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Traditional engineering techniques often use the Least Squares Method (i. e., in
mathematical terms, minimization of the 𝑙2-norm) to process data. It is known that
in many real-life situations, 𝑙𝑝-methods with 𝑝 ̸= 2 lead to better results, and different
values of 𝑝 are optimal in different practical cases. In particular, when we need to
reconstruct a piecewise smooth signal, the empirically optimal value of 𝑝 is close to 1.
In this paper, we provide a new theoretical explanation for this empirical fact based
on ideas and results from interval analysis.
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1. Formulation of the problem

𝑙2-methods: brief reminder. Traditional engineering techniques frequently use the Least
Squares Method — LSM (i. e., in mathematical terms, the 𝑙2-norm) to process data. For
example, if we know that measured values 𝑏1, . . . , 𝑏𝑚 are related to the unknowns 𝑥1, . . . , 𝑥𝑛
by the known dependence

𝑛∑︁
𝑗=1

𝐴𝑖𝑗𝑥𝑗 ≈ 𝑏𝑖,

and we know the accuracy 𝜎𝑖 of each measurement, then the LSM means that we find the
values 𝑥𝑗 for which the function

𝑉 =
𝑚∑︁
𝑖=1

(︃
1

𝜎𝑖

𝑛∑︁
𝑗=1

𝐴𝑖𝑗𝑥𝑗 − 𝑏𝑖

)︃2

takes the smallest possible value.
By the Gauss — Markov Theorem [1], this method is provably optimal (being the best

linear unbiased estimator) under the assumption that the measurement errors

∆𝑏𝑖
def
=

𝑛∑︁
𝑗=1

𝐴𝑖𝑗𝑥𝑗 − 𝑏𝑖
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are uncorrelated with zero mean and standard deviation 𝜎𝑖. In addition, if the ∆𝑏𝑖 are
independent and normally distributed, then the maximum likelihood method [2, 3], which
requires 𝜌(∆𝑏1, . . . ,∆𝑏𝑛) → max, takes the form

𝜌(∆𝑏1, . . . ,∆𝑏𝑛) = 𝜌1(∆𝑏1) · . . . · 𝜌𝑛(∆𝑏𝑛),

where

𝜌𝑖(∆𝑏𝑖) =
1√

2𝜋𝜎𝑖
exp

(︂
−∆𝑏2𝑖

2𝜎2
𝑖

)︂
.

Since the logarithm is a strictly increasing function, and the logarithm of a product
𝜌1 · . . . · 𝜌𝑛 is equal to the sum of the logarithms, maximizing the maximal likelihood is
equivalent to minimizing the sum of negative logarithms − log(𝜌𝑖) of 𝜌𝑖, i. e., minimizing the
sum

𝜓

(︂
∆𝑏1
𝜎1

)︂
+ . . .+ 𝜓

(︂
∆𝑏𝑛
𝜎𝑛

)︂
(1)

with 𝜓(𝑥) = 𝑥2. We thus get the Least Squares Method.
Similarly, if we know that the next value 𝑥𝑖+1 is close to the previous value 𝑥𝑖 of the

desired signal, and that the average difference between 𝑥𝑖+1 − 𝑥𝑖 is about 𝜎𝑖, then we can
use LSM to find the values 𝑥𝑖 which minimize the sum

𝑛−1∑︁
𝑖=1

(︂
𝑥𝑖+1 − 𝑥𝑖

𝜎𝑖

)︂2

.

M-methods: brief reminder. In many practical situations, different measurement
errors are independent, but the distribution may be different from normal; see, e. g., [4 – 6].
In this case, the maximum likelihood method is still equivalent to minimizing the sum (1),
but with a different function 𝜓(𝑥) = − log(𝜌(𝑥)).

In many other practical situations, we know that the distribution is not normal, but we
do not know its exact shape. In such situations of robust statistics, we can still use a similar
method, with an appropriately selected function 𝜓(𝑥). Such methods are called M-methods;
see, e. g., [2, 3, 7].

