more documents have been digitized and became freely accessible
via the World Wide Web. Providing searchable online databases not only contributes to pre-
serving cultural heritage and making it available to a wider audiences it facilitates scientific
research as well.

One of the tasks set for the BMBF (Bundesministeriums für Bildung und Forschung)
interdisciplinary project SlaVaComp (COMPutergestützte Untersuchung von VAriabilität
im KirchenSLAvischen) [4] was to enable research of the geographical and chronological
differentiation of Church Slavonic language between the 10th and 16th centuries. The
underlying data consists of fifteen Church Slavonic-Greek glossaries that cover various re-
gions and times. Transferring the data into an electronic database gives fast and readily
available answers to a great number of linguistic questions. The current work is one of the
first attempts to transform printed dictionaries into the digital XML format for further use
in the Slavonic studies.

The electronic glossaries are marked up using the Extensible Markup Language (XML) as
defined by the Text Encoding Initiative (TEI) [5] Guidelines for Electronic Text Encoding and
Interchange for representing the structural, renditional, and conceptual features of texts [6].
Once the files are created, they are stored in a database.

The process of transferring the data into machine-readable XML files proves to be a
complex task, as textual information (hyperlemmata, lemmata, grammatical information,
bibliographic information, etc.) has to be extracted from the original file, marked up prop-
erly, and written down into a new file. This task belongs to text mining, an area of computer
science “broadly defined as a knowledge-intensive process in which a user interacts with a
document collection over time with the help of a suite of analysis tools” [7]. Text mining can
be also described as an interdisciplinary field that is based on “information retrieval, data
mining, machine learning, statistics, and computational linguistics” [8].

A general architecture of a text mining system consists of four parts: preprocessing; core
mining operations; presentation layer components and browsing functionality; refinement
techniques (postprocessing) [7]. The present paper describes preprocessing, core text mining
operation, and one of postprocessing processes (namely, lemmatization), and leaves the full
and detailed description of the whole system to be covered in future publications. Yet, a
short description of the system is presented in Section 4 in order to give an idea of the
relevant positions of those parts, which are the topic of the present paper.

“Low-quality data will lead to low-quality mining results” [8], therefore, preprocessing
includes “all routines, processes, and methods required to prepare data for a text mining
system’s core knowledge discovery operations” [7]. In our task, preprocessing prepares the
original texts of glossaries, transforming them into the form which is best suited for the
subsequent core operations. Core text mining operations include “pattern discovery, trend
analysis, and incremental knowledge discovery algorithms” [7]. In the present work the
core operation is pattern discovery, and it includes not only the initial recognition of text
elements, but also the identification of the correct positions of tagged elements (or sets of
elements) in an entry.

The glossaries are based on word forms that occur in different manuscripts that in turn
originate from different regions. As a result, word forms with the same meaning can have
different graphical representations. This also applies to lemma forms used in some of the
glossaries. But how can these word forms are allocated to a single superordinate form? The
issue can be solved by assigning a normalized form — called “hyperlemma” — to every



A text mining system for creating electronic glossaries ... 5

Church Slavonic and Greek wordform. The normalized word forms are provided by [9]. This
process is called lemmatization and it allows finding all examples of a particular lexeme,
independently of their particular inflectional form, as they are used in a text [10]. Although
in many cases the hyperlemma is identical to the lemma, these word forms have to be checked
against special dictionaries [11 – 16] and could be corrected if necessary. In the present work,
lemmatization is done automatically by checking the forms against an electronic lexicon as
well as manually by a linguist.

In order to create efficient, robust and easily maintainable text mining software, software
design principles have to be used, which are the part of software engineering discipline.
The definition, given by the ISO/IEC/IEEE Systems and Software Engineering Vocabulary
(SEVOCAB), states that “software engineering is the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software” [17]. The
Guide to the Software Engineering Body of Knowledge (SWEBOK Guide) defines software
design as the analysis of software requirements in order to develop a software’s internal
structure that result in the description of the software architecture components sufficiently
detailed to enable their construction [18]. In the current paper we briefly describe the
application of some software design principles to the creation of our software.

