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In many situations, our decision results either in a money gain (or loss) and/or in
the gain of goods having a money equivalent. A natural idea is to assign a fair price
to different alternatives, and then to use these fair prices to select the best alternative.
Sometimes, interval uncertainty is present in such situations, which means that we do
not know the exact amount of money that we will get for each possible decision, we
only know lower and upper bounds on this amount. In this paper, we show how to
assign a fair price under interval uncertainty. We also explain how to assign a fair price
in the case of more general types of uncertainty such as p-boxes, twin intervals, fuzzy
values, etc.

In other situations, the result of a decision is the decision maker’s own satisfaction.
Then, a more adequate approach is to use utilities — a quantitative way of describing
user’s preferences. In our paper, after a brief introduction describing what are utilities,
how to evaluate them, and how to make decisions based on utilities, we explain how
to make decisions in situations with user uncertainty — a realistic situation when
a decision maker cannot always decide which alternative is better.
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1. Need for decision making under uncertainty

Need for decision making. In many practical situations, we have several alternatives at
our disposal, and we need to select one of these alternatives. For example:

∙ a person saving for retirement needs to find the best way to invest money;
∙ a company needs to select a location for its new plant;
∙ a designer must select one of several possible designs for a new airplane;
∙ a medical doctor needs to select a treatment for a patient.
Need for decision making under uncertainty. Decision making is easier if we

know the exact consequences of each alternative selection. Often, however, we only have an
incomplete information about consequences of different alternative, and we need to select an
alternative under this uncertainty.

What we do in this paper. In this paper, we explain two approaches to decision
making under uncertainty: monetary and utility approaches, we explain when each of these
approaches is appropriate, how to justify the corresponding heuristic techniques, and how
to go beyond these heuristic techniques.
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Most results about the monetary approach are mentioned in [1], most results about the
utility approach are described in [2], the combined description — with a clear separation of
the two approaches — is new. Decision making under uncertainty is a vast research area,
with thousands of relevant books and papers; we refer readers to papers cited in [1, 2] and
to the edited book [3].

2. Decision making under uncertainty:
monetary approach and its heuristics

2.1. When monetary approach is appropriate

In many situations, e. g., in financial and economic decision making, the decision results:
∙ either in a money gain (or loss) and/or
∙ in the gain of goods that can be exchanged for money or for other goods.

In this case, we select an alternative which the highest exchange value, i. e., the highest
price 𝑢.

Uncertainty means that we do not know the exact prices. The simplest case is when we
only know lower and upper bounds on the price, i. e., we only know that 𝑢 ∈ [𝑢, 𝑢] for given
bounds 𝑢 and 𝑢.

2.2. Hurwicz optimism-pessimism heuristic for decision making
under interval uncertainty

In the early 1950s, the future Nobel Prize winner L. Hurwicz proposed to select an alternative
for which

𝛼𝐻 · 𝑢 + (1 − 𝛼𝐻) · 𝑢 → max .

Here, 𝛼𝐻 ∈ [0, 1] described the optimism level of a decision maker:
I 𝛼𝐻 = 1 means optimism;
I 𝛼𝐻 = 0 means pessimism;
I 0 < 𝛼𝐻 < 1 combines optimism and pessimism.

This approach works well in practice. However, this is a semi-heuristic idea.
It is desirable to come up with an approach which can be uniquely determined based on

the first principles.

3. Monetary approach to decision making under uncertainty:
how to justify the existing heuristics and how to move
beyond these heuristics

3.1. Fair price approach: an idea

When we have full information about an object, then we can express our desirability of
each possible situation by declaring a price that we are willing to pay to get involved in
this situation. Once these prices are set, we simply select the alternative for which the
participation price is the highest.

In decision making under uncertainty, it is not easy to come up with a fair price. It would
be very useful to develop a regular technique for producing such fair prices. These prices
can then be used in decision making, to select an appropriate alternative.



Decision making under interval uncertainty 39

3.2. Case of interval uncertainty

Analysis of the problem. In the ideal case, we know the exact gain 𝑢 of selecting an
alternative. A more realistic case is when we only know the lower bound 𝑢 and the upper
bound 𝑢 on this gain — and we do not know which values 𝑢 ∈ [𝑢, 𝑢] are more probable or
possible and which are not. This situation is known as interval uncertainty. In the rest of
the paper, we denote intervals by boldface letters (𝑎, 𝑏, . . . , 𝑌 , 𝑍), and the set of all closed
bounded intervals over R is designated as IR.

We want to assign, to each interval [𝑢, 𝑢], a number 𝑃 ([𝑢, 𝑢]) describing the fair price of
this interval.

Conservativeness. Since we know that 𝑢 ≤ 𝑢, we have 𝑃 ([𝑢, 𝑢]) ≤ 𝑢. Similarly, since
we know that 𝑢 ≥ 𝑢, we have 𝑢 ≤ 𝑃 ([𝑢, 𝑢]).

Monotonicity. Let us first consider the case when we keep the lower endpoint 𝑢 intact,
but increase the upper bound. This means that we:

∙ keep all the previous possibilities, but
∙ we allow new possibilities, with a higher gain.

In this case, it is reasonable to require that the corresponding price not decrease:

if 𝑢 = 𝑣 and 𝑢 < 𝑣 then 𝑃 ([𝑢, 𝑢]) ≤ 𝑃 ([𝑣, 𝑣]).