In such situations, if we know that the next value 𝑥𝑖+1 is close to the previous value 𝑥𝑖
of the desired signal, and that the average difference between 𝑥𝑖+1 − 𝑥𝑖 is about 𝜎𝑖, then we
can use LSM to find the values 𝑥𝑖 which minimize the sum

𝑛−1∑︁
𝑖=1

𝜓

(︂
𝑥𝑖+1 − 𝑥𝑖

𝜎𝑖

)︂
.

𝑙𝑝-methods: a brief reminder. Among different M-methods, empirically, 𝑙𝑝-meth-
ods — with 𝜓(𝑥) = |𝑥|𝑝 for some 𝑝 ≥ 1 — turn out to be the best for several practical
applications; see, e. g., [8]. In this case, we select a signal (= tuple) 𝑥𝑖 for which the value

𝑉
def
=

𝑛−1∑︁
𝑖=1

⃒⃒⃒⃒
𝑥𝑖 − 𝑥𝑖+1

𝜎𝑖

⃒⃒⃒⃒𝑝
is the smallest possible. These methods have been successfully used to solve inverse problems
in geophysics; see, e. g., [9, 10].
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In [11], the empirical success of 𝑙𝑝-methods was theoretically explained: it was shown that
𝑙𝑝-methods are the only scale-invariant ones, and that they are the only methods optimal
with respect to all reasonable scale-invariant optimality criteria. It is therefore reasonable
to use 𝑙𝑝-methods for processing data.

𝑙𝑝-methods: how to select 𝑝. The above-mentioned justification explains that with
respect to each optimality criterion, one of the 𝑙𝑝-methods is optimal — but does not explain
which one. It is known that in different practical situations, different values of 𝑝 lead to the
best signal reconstruction.

For example, in the situation when the errors are normally distributed, 𝑝 = 2 is the best
value. For other situations, we may get 𝑝 = 1 or 𝑝 ∈ ]1, 2[ .

In each situation, we must therefore empirically select 𝑝 — e. g., by comparing the result
of data processing with the actual (measured) values of the reconstructed quantity.

Empirical fact. In several situations, we know that the reconstructed signal is piece-
wise smooth. For example, in geophysics, the Earth consists of several layers with abrupt
transition between layers; in image processing, an image often consists of several zones with
an abrupt boundary between the zones, etc.

It turns out that in many such situations, the empirically optimal value of 𝑝 is close to
1; see, e. g., [9] for the inverse problem in geophysics, and [12 – 15] for image reconstruction.

How this fact is explained now (see, e. g., [12]). In the continuous approximation, the
𝑙𝑝-criterion leads to the minimization of

∫︀
|�̇�|𝑝 𝑑𝑡 (in the 1D case; multidimensional case is

handled similarly). For a transition of magnitude 𝐶 and width 𝜀, the derivative �̇� is ≈ 𝐶/𝜀,
so the contribution of the transition zone to the integral is of order 𝜀/𝜀𝑝 = 𝜀−(𝑝−1). For 𝑝 > 1,
when 𝜀 → 0, this contribution tends to ∞. Thus, for 𝑝 > 1, the minimum is never attained
at the discontinuous transition (“jump”) 𝜀 = 0, but always at a smoother transition 𝜀 > 0.

For 𝑝 = 1, the contribution is finite, so jumps are not automatically excluded — and
indeed, they may be correctly reconstructed.

Limitations of our explanation. There are two limitations to this explanation:
∙ first, it explains why 𝑙𝑝-methods for 𝑝 > 1 do not reconstruct a jump, but it does not

explain why 𝑙1 methods reconstruct the jump correctly;
∙ second, it strongly relies on the continuous case and does not fully explain why a similar

phenomenon occurs for real-life (discretized) computations.
What we do in this paper. In this paper, we provide a new interval-based theoretical

explanation for the above mentioned empirical fact, an explanation that is directly applicable
to real-life (discretized) computations.