The present paper is organized as follows. Section 1 describes the preprocessing of the
original texts of glossaries. An original algorithm for pattern recognition is presented in
Section 2. Section 3 is devoted to the realization of lemmatization. The entries from a
Church Slavonic-Greek glossary [19] are used for the explanation and illustration of concepts
and features throughout the sections listed above. Examples of application of the software
design principles to our software, its main modules, and the general structure of the text
mining system are given in Section 4. Finally, future perspectives are discussed in Section 4.

1. Preprocessing

In order to avoid time consuming initial digitization of printed material, the already existing
digital files with Church Slavonic-Greek glossaries, written in Microsoft Word binary file
format (.doc extension), were taken. These files were created around the year 2000 and used
as templates for the printed editions.

The .doc format contains a lot of additional formatting, which holds no information about
the contents of a glossary itself and can also make a text pattern recognition to be more
complicated. Therefore, as a preprocessing step, the documents are converted from the .doc
format to the Unicode plain text format (.txt extension), which has very little formatting.

Unfortunately, at the time of creation of the original .doc formatted glossaries, the Uni-
code standard did not yet include the entire set of Church Slavonic characters, so in order to
represent the Greek, Latin and Church Slavonic writing systems, a multitude of non-unicode
fonts were used. As long in our case we only use it for printing a book, those fonts don’t
cause any trouble. Yet, if one intends to work with the text contents of a glossary, the
conversion from .doc to .txt file format proves to be impossible, because applying a single
Unicode font to the document makes most of the characters unreadable (see Fig. 1).

In order to overcome this problem, a code point of each character in a .doc file needs
to be transformed into an appropriate Unicode equivalent first. In the current work this
transformation is done semi-automatically by the SlaVaComp-Konvertierer — a specially
developed (Windows-)software [20].



6 N.Yu. Shokina, S. Mocken

Fig. 1. An exemplary glossary entry using non-Unicode fonts (left) and a single Unicode font
(Roman Cyrillic Std., right)

Let us also note, that since starting from the Microsoft Word 2007 the default Microsoft
Word binary file format (.doc extension) has been replaced by the Office Open XML format
(.docx, .docm extension). The SlaVaComp-Konvertierer also converts the original .doc for-
matted glossaries to the .docx format, allowing their reading by modern computing systems
and continuing the usage as templates for the printed editions if necessary.

2. Original algorithm for pattern recognition

In the present work the core text mining operation is pattern discovery. It does not only
include the initial recognition of text elements, but also the subsequent identification of the
correct positions of tagged elements (or sets of elements) in an entry in the TEI XML file.
Whereas all entries in glossaries share a general structure, they can significantly differ in
details. A first position is always filled by a lemma, other types of elements will follow after:
grammatical information, bibliographic information, counterpart(s), editor’s comments, etc.
These types, in turn, can consist of several subtypes. For instance, grammatical information
is further divided into cases, genders, times, etc. Bibliographic information contains numbers
of pages and numbers of lines.

Not all types of elements are present in every entry and relative positions of specific
information types can also differ. Besides, the glossaries contain a vast amount of spe-
cial cases, where some elements are written differently, special types of information are
encountered, and artifacts whose origins cannot always be explained are present. Thus, the
structures of entries, even within one glossary, can be strongly heterogeneous.

Correct XML tagging may require grouping, splitting, shifting, replacing, deleting of
original text elements. Thus, element-wise tagging, starting from a first element and going
on sequentially, proved to be difficult. We suggest another approach, in which XML tagging
is done block-wise according to a so-called map of entry.

The idea is based on one of the author’s experience in the field of Computational Fluid
Dynamics. One approach to the solution of a wide range of problems on fluid flows in
domains with complicated geometries is to use a one-to-one mapping to new coordinates,
where a domain becomes simpler (a unit cube, for instance) [21]. While the governing
equations become more complicated, their finite-difference approximations can be done far
more easier and with a higher accuracy.

This idea can be applied to our current task in the field of Digital Humanities. A type of
each element of an entry (hyperlemma (see Section 3), lemma, grammatical, bibliographic



A text mining system for creating electronic glossaries ... 7

information, counterpart, etc.) is written down into an array, which is named as the “map”.
There is a one-to-one correspondence between the map elements and the text elements of
an entry. By knowing types and positions of text elements, it is easy to perform grouping,
splitting, shifting and other actions, and ultimately to mark up the text using the TEI XML.
Therefore, we operate in the “space of element types”, and the text elements are processed
according to their map “images”.