Let us now consider another case, when we dismiss some low-gain alternatives. This
should increase (or at least not decrease) the fair price:

if 𝑢 < 𝑣 and 𝑢 = 𝑣 then 𝑃 ([𝑢, 𝑢]) ≤ 𝑃 ([𝑣, 𝑣]).

Additivity: idea. Let us consider another requirement on the fair price. This re-
quirement is related to the fact that we can consider two decision processes separately.
Alternatively, we can also consider a single decision process in which we select a pair of
alternatives:

∙ the 1st alternative corresponding to the 1st decision, and
∙ the 2nd alternative corresponding to the 2nd decision.

If we are willing to pay
∙ the amount 𝑢 to participate in the first process, and
∙ the amount 𝑣 to participate in the second decision process,

then we should be willing to pay 𝑢 + 𝑣 to participate in both decision processes.
Additivity: case of interval uncertainty. Let us describe what this requirement will

look like in the case of interval uncertainty.
In this case, about the gain 𝑢 from the first alternative, we only know that this (unknown)

gain is in [𝑢, 𝑢]. About the gain 𝑣 from the second alternative, we only know that this gain
belongs to the interval [𝑣, 𝑣]. The overall gain 𝑢+𝑣 can thus take any value from the interval

[𝑢, 𝑢] + [𝑣, 𝑣]
def
= {𝑢 + 𝑣 : 𝑢 ∈ [𝑢, 𝑢], 𝑣 ∈ [𝑣, 𝑣]}.

It is easy to check that [𝑢, 𝑢] + [𝑣, 𝑣] = [𝑢+ 𝑣, 𝑢+ 𝑣]. Thus, the additivity requirement about
the fair prices takes the form

𝑃 ([𝑢 + 𝑣, 𝑢 + 𝑣]) = 𝑃 ([𝑢, 𝑢]) + 𝑃 ([𝑣, 𝑣]).

Fair price under interval uncertainty. Let us see what all these requirement lead
to. First, we formulate
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Definition 1. By a fair price under interval uncertainty, we mean a real-valued function
𝑃 ([𝑢, 𝑢]) for which

(i) 𝑢 ≤ 𝑃 ([𝑢, 𝑢]) ≤ 𝑢 for all 𝑢 and 𝑢 (conservativeness);
(ii) if 𝑢 = 𝑣 and 𝑢 < 𝑣, then 𝑃 ([𝑢, 𝑢]) ≤ 𝑃 ([𝑣, 𝑣]) (monotonicity);
(iii) for all 𝑢, 𝑢, 𝑣, and 𝑣, we have additivity

𝑃 ([𝑢 + 𝑣, 𝑢 + 𝑣]) = 𝑃 ([𝑢, 𝑢]) + 𝑃 ([𝑣, 𝑣]).

Theorem 1. Each fair price under interval uncertainty has the form

𝑃 ([𝑢, 𝑢]) = 𝛼𝐻𝑢 + (1 − 𝛼𝐻)𝑢 for some 𝛼𝐻 ∈ [0, 1].

We thus get a new justification of the Hurwicz optimism-pessimism criterion.
Proof: main ideas.
∙ Due to monotonicity, 𝑃 ([𝑢, 𝑢]) = 𝑢.

∙ Due to monotonicity, 𝛼𝐻
def
= 𝑃 ([0, 1]) ∈ [0, 1].

∙ For [0, 1] = [0, 1/𝑛]+ . . .+[0, 1/𝑛] (𝑛 times), additivity implies that 𝛼𝐻 = 𝑛𝑃 ([0, 1/𝑛]),
so 𝑃 ([0, 1/𝑛]) = 𝛼𝐻(1/𝑛).

∙ For [0,𝑚/𝑛] = [0, 1/𝑛] + . . . + [0, 1/𝑛] (𝑚 times), additivity implies 𝑃 ([0,𝑚/𝑛]) =
𝛼𝐻(𝑚/𝑛).

∙ For each real number 𝑟, for each 𝑛, there is an 𝑚, such that 𝑚/𝑛 ≤ 𝑟 ≤ (𝑚 + 1)/𝑛.

∙ Monotonicity implies

𝛼𝐻(𝑚/𝑛) = 𝑃 ([0,𝑚/𝑛]) ≤ 𝑃 ([0, 𝑟]) ≤ 𝑃 ([0, (𝑚 + 1)/𝑛]) = 𝛼𝐻((𝑚 + 1)/𝑛).

∙ When 𝑛 → ∞, 𝛼𝐻(𝑚/𝑛) → 𝛼𝐻𝑟 and 𝛼𝐻((𝑚 + 1)/𝑛) → 𝛼𝐻𝑟, hence 𝑃 ([0, 𝑟]) = 𝛼𝐻𝑟.

∙ For [𝑢, 𝑢] = [𝑢, 𝑢]+ [0, 𝑢−𝑢], additivity implies that 𝑃 ([𝑢, 𝑢]) = 𝑢+𝛼𝐻(𝑢−𝑢). Q.E.D.

3.3. Case of set-valued uncertainty

Need for set-valued uncertainty. In some cases, in addition to knowing that the actual
gain belongs to the interval [𝑢, 𝑢] ⊂ R, we also know that some values from this interval
cannot be possible values of this gain.