2. Analysis of the problem and the main results

For simplicity, we will consider 1-D signals 𝑥(𝑡). In the interval setting, for several moments
of time 𝑡1 < . . . < 𝑡𝑛 (usually, equidistant 𝑡𝑖 = 𝑡1 + (𝑖 − 1)∆𝑡), we know the intervals
𝑥𝑖 = [𝑥𝑖, 𝑥𝑖] that contain the actual (unknown) values 𝑥𝑖 = 𝑥(𝑡𝑖). Based on this interval
information, we would like to select the values 𝑥𝑖 ∈ 𝑥𝑖. According to the 𝑙𝑝-criterion, among
all the tuples (𝑥1, . . . , 𝑥𝑛) for which 𝑥1 ∈ 𝑥1, . . . , 𝑥𝑛 ∈ 𝑥𝑛, we select the one for which the
value

𝑉 =
𝑛−1∑︁
𝑖=1

⃒⃒⃒⃒
𝑥𝑖 − 𝑥𝑖+1

𝜎𝑖

⃒⃒⃒⃒𝑝
is the smallest possible.
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To select 𝑝, we will consider the case of a “transition zone”, i. e., the case when for some
values 𝑙 < 𝑢, we know two things:

∙ that the value 𝑥𝑙−1 right before the zone cannot be equal to the value 𝑥𝑢+1 right after
the zone — i. e., that 𝑥𝑙−1 ∩ 𝑥𝑢+1 = ∅; and

∙ that we have (practically) no information about the values of 𝑥𝑖 inside the zone — i. e.,
at least that for all 𝑖 from 𝑙 to 𝑢, the interval 𝑥𝑖 contains both 𝑥𝑙−1 and 𝑥𝑢+1.

In this case, the above criterion interpolates the values 𝑥𝑖 inside the zone. If we assumed
that the signal is smooth, then, no matter how steep the transition, we would have had
a smooth interpolation. However, since we consider the situations when the signal is only
piecewise smooth, we would rather prefer to have a signal which “jumps” discontinuously
from one value to another.

In this section, we will show that for 𝑝 = 1, we will indeed get such a jump, while for
𝑝 > 1, we have a smooth transition instead. Let us describe this result in precise terms.

Definition 1. By an 𝑙𝑝-problem, we mean the following problem:
GIVEN: 𝑛 intervals 𝑥𝑖 = [𝑥1, 𝑥1], . . . , [𝑥𝑛, 𝑥𝑛], 𝑛 real numbers 𝜎1, . . . , 𝜎𝑛,

and a real number 𝑝 ≥ 1;
AMONG: tuples 𝑥1 . . . , 𝑥𝑛 such that 𝑥𝑖 ∈ [𝑥𝑖, 𝑥𝑖] for every 𝑖;

FIND: the tuple for which the value 𝑉 =
𝑛−1∑︀
𝑖=1

⃒⃒⃒⃒
𝑥𝑖 − 𝑥𝑖+1

𝜎𝑖

⃒⃒⃒⃒𝑝
is the smallest possible.

Definition 2. An 𝑙𝑝-problem is called degenerate if all the values 𝜎𝑖 are different.

Comment. Almost all combinations 𝜎1, . . . , 𝜎𝑛 are degenerate.

Definition 3. Let 𝑙 < 𝑢 be integers. We say that an 𝑙𝑝-problem contains a transition
zone between 𝑙 and 𝑢 if the following two conditions hold (Fig. 1):

∙ 𝑥𝑙−1 ∩ 𝑥𝑢+1 = ∅; and
∙ for all 𝑖 from 𝑙 to 𝑢, we have 𝑥𝑖 ⊇ 𝑥𝑙−1 and 𝑥𝑖 ⊇ 𝑥𝑢+1.

Proposition 1. For 𝑝 = 1, for each solution 𝑥𝑖 to a non-degenerate 𝑙𝑝-problem, in each
transition zone, we have 𝑥𝑙−1 = 𝑥𝑙 = . . . = 𝑥𝑡 and 𝑥𝑡+1 = . . . = 𝑥𝑢 = 𝑥𝑢+1 for some 𝑡.