Let us present the implementation using the example of an entry from a Church Slavonic-
Greek glossary [19] (see Figure 2). The glossary is processed entry-wise, an entry is han-
dled part-wise and can have one or more parts. Since our software was written using Perl
programming language and the numbering of elements in Perl arrays starts at 0, the parts
of the entry in Figure 2 are denoted as part[0], ... , part[4]. A part contains either a lemma,
which is followed by other data, or variant, which is represented by one or more graphical
variants and can be preceded by grammatical information and/or followed by other data.
Each part is processed separately according to its map. However, as all parts of an entry are
stored, the elements can be relocated from one part to another, if needed.

Fig. 2. The example from the glossary [19]

Fig. 3. The example from the glossary [19]: processing of part[0]



8 N.Yu. Shokina, S. Mocken

We construct the map using a set of criteria which can be updated when new types of
elements or special cases of already known elements are encountered. As it is seen from
Figures 3–4, the elements of the map have self-explaining names. For example, [gram info]
stands for grammatical information, [bibl info] — bibliographic information, [grc cit] —
Greek citation (counterpart), etc.

After the map of a part is constructed, the positions of Church Slavonic graphical variants
are identified. This is needed to split the part into blocks so that each block contains either 1)
a lemma with its information, 2) a variant’s grammatical information and the first (and may

Fig. 4. The example from the glossary [19]: processing of part[4]



A text mining system for creating electronic glossaries ... 9

be the only) graphical variant, which represents a variant, 3) other graphical variant (each
graphical variant with its information is placed in a separate block). If necessary, the blocks
have to be combined so that grammatical information of a variant is not kept in a separate
block, but precedes the first (and may be the only) graphical variant (see the new map of
part[4] of entry[0] in Figure 4). It is obvious that a block with a lemma can be only present
in the first part of an entry. This type of structure is dictated by the TEI XML tagging. If
no graphical variants are found in a part, then a lemma is added as a graphical variant. In
this case the map is changed and the subsequent part is changed accordingly. A one-to-one
correspondence between the map and the part allows that to be done easily.

Let us name this initial map as a “0th level map” and its elements as “0th level boxes”.
The term “box” has been chosen because it is as if we were covering text elements by the
boxes with titles declaring element types. A map is processed block-wise, and each block
element-wise. Figures 3–4 illustrate the contents of the next paragraphs.

At first, for each block, according to the “0th level map”, the basic elements like lemma,
bibliographic information, editor’s comments, counterpart(s), and others are tagged and
stored. Besides, the presence of homonym superscripts is identified, and the corresponding
information is stored for future use. After this step some empty “0th level boxes” can appear
due to grouping or deleting of elements. These empty boxes are deleted from the map, and
the part, i.e. the array with text elements, is updated accordingly. It is very important

Fig. 5. The beginning of the TEI XML entry for the example from the glossary [19]



10 N.Yu. Shokina, S. Mocken

to correctly update the part, because the proper text elements have to be taken for further
tagging according to the operations with the map.

Next, the “1st level boxes” with grammatical information are assembled in each block.
This can be considered as smaller “0th level boxes” are covered by bigger “1st level boxes”.
Some TEI XML tags are deleted and some are added. Thus, groups of elements are tagged
and stored, a “1st level map” is constructed and the part is updated.

Then, the “lemma box” or the “graphical variant box” is assembled in each block. These
are the bigger “2nd level boxes”, which cover the sets of “0th level boxes” and “1st level
boxes”. The groups of elements are tagged and stored, and a “2nd level map“ is constructed,
where every block either starts with a lemma or contains a graphical variant. The part is
updated correspondingly as well.

On the next step, “3rd level boxes”, i.e. ”variant boxes” are assembled for each block.
They contain all graphical variants which represent a variant and the grammatical informa-
tion relevant to it. The tagged lemmata and variants form a tagged part. And, finally, all
tagged parts of an entry are assembled into a tagged entry.

Figure 5 presents the beginning of the TEI XML entry for the example from the glos-
sary [19]. “AUTO” marks the results of the automatic lemmatization which is described
below in Section 3.

Let us note, that such pattern recognition algorithm also allows finding corrupt data in
the original electronic text sources.