For example, if we buy an obscure lottery ticket for a simple prize-or-no-prize lottery
from a remote country, we either get the prize or lose the money. In this case, the set of
possible values of the gain consists of two values.

Instead of a (bounded) interval of possible values, we can therefore consider a general
closed bounded set of possible values on the real axis R.

Fair price under set-valued uncertainty. We want to construct a real-valued function
𝑃 that assigns, to every bounded closed set 𝑆 ⊂ R, such a real number 𝑃 (𝑆) that

(i) 𝑃 ([𝑢, 𝑢]) = 𝛼𝐻𝑢 + (1 − 𝛼𝐻)𝑢 (conservativeness);

(ii) 𝑃 (𝑆 + 𝑆 ′) = 𝑃 (𝑆) + 𝑃 (𝑆 ′), where 𝑆 + 𝑆 ′ def
= {𝑠 + 𝑠′ : 𝑠 ∈ 𝑆, 𝑠′ ∈ 𝑆 ′} (additivity).

Theorem 2. Each fair price under set uncertainty has the form

𝑃 (𝑆) = 𝛼𝐻 sup𝑆 + (1 − 𝛼𝐻) inf 𝑆 for some 𝛼𝐻 ∈ [0, 1].
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Proof: idea.
∙ {𝑠, 𝑠} ⊆ 𝑆 ⊆ [𝑠, 𝑠], where 𝑠

def
= inf 𝑆 and 𝑠

def
= sup𝑆;

∙ thus, [2𝑠, 2𝑠] = {𝑠, 𝑠} + [𝑠, 𝑠] ⊆ 𝑆 + [𝑠, 𝑠] ⊆ [𝑠, 𝑠] + [𝑠, 𝑠] = [2𝑠, 2𝑠];

∙ so 𝑆 + [𝑠, 𝑠] = [2𝑠, 2𝑠], hence 𝑃 (𝑆) + 𝑃 ([𝑠, 𝑠]) = 𝑃 ([2𝑠, 2𝑠]), and

𝑃 (𝑆) = 𝑃 ([2𝑠, 2𝑠]) − 𝑃 ([𝑠, 𝑠]) = (𝛼𝐻(2𝑠) + (1 − 𝛼𝐻)(2𝑠)) − (𝛼𝐻𝑠 + (1 − 𝛼𝐻)𝑠).

3.4. Case of probabilistic uncertainty

Suppose that for some financial instrument, we know a probability distribution 𝜌(𝑥) on the
set of possible gains 𝑥. What is the fair price 𝑃 for this instrument?

Due to additivity, the fair price for 𝑛 copies of this instrument is 𝑛𝑃 . According to
the Large Numbers Theorem, for large 𝑛, the average gain tends to the mean value (= the
expected value)

𝜇 =

∫︁
𝑥𝜌(𝑥) 𝑑𝑥.

Thus, the fair price for 𝑛 copies of the instrument is close to 𝑛𝜇, i. e. 𝑛𝑃 ≈ 𝑛𝜇. The larger
𝑛, the closer the averages. So, in the limit, we get 𝑃 = 𝜇, i. e., the fair price is the mean
value.

3.5. Case of p-box uncertainty

Probabilistic uncertainty means that for every 𝑥, we know the value of the cumulative dis-
tribution function 𝐹 (𝑥) = Prob(𝜂 ≤ 𝑥). In practice, we often only have partial information
about these values. In this case, for each 𝑥, we only know an interval [𝐹 (𝑥), 𝐹 (𝑥)] containing
the actual (unknown) value 𝐹 (𝑥). The interval-valued function [𝐹 (𝑥), 𝐹 (𝑥)] is known as a
p-box.

What is the fair price of a p-box? The only information that we have about the cdf is
that 𝐹 (𝑥) ∈ [𝐹 (𝑥), 𝐹 (𝑥)]. For each possible 𝐹 (𝑥), for large 𝑛, 𝑛 copies of the instrument

are ≈ equivalent to 𝑛𝜇, with 𝜇 =

∫︁
𝑥 𝑑𝐹 (𝑥).

For different 𝐹 (𝑥) from the p-box, values of 𝜇 for an interval
[︀
𝜇, 𝜇

]︀
, where 𝜇 =

∫︁
𝑥 𝑑𝐹 (𝑥)

and 𝜇 =

∫︁
𝑥 𝑑𝐹 (𝑥). Thus, the price of a p-box is equal to the price of an interval

[︀
𝜇, 𝜇

]︀
.

We already know that this price is equal to 𝛼𝐻𝜇 + (1 − 𝛼𝐻)𝜇. So, this is a fair price of
a p-box.

3.6. Case of twin intervals

What are twin intervals. Twin, by definition, is an interval of intervals (twice interval),
or, in other words, an interval that has interval bounds.

Sometimes, in addition to the interval [𝑥, 𝑥], we also have a “most probable” or a “most
possible” subinterval [𝑚,𝑚] ⊆ [𝑥, 𝑥]. For such “twin intervals”, addition is naturally defined
component-wise:

([𝑥, 𝑥], [𝑚,𝑚]) + ([𝑦, 𝑦], [𝑛, 𝑛]) = ([𝑥 + 𝑦, 𝑥 + 𝑦], [𝑚 + 𝑛,𝑚 + 𝑛]).
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Thus, the additivity for additivity requirement about the fair prices takes the form

𝑃 ([𝑥 + 𝑦, 𝑥 + 𝑦], [𝑚 + 𝑛,𝑚 + 𝑛]) = 𝑃 ([𝑥, 𝑥], [𝑚,𝑚]) + 𝑃 ([𝑦, 𝑦], [𝑛, 𝑛]).