In other words, for 𝑝 = 1, in each transition zone, we have a “jump” from the value 𝑥𝑙−1

before the transition zone to the value 𝑥𝑢+1 after the transition zone (Fig. 2).

Comment. In the degenerate case, when different values 𝜎𝑖 are equal, the jump is still
an optimal solution, but we may also get other solutions, with a smooth transition from

𝑙 − 1 𝑙 . . . 𝑢 𝑢+ 1 𝑙 − 1 𝑙 𝑢 𝑢+ 1. . .

�@ �@ �@

�@ �@

Fig. 1 Fig. 2
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𝑥𝑙−1 to 𝑥𝑢+1. For example, if all the values 𝜎𝑖 are the same, then, as one can easily see, the
minimized criterion is proportional to the sum

𝑛−1∑︁
𝑖=1

|𝑥𝑖 − 𝑥𝑖+1|.

So, for each solution that monotonically changes from 𝑥𝑙−1 to 𝑥𝑢−1, the corresponding part

𝑢∑︁
𝑖=𝑙−1

|𝑥𝑖 − 𝑥𝑖+1|

of the sum is equal to |𝑥𝑙−1−𝑥𝑢+1|. Thus, the value of the minimized criterion is the same for
the jump solution and for a different solution in which 𝑥𝑖 is the same outside [𝑙− 1, 𝑢+ 1] —
but strictly monotonically changes between 𝑙 − 1 and 𝑢+ 1.

Proposition 2. For 𝑝 > 1, for each solution 𝑥𝑖 to an 𝑙𝑝-problem, in each transition
zone, we have a strictly monotonic sequence 𝑥𝑙−1 < 𝑥𝑙 < . . . < 𝑥𝑢 < 𝑥𝑢+1 or 𝑥𝑙−1 > 𝑥𝑙 >
. . . > 𝑥𝑢 > 𝑥𝑢+1.

Proposition 3. For 𝑝 > 1, in the limit when all the values 𝜎𝑖 tend to the same value
𝜎, each solution 𝑥𝑖 to an 𝑙𝑝-problem, in each transition zone, is linear, i. e., has the form
𝑥𝑖 = 𝑎+ 𝑏𝑖 for some numbers 𝑎 and 𝑏 (Fig. 3).

These results explain why 𝑝 ≈ 1 is indeed empirically best for processing piecewise smooth
signals: only for 𝑝 = 1, 𝑙𝑝-interpolation leads to a piecewise smooth signal.

Comment. The fact that 𝑙1-methods are the best among 𝑙𝑝-methods does not mean that
they are always the best possible interpolation techniques. For example, the above results
show that, with an 𝑙1-method, we always get a jump, both

∙ for the steep transition from 𝑥𝑙−1 to 𝑥𝑢+1, where such a jump is desirable, and
∙ for a smoother transition from 𝑥𝑙−1 to 𝑥𝑢+1, where, from the physical viewpoint,

we may want to prefer a smooth interpolation.
In other words,

∙ for small differences 𝑥𝑖 − 𝑥𝑖+1, we would like to have smooth transitions, while
∙ for large differences 𝑥𝑖 − 𝑥𝑖+1, we would like to have a jump.

Since a jump is reconstructed when 𝜓(𝑥) = |𝑥| and a smooth transition, when, e. g., 𝜓(𝑥) =
|𝑥|2, a natural idea is to use a Huber function 𝜓(𝑥) which is equal to |𝑥|2 when |𝑥| is below

𝑙 − 1 𝑙 𝑢 𝑢+ 1

�@

�@

�@

�@

�@

Fig. 3
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a certain threshold 𝑥0, and which is linear 𝜓(𝑥) = 𝐶 · |𝑥| for |𝑥| > 𝑥0; from the requirement
that the function 𝜓(𝑥) be continuous, we conclude that 𝐶 = |𝑥20| = 𝐶 · |𝑥0|, i. e., that
𝐶 = 𝑥0. Such technique indeed leads to a better reconstruction of piecewise smooth signals;
see, e. g. [12] and references therein. Various related choices for 𝜓(𝑥) have been explored in
the context of computer tomography by Kaufman and Neumaier [16, 17].