3. Lemmatization (postprocessing)

At first, there is no electronic lexicon which could be used for automatic lemmatization.
Therefore, a check against special dictionaries [11 – 16] and correction could only be done
manually, by a linguist. After the successful transformation of several glossaries into the
TEI XML format, a lexicon that contained the hyperlemmata and its associated word forms
was created and made available for automatic lemmatization through the XML database.
Before a lemma is marked up, it is sent to the database server, and if it is found in the
database, the server gives back the respective hyperlemma that is noted accordingly in the
TEI XML file. Automatic lemmatization is done simultaneously with the TEI XML tagging,
and a copy of lemma is added as “hyperlemma”to the TEI XML file. Let us note that from
the implementation point of view automatic lemmatization belongs to the core text mining
operation since it is done in the course of pattern recognition (see Figure 7 in Section 4).

A big advantage is the extensibility of the database: with each transformed glossary, new
word forms can be added to the database, which in turn helps improving lemmatization.
Thanks to this method, it is possible to automatically assign a correct hyperlemma to a
great number of headwords, and even though the hyperlemmata still need to be reviewed by
a human being, the task is done considerably faster now. Let us call this reviewing operation
as a manual lemmatization, emphasizing a human involvement contrary to the automatic
lemmatization described above.

In order to make manual lemmatization easy, effective, and less time consuming, a plain
text file is created simultaneously with the TEI XML tagging of corresponding word forms.
The file has a special structure and provides the word forms for manual lemmatization:
hyperlemmata, Church Slavonic lemmata, Greek lemmata, etc. Figure 6 shows the fragment
of the structured text file for part[3] (i.e. the 4th line of the text) of the entry from Figure 2.
Some other word forms are also listed, for instance, original Greek counterparts, which



A text mining system for creating electronic glossaries ... 11

Fig. 6. The example from the glossary [19]: the fragment (for part[3] of the entry in Figure 2) of
the structured text file for manual lemmatization

should not be checked and corrected, but can be useful for a linguist. Besides, additional
data for automatic processing of manual corrections is present (the sequences of numbers at
the beginning of some lines), which does not hinder the readability of the essential linguistic
information.

All lines with word forms, which are the subject of lemmatization, are followed by lines
containing a “flag” value (Figure 6). If a linguist finds a wrong word form and corrects it,
then a corresponding flag below has to be set to 1 or 2. “1” means a manual correction,
“2” means the manual correction of an already automatically corrected word form. The
results of the automatic lemmatization are marked as “AUTO” and these changes have to
be manually checked in order to improve the electronic lexicon that store the hyperlemmata.

Manual lemmatization has precedence over automatic lemmatization, therefore, specific
word form is checked in the database on the server only if it has not been corrected manually.
A file with manual corrections is processed by the software, the corrected word forms are
noted in the TEI XML file, and a new structured text file is created at each run. See Section 4
for more details on the interaction of the software with input and output data flows.

4. Software structure and text mining system

Let us provide a few examples for implementation of the software design principles [18] in
our software. The structures of glossaries follow the general principles of the genre. How-
ever, they differ considerably in how they represent information. The heterogeneity of the
glossaries does not allow processing them in the uniform way. The principle of decomposi-



12 N.Yu. Shokina, S. Mocken

Fig. 7. Text mining system

tion and modularization [18] provides a solution: the software was built from a number of
specialized modules with proper interfaces for efficient interactions. Thus, using appropriate
sets of modules, the software can process glossaries with various representations for informa-
tion. Besides, as it was mentioned above, all examined glossaries contain a vast amount of
special cases. Taking into account the size of the glossaries, it is extremely time consuming
and, thus, practically impossible to find all these special cases manually. They are encoun-
tered during the processing of glossaries and lead to changes in pattern definitions or to the
introduction of new patterns, and, consequently, to update of the corresponding modules.
All modules were made as specialized as possible in order to achieve a low level of coupling
(“a measure of the interdependence among modules in a computer program” [17]) and a
high level of cohesion (“a measure of the strength of association of the elements within a
module” [17]).

Thus, the current version of our software includes the following main modules:
• preprocessing module (general and glossary-specific cleaning, assembling each entry

into a text string, i.e. one element of array, formatting);
• pattern recognition module (construction of a map);
• tagging module (mark up using the TEI XML);
• automatic lemmatization module;
• module for processing input data and creating output data for manual lemmatization.