Fair price under twin interval uncertainty. Let us give a formal definition similar
to those previously provided for the fair prices under interval and set-valued uncertainty.

Definition 2. By a fair price under twin uncertainty, we mean such a real-valued
function 𝑃 ([𝑢, 𝑢], [𝑚,𝑚]) that satisfies

(i) 𝑢 ≤ 𝑃 ([𝑢, 𝑢], [𝑚,𝑚]) ≤ 𝑢 for all 𝑢 ≤ 𝑚 ≤ 𝑚 ≤ 𝑢 (conservativeness);
(ii) if 𝑢 ≤ 𝑣, 𝑚 ≤ 𝑛, 𝑚 ≤ 𝑛, and 𝑢 ≤ 𝑣, then

𝑃 ([𝑢, 𝑢], [𝑚,𝑚]) ≤ 𝑃 ([𝑣, 𝑣], [𝑛, 𝑛]) (monotonicity);
(iii) for all 𝑢 ≤ 𝑚 ≤ 𝑚 ≤ 𝑢 and 𝑣 ≤ 𝑛 ≤ 𝑛 ≤ 𝑣, we have additivity:

𝑃 ([𝑢 + 𝑣, 𝑢 + 𝑣], [𝑚 + 𝑛,𝑚 + 𝑚]) = 𝑃 ([𝑢, 𝑢], [𝑚,𝑚]) + 𝑃 ([𝑣, 𝑣], [𝑛, 𝑛]).

Theorem 3. Each fair price under twin uncertainty has the following form, for some
𝛼𝐿, 𝛼𝑢, 𝛼𝑈 ∈ [0, 1]:

𝑃 ([𝑢, 𝑢], [𝑚,𝑚]) = 𝑚 + 𝛼𝑢(𝑚−𝑚) + 𝛼𝑈(𝑈 −𝑚) + 𝛼𝐿(𝑢−𝑚).

3.7. Case of fuzzy numbers

Need for fuzzy uncertainty. An expert is often imprecise (“fuzzy”) about possible va-
lues of this or that quantity of interest. For example, an expert may say that the gain is
“small”. To describe such information in formal terms, L. Zadeh introduced the notion of
fuzzy numbers.

For fuzzy numbers, different values 𝑢 are possible with different degrees of possibility
𝜇(𝑢) ∈ [0, 1]. The value 𝑤 is a possible value of 𝑢 + 𝑣 if:
I for some values 𝑢 and 𝑣 satisfying 𝑢 + 𝑣 = 𝑤,
I 𝑢 is a possible value of 1st gain, and
I 𝑣 is a possible value of 2nd gain.

If we interpret “and” as min and “or” (“for some”) as max, we get Zadeh’s extension prin-
ciple:

𝜇(𝑤) = max
𝑢,𝑣:𝑢+𝑣=𝑤

min
{︀
𝜇1(𝑢), 𝜇2(𝑣)

}︀
.

The above operation is easiest to describe in terms of 𝛼-cuts defined as

𝑢(𝛼) = [𝑢−(𝛼), 𝑢+(𝛼)]
def
= {𝑢 : 𝜇(𝑢) ≥ 𝛼}.

Notice that 𝛼-cuts of fuzzy numbers are intervals. Then, 𝑤(𝛼) = 𝑢(𝛼) + 𝑣(𝛼) according to
the rule for interval addition, i. e.,

𝑤−(𝛼) = 𝑢−(𝛼) + 𝑣−(𝛼) and 𝑤+(𝛼) = 𝑢+(𝛼) + 𝑣+(𝛼).

For multiplication, we similarly get

𝜇(𝑤) = max
𝑢,𝑣:𝑢𝑣=𝑤

min
{︀
𝜇1(𝑢), 𝜇2(𝑣)

}︀
.

In terms of 𝛼-cuts of the operands, we have 𝑤(𝛼) = 𝑢(𝛼) · 𝑣(𝛼) according to the rule for
interval multiplication, i. e.,

𝑤−(𝛼) = min
{︀
𝑢−(𝛼)𝑣−(𝛼), 𝑢−(𝛼)𝑣+(𝛼), 𝑢+(𝛼)𝑣−(𝛼), 𝑢+(𝛼)𝑣+(𝛼)

}︀
𝑤+(𝛼) = max

{︀
𝑢−(𝛼)𝑣−(𝛼), 𝑢−(𝛼)𝑣+(𝛼), 𝑢+(𝛼)𝑣−(𝛼), 𝑢+(𝛼)𝑣+(𝛼)

}︀
.
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What is the fair price under such fuzzy uncertainty?
Fair price under fuzzy uncertainty. We want to assign, to every fuzzy number 𝑠, a

real number 𝑃 (𝑠), so that
(i) if a fuzzy number 𝑠 is located between 𝑢 and 𝑢, then 𝑢 ≤ 𝑃 (𝑠) ≤ 𝑢 (conservativeness);

(ii) 𝑃 (𝑢 + 𝑣) = 𝑃 (𝑢) + 𝑃 (𝑣) (additivity);
(iii) if for all 𝛼, 𝑠−(𝛼) ≤ 𝑡−(𝛼) and 𝑠+(𝛼) ≤ 𝑡+(𝛼), then we have 𝑃 (𝑠) ≤ 𝑃 (𝑡) (monotoni-

city);
(iv) if 𝜇𝑛 uniformly converges to 𝜇, then 𝑃 (𝜇𝑛) → 𝑃 (𝜇) (continuity).