Huber’s function 𝜓(𝑥), in its turn, has its own limitations; it is worth mentioning that in
general, the problem of optimally reconstructing piecewise smooth 2-D signals is NP-hard;
see, e. g. [18 – 20].

3. Proofs

1. First, we observe that the solution to an 𝑙𝑝-problem minimizes a continuous function
𝑉 on a bounded closed set (box) 𝑥1× . . .×𝑥𝑛. Thus, this minimum is always attained, i. e.,
a solution always exists.

2. Let us prove that for every 𝑝, the solution 𝑥𝑖 to the 𝑙𝑝-problem is (non-strictly)
monotonic in each transition zone, i. e., that 𝑥𝑙−1 ≤ 𝑥𝑙 ≤ . . . ≤ 𝑥𝑢 ≤ 𝑥𝑢+1 or 𝑥𝑙−1 ≥ 𝑥𝑙 ≥
. . . ≥ 𝑥𝑢 ≥ 𝑥𝑢+1.

Let us prove this result by reduction to a contradiction. Namely, let us assume that the
solution is attained on some non-monotonic sequence. The fact that 𝑥𝑖 is not monotonic on
the transition zone means that not all inequalities between the neighboring values are of the
same sign, i. e., that we have 𝑥𝑖−1 < 𝑥𝑖 and 𝑥𝑗 > 𝑥𝑗+1 for some indices 𝑖 and 𝑗 from this
zone. Among such pairs (𝑖, 𝑗), let us select a one with the smallest distance |𝑖− 𝑗| between
𝑖 and 𝑗.

Without losing generality, we can assume that 𝑖 < 𝑗 in this selected pair.

For the selected pair, for indices 𝑘 between 𝑥𝑖 and 𝑥𝑗, we cannot have 𝑥𝑘 < 𝑥𝑘+1 or
𝑥𝑘 > 𝑥𝑘+1 — otherwise we would get a pair with an even smaller difference |𝑖 − 𝑗|. Thus,
for all intermediate indices 𝑘, we get 𝑥𝑘 = 𝑥𝑘+1. Since 𝑥𝑖 = 𝑥𝑖+1 = . . . = 𝑥𝑗, we thus have
𝑥𝑖 = 𝑥𝑗. So, we have 𝑥𝑖−1 < 𝑥𝑖 = . . . = 𝑥𝑗 > 𝑥𝑗+1. Let 𝜀 = min(𝑥𝑖 − 𝑥𝑖−1, 𝑥𝑗 − 𝑥𝑗+1).
Let us now keep all the 𝑥-values outside (𝑖, 𝑗) intact and replace 𝑥𝑖 = . . . = 𝑥𝑗 with the
values 𝑥𝑖 − 𝜀 = . . . = 𝑥𝑗 − 𝜀. The resulting value 𝑥𝑖 − 𝜀 is equal to either 𝑥𝑖−1 ∈ 𝑥𝑖−1 or
to 𝑥𝑗+1 ∈ 𝑥𝑗+1. By the definition of a transition zone, all intermediate intervals 𝑥𝑘 contain
both 𝑥𝑖−1 and 𝑥𝑗+1. Hence, the new value of 𝑥𝑘 is within the corresponding interval 𝑥𝑘.

By making this change, we decrease the differences |𝑥𝑖 − 𝑥𝑖−1| and |𝑥𝑗+1 − 𝑥𝑗| and leave
all other differences intact — and hence, we decrease the value of the minimized objective
function 𝑉 (Fig. 4).

Since the objective function 𝑉 attains its minimum at the original tuple 𝑥𝑖, the possibility
to minimize even further is a contradiction. This proves that the solution is monotonic in
each transition zone.