We have developed the original text mining system for processing the glossaries (Fig-
ure 7), where computer and human resources interact efficiently. Two plain text files: 1) a
glossary, 2) manually (i.e. by a linguist) corrected lemmata are taken as input data. Our
software performs two main tasks: 1) transfer of a glossary from the plain text format into
the TEI XML format, 2) automatic lemmatization. The output data are 1) a glossary marked
up using the TEI XML, 2) a plain text file with lemmata for a linguist to check. The TEI
XML file is sent to the electronic database, while the file with the lemmata is processed by
a linguist and used in the next run as the input data.

Conclusion

In this paper we have presented a text mining system for creating electronic glossaries with
application to research of Church Slavonic language. In order to enable research of the
geographical and chronological differentiation of Church Slavonic language between the 10th
and 16th centuries, fifteen Church Slavonic-Greek glossaries had to be marked up using the
TEI XML and then transferred into an electronic database.



A text mining system for creating electronic glossaries ... 13

The digital files with Church Slavonic-Greek glossaries in .doc format were taken as a
source. During the preprocessing step, a code point of each character in a .doc file was
transformed into its appropriate Unicode equivalent, and the documents were converted
from the .doc format to the Unicode plain text format. We have developed an original
pattern recognition algorithm for the initial discovery of text elements and the subsequent
identification of the positions of tagged elements (or sets of elements) within a TEI XML
entry presented. The algorithm was based on the idea from the field of Computational
Fluid Dynamics, which was now successfully applied to the problem in the area of Digi-
tal Humanities. Postprocessing included automatic and manual lemmatization (assigning a
normalized form to every Church Slavonic and Greek lemma). Automatic lemmatization
consists in a check against an electronic lexicon and is done in the course of pattern recogni-
tion. A linguist has to perform the manual lemmatization by checking a specially structured
plain text file.

Due to its universal and modular structure, our text mining system can be used not
only for the research of the Church Slavonic language, but it can be applied to processing
glossaries in other languages as well.

Список литературы / References

[1] Schreibman, S., Siemens, R, Unsworth, J. A companion to digital humanities. Oxford:
Blackwell, 2004. http://www.digitalhumanities.org/companion/

[2] What Is Digital Humanities? http://whatisdigitalhumanities.com

[3] Fitzpatrick, K. On scholarly communication and the digital humanities: An Interview with
Kathleen Fitzpatrick / By Fred Rowland and Andrew Lopez, January 14, 2015.
http://www.inthelibrarywiththeleadpipe.org/2015/on-scholarly-communication-and-
the-digital-humanities-an-interview-with-kathleen-fitzpatrick

[4] SlaVaComp (COMPutergestützte Untersuchung von VAriabilität im KirchenSLAvischen).
http://www.slavacomp.uni-freiburg.de/

[5] The Text Encoding Initiative (TEI). http://www.tei-c.org/index.xml

[6] The TEI Guidelines for Electronic Text Encoding and Interchange. http://www.tei-c.org/
Guidelines/P5/

[7] Feldman, R., Sanger, J. The text mining handbook. Cambridge: Cambridge Univ. Press,
2006. 424 p.

[8] Han, J., Kamber, M., Pei, J. Data mining: concepts and techniques. Elsevier, 2011. 744 p.

[9] Slovǹık jazyka staroslověnskèho = Lexicon linguae palaeoslovenicae. Vol. I-IV. Praha, 1959–
1997.

[10] Supplementary volume dictionaries. An International encyclopedia of lexicography.
Supplementary volume: Recent developments with focus on electronic and computational
lexicography / R. Gouws, U. Heid, W. Schweickard et al. (Eds.) Berlin, Boston: De Gruyter
Mouton, 2013. 1579 p.

[11] Liddle, H.G., Scott, R., Jones, H.S. A Greek-English lexicon. Oxford: Clarendon Press,
1996. 2448 p.

[12] Lampe, G.W.H. A Patristic Greek lexicon. Oxford: Oxford Univ. Press, 1969. 1616 p.

[13] Bauer, W. Griechisch-Deutsches Wörterbuch zu den Schriften des neuen Testaments und der
frühchristlichen Literatur. Berlin, New York: Walter De Gruyter, 1998.