Theorem 4. The fair price under fuzzy uncertainty is equal to

𝑃 (𝑠) = 𝑠0 +

1∫︁
0

𝑘−(𝛼) 𝑑𝑠−(𝛼) −
1∫︁

0

𝑘+(𝛼) 𝑑𝑠+(𝛼) for some 𝑘±(𝛼).

Discussion. We have ∫︁
𝑓(𝑥)𝑑𝑔(𝑥) =

∫︁
𝑓(𝑥)𝑔′(𝑥) 𝑑𝑥

for 𝑔′(𝑥) understood as a generalized function (distribution). Hence, one can write for 𝐾±(𝛼)

𝑃 (𝑠) =

1∫︁
0

𝐾−(𝛼)𝑠−(𝛼) 𝑑𝛼 +

1∫︁
0

𝐾+(𝛼)𝑠+(𝛼) 𝑑𝛼

in the same generalized sense (in the sense of the theory of distributions). Conservativeness
means that

1∫︁
0

𝐾−(𝛼) 𝑑𝛼 +

1∫︁
0

𝐾+(𝛼) 𝑑𝛼 = 1.

Next, we get for the interval [𝑢, 𝑢]

𝑃 (𝑠) =

⎛⎝ 1∫︁
0

𝐾−(𝛼) 𝑑𝛼

⎞⎠𝑢 +

⎛⎝ 1∫︁
0

𝐾+(𝛼) 𝑑𝛼

⎞⎠𝑢.

Thus, Hurwicz optimism-pessimism coefficient 𝛼𝐻 is equal to
1∫︀
0

𝐾+(𝛼) 𝑑𝛼. In this sense, the

above formula is a generalization of Hurwicz’s formula to the fuzzy case.

4. Non-monetary (utility) approach to decision making
under uncertainty: main ideas

4.1. Monetary approach is not always appropriate

In some situations, the result of the decision is the decision maker’s own satisfaction; exam-
ples include:

∙ buying a house to live in,
∙ selecting a movie to watch.
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In such situations, monetary approach is not appropriate; for example:
I a small apartment in downtown can be very expensive,
I but many people prefer a cheaper — but more spacious and comfortable — suburban

house.

4.2. Non-monetary decision making: traditional utility approach

Analysis of the problem. To make a decision, we must find out the user’s preference, and
help the user select an alternative which is the best — according to these preferences.

Traditional approach is based on an assumption that for each two alternatives 𝐴′ and
𝐴′′, a user can tell:

� whether the first alternative is better for him/her (we will denote this by 𝐴′′ < 𝐴′);
� or the second alternative is better (we will denote this by 𝐴′ < 𝐴′′);
� or the two given alternatives are of equal value to the user (we will denote this by
𝐴′ = 𝐴′′).

The notion of utility. Under the above assumption, we can form a natural numerical
scale for describing preferences.

Let us select a very bad alternative 𝐴0 and a very good alternative 𝐴1. Then, most other
alternatives are better than 𝐴0 but worse than 𝐴1. For every probability 𝑝 ∈ [0, 1], we can
form a lottery 𝐿(𝑝) in which we get 𝐴1 with probability 𝑝 and 𝐴0 with probability 1 − 𝑝.

When 𝑝 = 0, this lottery simply coincides with the alternative 𝐴0: 𝐿(0) = 𝐴0. The larger
the probability 𝑝 of the positive outcome increases, the better the result:

𝑝′ < 𝑝′′ implies 𝐿(𝑝′) < 𝐿(𝑝′′).

Finally, for 𝑝 = 1, the lottery coincides with the alternative 𝐴1: 𝐿(1) = 𝐴1.
Thus, we have a continuous scale of alternatives 𝐿(𝑝) that monotonically goes from

𝐿(0) = 𝐴0 to 𝐿(1) = 𝐴1. Due to monotonicity, when 𝑝 increases, we first have 𝐿(𝑝) < 𝐴,
then we have 𝐿(𝑝) > 𝐴. The threshold value is called the utility of the alternative 𝐴:

𝑢(𝐴)
def
= sup{ 𝑝 : 𝐿(𝑝) < 𝐴 } = inf{ 𝑝 : 𝐿(𝑝) > 𝐴 }.

Then, for every 𝜀 > 0, we have

𝐿
(︀
𝑢(𝐴) − 𝜀

)︀
< 𝐴 < 𝐿

(︀
𝑢(𝐴) + 𝜀

)︀
.