3. For the solution, we have 𝑥𝑖−1 ≤ 𝑥𝑖 ≤ . . . ≤ 𝑥𝑢 ≤ 𝑥𝑢+1 or 𝑥𝑖−1 ≥ 𝑥𝑖 ≥ . . . ≥ 𝑥𝑢 ≥ 𝑥𝑢+1

according to Part 2 of this proof. To complete the proof of Proposition 2, it is now sufficient
to prove that for 𝑝 = 1 and for 𝑘 = 𝑙, . . . , 𝑢, we cannot have any strictly intermediate values
𝑥𝑘 ∈ (𝑥𝑙−1, 𝑥𝑢+1) (or 𝑥𝑘 ∈ (𝑥𝑢+1, 𝑥𝑙−1)).

We will prove this ad absurdum. Let us assume that an intermediate value 𝑥𝑘 does exist.
In principle, we may have values equal to 𝑥𝑘. Due to monotonicity, these values form an
interval within [𝑙, 𝑢]. Let 𝑥𝑏 be the first value equal to 𝑥𝑘, and let 𝑥𝑒 be the last value equal
to 𝑥𝑘. Then, we have . . . ≤ 𝑥𝑏−1 < 𝑥𝑏 = . . . = 𝑥𝑒 < 𝑥𝑒+1 ≤ . . .
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Let us now choose a value 𝜀 ∈ [𝑥𝑏−1 − 𝑥𝑏, 𝑥𝑒+1 − 𝑥𝑒], keep all the 𝑥-values from outside
[𝑏, 𝑒] intact, and replace all the 𝑥-values from [𝑏, 𝑒] with 𝑥𝑏 + 𝜀 = . . . = 𝑥𝑒 + 𝜀. Similarly to
Part 2 of this proof, we can show that for every 𝜀, we still have 𝑥𝑏 + 𝜀 ∈ 𝑥𝑏, . . . , 𝑥𝑒 + 𝜀 ∈ 𝑥𝑒.

After this replacement, we change only two differences |𝑥𝑖+1 − 𝑥𝑖|:
∙ the difference |𝑥𝑏 − 𝑥𝑏−1| = 𝑥𝑏 − 𝑥𝑏−1 is replaced with 𝑥𝑏 − 𝑥𝑏−1 + 𝜀, and
∙ the difference |𝑥𝑒+1 − 𝑥𝑒| = 𝑥𝑒+1 − 𝑥𝑒 is replaced with 𝑥𝑒+1 − 𝑥𝑒 − 𝜀.

Thus, after this replacement, the original value 𝑉 of the minimized objective function is
replaced with 𝑉 + ∆𝑉 , where (Fig. 5)

∆𝑉
def
= 𝜀

(︂
1

𝜎𝑏−1

− 1

𝜎𝑒

)︂
.

Since the problem is non-degenerate, i. e., all the values 𝜎𝑖 are different, the coefficient at
𝜀 in ∆𝑉 is non-zero. If this coefficient is positive, we can take negative 𝜀 and decrease 𝑉 ; if
it is negative, we can decrease 𝑉 by taking 𝜀 > 0. In both cases, we get a contradiction with
the fact that the original tuple 𝑥𝑖 minimizes 𝑉 . This contradiction proves that intermediate
values are impossible. Proposition 2 is proven.

4. Let us now prove that the solution is strictly monotonic for 𝑝 > 1, using reduction to
a contradiction once again.

We assume that the solution is not strictly monotonic, while usual monotonicity holds
(Part 2 of the proof). Since it is monotonic, the only way for the solution to be not strictly
monotonic is to have 𝑥𝑖 = 𝑥𝑖+1 for some index 𝑖. We may have several indices with an
𝑥-value equal to this 𝑥𝑖; let 𝑏 be the first such index, and let 𝑒 be the last such index. Then,
𝑥𝑏 = 𝑥𝑏+1 = . . . = 𝑥𝑒.