14 N.Yu. Shokina, S. Mocken

[14] Muraoka, T. A Greek-English lexicon of the Septuagint. Louvain–Paris-Walpole (MA):
Peeters, 2009. 757 p.

[15] Lust, J., Eynikel, E., Hauspie, K. A Greek-English lexicon of the Septuagint. Stuttgart:
Deutsche Bibelgesellschaft, 1992. 217 p.

[16] Trapp, E. Das Lexikon zur byzantinischen Gräzität: besonders des 9.-12. Jahrhunderts. Wien:
Verlag der österreichischen Akademie der Wissenschaften, 2001. 316 p.

[17] ISO/IEC/IEEE Systems and Software Engineering Vocabulary (SEVOCAB).
www.computer.org/sevocab/

[18] Guide to the Software Engineering Body of Knowledge (SWEBOK Guide).
http://www.computer.org/web/swebok

[19] Крысько В.Б. Ильина книга. Рукопись РГАДА, Тип. 131. Лингвистическое издание,
подготовка греческого текста, комментарии, словоуказатели. М.: Индрик, 2005. 904 с.
Krys’ko, V.B. Elias’ Book, Manuscript RGADA, Tip. 131. Linguistic edition, processing of
the Greek text, comments, glossaries. Moscow: Indrik, 2005. 904 p. (In Russ.)

[20] Skilevic, S. SlaVaComp: Konvertierungstool // Slověne = Словѣне. Intern. J. of Slavic
Studies. 2013. Vol. 2, No. 2. P. 172–183.

[21] Khakimzyanov, G.S., Shokina, N.Yu. Numerical modelling of three-dimensional steady
fluid flows on adaptive grids // Russ. J. of Numer. Anal. and Math. Modelling. 2001. Vol. 16,
No. 1. P. 33–57.

Received for publication 26 May 2016

Система интеллектуального анализа текста для создания электронных
словарей в применении к исследованию церковнославянского языка

Н.Ю. Шокина, С. Мокен

Вычислительный центр университета Фрайбурга, Германия

Контактный e-mail: nina.shokina@gmail.com, susanne.mocken@rz.uni-freiburg.de

В статье представлена система интеллектуального анализа текста для создания
электронных словарей в применении к исследованию церковнославянского языка.
Для исследования географической и хронологической дифференциации церковно-
славянского языка в 10–16 веках необходимо было разметить в формате TEI XML
и занести в электронную базу данных пятнадцать церковнославянско-греческих
словарей. Цифровые файлы со словарями в формате .doc были взяты в качестве
исходного материала. На этапе предварительной обработки кодовая точка каждо-
го символа в .doc файле преобразована в свой эквивалент в стандарте Юникод,
и документы конвертированы из формата .doc в текстовый формат в Юникод.

Разработан оригинальный алгоритм распознавания образов для обнаружения
текстовых элементов и последующего определения позиций размеченных элемен-
тов (или наборов элементов) в записи в формате TEI XML. Идея из области вычис-
лительной гидродинамики, лежащая в основе алгоритма, успешно применена для
решения задачи в области информационных технологий в гуманитарных науках.

c© ИВТ СО РАН, 2016



A text mining system for creating electronic glossaries ... 15

Кратко описано применение принципов проектирования программного обеспече-
ния. Заключительная обработка включала в себя автоматическую и ручную лем-
матизацию (присвоение нормализованной формы каждой церковнославянской и
греческой лемме). Автоматическая лемматизация включает в себя проверку лемм
по электронному лексикону и выполняется в процессе распознавания образов для
обнаружения текстовых элементов. Ручная лемматизация выполняется лингви-
стом и заключается в проверке и, при необходимости, корректировке структури-
рованного специальным образом текстового файла.

Благодаря универсальной модульной структуре разработанная система интел-
лектуального анализа текста может быть применена не только для исследования
церковнославянского языка, но и для обработки словарей других языков.

Ключевые слова: информационные технологии в гуманитарных науках, интеллек-
туальный анализ текста, распознавание образов, лемматизация, разработка про-
граммного обеспечения, проектирование программного обеспечения, TEI XML,
церковнославянский язык.

Поступила в редакцию 26 мая 2016 г.