We will describe such (almost) equivalence by ≡, i. e., we will write that 𝐴 ≡ 𝐿(𝑢(𝐴)).
Fast iterative process for determining 𝑢(𝐴). How can we determine the utility

value?
Initially, we know the values 𝑢 = 0 and 𝑢 = 1, such that 𝐴 ≡ 𝐿(𝑢(𝐴)) for a certatin

𝑢(𝐴) ∈ [𝑢, 𝑢]. In general, once we know an interval [𝑢, 𝑢] containing 𝑢(𝐴), we compute the
midpoint 𝑢mid of this interval and compare 𝐴 with 𝐿(𝑢mid).

∙ If 𝐴 ≤ 𝐿(𝑢mid), then 𝑢(𝐴) ≤ 𝑢mid, so we know that 𝑢 ∈ [𝑢, 𝑢mid].
∙ If 𝐿(𝑢mid) ≤ 𝐴, then 𝑢mid ≤ 𝑢(𝐴), so 𝑢 ∈ [𝑢mid, 𝑢].

After each iteration, we decrease the width of the interval [𝑢, 𝑢] by half. After 𝑘 iterations,
we get an interval of width 2−𝑘 which contains 𝑢(𝐴) — i. e., we get 𝑢(𝐴) with accuracy 2−𝑘.
The above is a well-known bisection method for localizing roots of scalar functions.

How to make a decision based on utility values. Suppose that we have found the
utilities 𝑢(𝐴′), 𝑢(𝐴′′), . . . , of the alternatives 𝐴′, 𝐴′′, . . . Which of these alternatives should
we choose?
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By definition of utility, we have 𝐴 ≡ 𝐿(𝑢(𝐴)) for every alternative 𝐴, and 𝐿(𝑝′) < 𝐿(𝑝′′)
if and only if 𝑝′ < 𝑝′′. We can thus conclude that 𝐴′ is preferable to 𝐴′′ if and only if
𝑢(𝐴′) > 𝑢(𝐴′′). In other words, we should always select an alternative with the largest
possible value of utility.

How to estimate utility of an action. For each action, we usually know possible
outcomes 𝑆1, . . . , 𝑆𝑛. We can often estimate the probabilities 𝑝1, . . . , 𝑝𝑛 of these outcomes.
By definition of utility, each situation 𝑆𝑖 is equivalent to a lottery 𝐿(𝑢(𝑆𝑖)) in which we
get

∙ 𝐴1 with probability 𝑢(𝑆𝑖) and
∙ 𝐴0 with the remaining probability 1 − 𝑢(𝑆𝑖).

Thus, the action is equivalent to a complex lottery in which
∙ first, we select one of the situations 𝑆𝑖 with probability 𝑝𝑖, i. e. 𝑃 (𝑆𝑖) = 𝑝𝑖,
∙ then, depending on 𝑆𝑖, we get 𝐴1 with probability 𝑃 (𝐴1 | 𝑆𝑖) = 𝑢(𝑆𝑖) and 𝐴0 with

probability 1 − 𝑢(𝑆𝑖).

The probability of getting 𝐴1 in this complex lottery is

𝑃 (𝐴1) =
𝑛∑︁

𝑖=1

𝑃 (𝐴1 |𝑆𝑖)𝑃 (𝑆𝑖) =
𝑛∑︁

𝑖=1

𝑢(𝑆𝑖)𝑝𝑖.

In the complex lottery, we get

I 𝐴1 with probability 𝑢 =
𝑛∑︀

𝑖=1

𝑝𝑖𝑢(𝑆𝑖), and

I 𝐴0 with probability 1 − 𝑢.

Overall, we should select the action with the largest value of expected utility

𝑢 =
𝑛∑︁

𝑖=1

𝑝𝑖𝑢(𝑆𝑖).

Non-uniqueness of utility. The above definition of utility 𝑢 depends on 𝐴0, 𝐴1. What
if we use different alternatives 𝐴′

0 and 𝐴′
1?

Every 𝐴 is equivalent to a lottery 𝐿(𝑢(𝐴)) in which we get 𝐴1 with probability 𝑢(𝐴) and
𝐴0 with probability 1− 𝑢(𝐴). For simplicity, let us assume that 𝐴′

0 < 𝐴0 < 𝐴1 < 𝐴′
1. Then,

𝐴0 ≡ 𝐿′(𝑢′(𝐴0)) and 𝐴1 ≡ 𝐿′(𝑢′(𝐴1)). So, 𝐴 is equivalent to a complex lottery in which:
1) we select 𝐴1 with probability 𝑢(𝐴) and 𝐴0 with probability 1 − 𝑢(𝐴);
2) depending on 𝐴𝑖, we get 𝐴′

1 with probability 𝑢′(𝐴𝑖) and 𝐴′
0 with probability 1−𝑢′(𝐴𝑖).

In this complex lottery, we get 𝐴′
1 with probability

𝑢′(𝐴) = 𝑢(𝐴)
(︀
𝑢′(𝐴1) − 𝑢′(𝐴0)

)︀
+ 𝑢′(𝐴0).

So, in general, utility is defined modulo an (increasing) linear transformation 𝑢′ = 𝑎𝑢 + 𝑏,
with 𝑎 > 0.

Subjective probabilities. In practice, the probabilities 𝑝𝑖 of different outcomes are of-
ten not known exactly. For each event 𝐸, a natural way to estimate its subjective probability
is to fix a prize (e. g., $1) and compare:

∙ the lottery ℓ𝐸 in which we get the fixed prize if the event 𝐸 occurs and 0 if it does not
occur, with

∙ a lottery ℓ(𝑝) in which we get the same amount with probability 𝑝.