Since the intervals 𝑥𝑙−1 and 𝑥𝑢+1 have no common points, we cannot have 𝑥𝑙−1 = 𝑥𝑢+1.
Thus, either 𝑏 ̸= 𝑙− 1 or 𝑒 ̸= 𝑢+ 1. Without losing generality, we can assume that 𝑏 ̸= 𝑙− 1.
Also, without losing generality, we can assume that the solution 𝑥𝑖 is increasing. Thus, we
have 𝑥𝑏−1 < 𝑥𝑏 = 𝑥𝑏+1.

Let us now pick a small value 𝜀 > 0 and replace 𝑥𝑏 with 𝑥𝑏 − 𝜀 — while leaving all other
𝑥-valued intact (Fig. 6).

�@
𝑥𝑏−1

�@ �@

𝑥𝑏 𝑥𝑏+1

?

Fig. 6
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This replacement changed the original value 𝑉 of the minimized function with a new
value 𝑉 + ∆𝑉 , where

∆𝑉 =
(𝑥𝑏 − 𝑥𝑏−1 − 𝜀)𝑝

𝜎𝑝
𝑏−1

+
𝜀𝑝

𝜎𝑝
𝑏

− (𝑥𝑏 − 𝑥𝑏−1)
𝑝

𝜎𝑝
𝑏−1

.

By applying the first term of Taylor expansion to the first ratio in the expression for ∆𝑉 ,
one can conclude that

∆𝑉 = −𝑝(𝑥𝑏 − 𝑥𝑏−1)
𝑝−1

𝜎𝑝
𝑏−1

𝜀+𝑂(𝜀2) +
𝜀𝑝

𝜎𝑝
𝑏

.

We consider the case 𝑝 > 1. Then, for sufficiently small 𝜀, the first term dominates, so the
difference ∆𝑉 is negative — which means that we can further decrease 𝑉 .

This possibility contradicts to the fact that the tuple 𝑥𝑖 minimizes 𝑉 . Thus, the solution
is indeed strictly monotonic. Proposition 2 is proven.

5. Let us now prove Proposition 3.
By definition of the transition zone, for each index 𝑖 from this zone, we have 𝑥𝑙−1 ⊆ 𝑥𝑖,

hence 𝑥𝑙−1 ∈ 𝑥𝑙−1 ⊆ 𝑥𝑖 and 𝑥𝑙−1 ∈ [𝑥𝑖, 𝑥𝑖] — thence 𝑥𝑖 ≤ 𝑥𝑙−1. Similarly, from 𝑥𝑢+1 ⊆ 𝑥𝑖,
we conclude that 𝑥𝑢+1 ≤ 𝑥𝑖.

Due to strict monotonicity (Part 4 of this proof), we have 𝑥𝑙−1 < 𝑥𝑖 < 𝑥𝑢+1. Thus,
𝑥𝑖 ≤ 𝑥𝑙−1 < 𝑥𝑖 and 𝑥𝑖 < 𝑥𝑖 and similarly, 𝑥𝑖 < 𝑥𝑖.

Since the value 𝑥𝑖 is strictly inside the interval 𝑥𝑖, the derivative of the minimized function
𝑉 is equal to 0. Differentiating 𝑉 relative to 𝑥𝑖 (and taking monotonicity into account), we
conclude that

𝑝(𝑥𝑖 − 𝑥𝑖−1)
𝑝−1𝜎𝑝

𝑖−1 − 𝑝(𝑥𝑖+1 − 𝑥𝑖)
𝑝−1𝜎𝑝

𝑖 = 0.

When 𝜎𝑖 → 𝜎, we get 𝑥𝑖 − 𝑥𝑖−1 = 𝑥𝑖+1 − 𝑥𝑖. So, the difference 𝑥𝑖 − 𝑥𝑖−1 is indeed the same
for all 𝑖 within the transition zone. Thus, we get the desired linear dependence of 𝑥𝑖 on 𝑖.
The proposition is proven.
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