46 V. Kreinovich

Here, similarly to the utility case, we get a value 𝑝𝑠(𝐸) for which, for every 𝜀 > 0:

ℓ(𝑝𝑠(𝐸) − 𝜀) < ℓ𝐸 < ℓ(𝑝𝑠(𝐸) + 𝜀).

Then, the utility of an action with possible outcomes 𝑆1, . . . , 𝑆𝑛 is equal to

𝑢 =
𝑛∑︁

𝑖=1

𝑝𝑠(𝐸𝑖)𝑢(𝑆𝑖).

Beyond traditional decision making: towards a more realistic description.
Earlier, we assumed that a user can always decide which of the two alternatives 𝐴′ and 𝐴′′

is better:
� either 𝐴′ < 𝐴′′,
� or 𝐴′′ < 𝐴′,
� or 𝐴′ ≡ 𝐴′′.

In practice, a user is sometimes unable to meaningfully decide between the two alternatives;
we will denote this by 𝐴′ ‖ 𝐴′′. In mathematical terms, this means that the preference
relation is no longer a total (linear) order, it can be a partial order.

From utility to interval-valued utility. Similarly to the traditional decision making
approach:

∙ we select two alternatives 𝐴0 < 𝐴1 and
∙ we compare each alternative 𝐴 which is better than 𝐴0 and worse than 𝐴1 with lotteries
𝐿(𝑝).

Since the preference is a partial order, we have in general:

𝑢(𝐴)
def
= sup{𝑝 : 𝐿(𝑝) < 𝐴} < 𝑢(𝐴)

def
= inf{𝑝 : 𝐿(𝑝) > 𝐴}.

For each alternative 𝐴, instead of a single value 𝑢(𝐴) of the utility, we now have an interval
[𝑢(𝐴), 𝑢(𝐴)] such that:

∙ if 𝑝 < 𝑢(𝐴), then 𝐿(𝑝) < 𝐴;
∙ if 𝑝 > 𝑢(𝐴), then 𝐴 < 𝐿(𝑝); and
∙ if 𝑢(𝐴) < 𝑝 < 𝑢(𝐴), then 𝐴 ‖ 𝐿(𝑝).

We will call this interval the utility of the alternative 𝐴.
Interval-valued utilities and interval-valued subjective probabilities. To feasibly

elicit the values 𝑢(𝐴) and 𝑢(𝐴), we carry out the following operations:
1) starting with [𝑢, 𝑢] = [0, 1], bisect an interval such that 𝐿(𝑢) < 𝐴 < 𝐿(𝑢) until we find

𝑢0 for which 𝐴 ‖ 𝐿(𝑢0);
2) by bisecting an interval [𝑢, 𝑢0] for which 𝐿(𝑢) < 𝐴 ‖ 𝐿(𝑢0), we find 𝑢(𝐴);
3) by bisecting an interval [𝑢0, 𝑢] for which 𝐿(𝑢0) ‖ 𝐴 < 𝐿(𝑢), we find 𝑢(𝐴).

Similarly, when we estimate the probability of an event 𝐸, we no longer get a single value
𝑝𝑠(𝐸). Rather, we get an interval

[︀
𝑝𝑠(𝐸), 𝑝𝑠(𝐸)

]︀
of possible values of probability. By using

the bisection method described, we can feasibly elicit the values 𝑝𝑠(𝐸) and 𝑝𝑠(𝐸).
Decision making under interval uncertainty. For each possible decision 𝑑, we know

the interval [𝑢(𝑑), 𝑢(𝑑)] of possible values of utility. Which decision shall we select?
A natural idea is to select all decisions 𝑑0 that may be optimal, i. e., which are optimal

for some function 𝑢(𝑑) ∈ [𝑢(𝑑), 𝑢(𝑑)].
Checking all possible functions is not feasible. However, it is easy to show that the above

condition is equivalent to an easier-to-check one: 𝑢(𝑑0) ≥ max
𝑑

𝑢(𝑑).
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The remaining problem is that in practice, we would like to select one decision; which
one should be select?

Need for definite decision making. At first glance, if 𝐴′ ‖ 𝐴′′, it does not matter
whether we recommend alternative 𝐴′ or alternative 𝐴′′. Let us show that this is not a good
recommendation.

Let 𝐴 be an alternative about which we know nothing, i. e., for which [𝑢(𝐴), 𝑢(𝐴)] = [0, 1].
In this case, 𝐴 is indistinguishable both from a “good” lottery 𝐿(0.999) and a “bad” lottery
𝐿(0.001). Suppose that we recommend, to the user, that 𝐴 is equivalent both to 𝐿(0.999)
and to 𝐿(0.001). Then this user will feel comfortable

— first, exchanging 𝐿(0.999) with 𝐴, and
— then, exchanging 𝐴 with 𝐿(0.001).

So, following our recommendations, the user switches from a very good alternative to a very
bad one.

The above argument does not depend on the fact that we assumed complete ignorance
about 𝐴:

∙ every time we recommend that the alternative 𝐴 is “equivalent” both to 𝐿(𝑝) and to
𝐿(𝑝′) (𝑝 < 𝑝′);

∙ we make the user vulnerable to a similar switch from a better alternative 𝐿(𝑝′) to a
worse one 𝐿(𝑝).

Thus, there should be only a single value 𝑝 for which 𝐴 can be reasonably exchanged with
𝐿(𝑝). In precise terms:

� we start with the utility interval [𝑢(𝐴), 𝑢(𝐴)], and
� we need to select a single 𝑢(𝐴) for which it is reasonable to exchange 𝐴 with a lottery
𝐿(𝑢).

How can we find this value 𝑢(𝐴)?

5. Utility approach to decision making under uncertainty:
how to justify the existing heuristics and how to move
beyond these heuristics

Interval uncertainty: a new justification for the Hurwicz optimism-pessimism
criterion. We need to assign, to each interval [𝑢, 𝑢], a utility value 𝑢(𝑢, 𝑢) ∈ [𝑢, 𝑢]. Let us

denote 𝛼𝐻
def
= 𝑢(0, 1).

As we have mentioned earlier, utility is determined modulo a linear transformation 𝑢′ =
𝑎𝑢 + 𝑏. It is therefore reasonable to require that the equivalent utility does not change with
re-scaling: for 𝑎 > 0 and 𝑏,

𝑢(𝑎𝑢− + 𝑏, 𝑎𝑢+ + 𝑏) = 𝑎𝑢(𝑢−, 𝑢+) + 𝑏.

In particular, for 𝑢− = 0, 𝑢+ = 1, 𝑎 = 𝑢− 𝑢, and 𝑏 = 𝑢, we get

𝑢(𝑢, 𝑢) = 𝛼𝐻(𝑢− 𝑢) + 𝑢 = 𝛼𝐻𝑢 + (1 − 𝛼𝐻)𝑢.

This is exactly Hurwicz’s optimism-pessimism criterion!
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Which value 𝛼𝐻 should we choose? An argument in favor of 𝛼𝐻 = 0.5. Let
us take an event 𝐸 about which we know nothing. For a lottery 𝐿+ in which we get 𝐴1

if 𝐸 and 𝐴0 otherwise, the utility interval is [0, 1]. Thus, the equivalent utility of 𝐿+ is
𝛼𝐻1 + (1 − 𝛼𝐻)0 = 𝛼𝐻 .

For a lottery 𝐿− in which we get 𝐴0 if 𝐸 and 𝐴1 otherwise, the utility is [0, 1], so equivalent
utility is also 𝛼𝐻 .

For a complex lottery 𝐿 in which we select either 𝐿+ or 𝐿− with probability 0.5, the
equivalent utility is still 𝛼𝐻 . On the other hand, in 𝐿, we get 𝐴1 with probability 0.5 and
𝐴0 with probability 0.5. Thus, 𝐿 = 𝐿(0.5) and hence, 𝑢(𝐿) = 0.5. So, we conclude that
𝛼𝐻 = 0.5.

Which action should we choose? Suppose that an action has 𝑛 possible outcomes
𝑆1, . . . , 𝑆𝑛, with utilities [𝑢(𝑆𝑖), 𝑢(𝑆𝑖)], and probabilities [𝑝

𝑖
, 𝑝𝑖]. We know that each alterna-

tive is equivalent to a simple lottery with utility 𝑢𝑖 = 𝛼𝐻𝑢(𝑆𝑖) + (1 − 𝛼𝐻)𝑢(𝑆𝑖). We know
that for each 𝑖, the 𝑖-th event is equivalent to 𝑝𝑖 = 𝛼𝐻𝑝𝑖 + (1 − 𝛼𝐻)𝑝

𝑖
.

Thus, this action is equivalent to a situation in which we get utility 𝑢𝑖 with probability 𝑝𝑖.

The utility of such a situation is equal to
𝑛∑︀

𝑖=1

𝑝𝑖𝑢𝑖. So, the equivalent utility of the original

action is
𝑛∑︁

𝑖=1

(︀
𝛼𝐻𝑝𝑖 + (1 − 𝛼𝐻)𝑝

𝑖

)︀(︀
𝛼𝐻𝑢(𝑆𝑖) + (1 − 𝛼𝐻)𝑢(𝑆𝑖)

)︀
.

Observation: the resulting decision depends on the level of detail. Let us
consider a situation in which, with some probability 𝑝, we gain a utility 𝑢, else we get 0.
The expected utility is 𝑝𝑢 + (1 − 𝑝)0 = 𝑝𝑢.

Suppose that we only know the intervals [𝑢, 𝑢] and [𝑝, 𝑝]. The equivalent utility 𝑢𝑘 (with 𝑘
for know) is

𝑢𝑘 =
(︀
𝛼𝐻𝑝 + (1 − 𝛼𝐻)𝑝

)︀(︀
𝛼𝐻𝑢 + (1 − 𝛼𝐻)𝑢

)︀
.

If we only know that utility is from [𝑝𝑢, 𝑝𝑢], then

𝑢𝑑 = 𝛼𝐻𝑝𝑢 + (1 − 𝛼𝐻)𝑝𝑢 (d for don’t know).

Here, additional knowledge decreases utility:

𝑢𝑑 − 𝑢𝑘 = 𝛼𝐻(1 − 𝛼𝐻)(𝑝− 𝑝)(𝑢− 𝑢) > 0.

(This is maybe what the Book of Ecclesiastes meant by “For with much wisdom comes much
sorrow”?)
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