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The article addresses the development of algorithms for a generation of a random
landscape with a given configuration entropy and Total Edge. Two algorithms are
proposed. The first one is based on the uniform random filling of a landscape by cells
of different types. The second one is based on the probabilistic cellular automaton.
The algorithm based on the cellular automaton fills the landscape with cells row by
row, and the probability of an “extraordinary” appearance of a new type of cell is
predefined. The ratio between cells of different classes is determined from the given
configurational entropy. Dependencies between landscape metrics — configuration en-
tropy and Total Edge along with the number of cell types for the landscape built in
different ways are demonstrated. Examples of landscapes obtained by the proposed al-
gorithm are shown. These landscape generation algorithms can be used for verification
of pathfinding algorithms for the construction of a large number of random landscapes
with the same metrics.
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1. Formulation of the problem. Definitions

A configurational entropy of the landscape, Total Edge, and Total Edge Density [1, 2] are
widely used characteristics of a landscape (metrics). A configuration entropy describes a
quantitative relationship between elements of different classes in a landscape, Total Edge
and Total Edge Density metrics characterize to what extent elements of different classes are
mixed in a landscape.

These metrics are easy to calculate, and there are a large number of software products for
their calculation. However, there is an inverse problem: to generate the landscape ℒ(𝑁, 𝑙)
with specified landscape configuration entropy, Total Edge, and Total Edge Density. It is
required for testing of algorithms of the pathfinding, such as those described in [3] and
for obtaining quantitative characteristics of these algorithms, for example, dependence the
efficiency of the algorithm from the landscape features. In this case, a construction of the
landscape should be fast enough, as the landscape is necessary, primarily, to accumulate
statistics on the time of agents propagating through it. Thus it is needed to sort a large
number of different landscapes with the same characteristics within a reasonable computation
time.
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Of course, one can simply generate random landscapes and then filter those which are
suitable for the metrics. However, to obtain a good solution even for a landscape 50 by 50
cells the computation time could exceed several days.

The present work addresses the description of landscape generation algorithms with pre-
defined metrics. Also, paper’s goal is to clarify the relationship of these metrics, as in [4] it
has been shown that landscapes with the same configuration entropy may look completely
different and have very different Total Edge.

We use the cellular automaton for the creation of a landscape with a given Total Edge.
Cellular automata are utilized for a landscape generation in computer games. However, the
problem to generate a texture or a landscape with characteristics like the given entropy or
Total Edge is not commonly stated as it follows from [5, 6].

Definition 1. The landscape ℒ(𝑁, 𝑙) is the set of 𝑁 equal-sized cells 𝐿𝑖𝑗, (𝑖, 𝑗) ∈ 𝐼 ⊂ N2,

belonging to 𝑙 different classes, where class 𝑖 belongs to 𝑁𝑖 cell, that is
∑︀𝑙

𝑖=1𝑁𝑖 = 𝑁 .

Cells of landscapes will be divided into classes according to the maximal speed at which
these cells can be crossed with in order to test obstacle-avoidance and pathfinding algorithms.

Definition 2. Let us define a configuration entropy as

𝑆(ℒ(𝑁, 𝑙)) = −
𝑙∑︁

𝑖=1

𝑁𝑖

𝑁
ln

𝑁𝑖

𝑁
.

Definition 3. Total Edge (TE) is the total number of the abutting edges of cells belonged to
different classes in ℒ(𝑁, 𝑙). We will further denote the Total Edge of the landscape ℒ(𝑁, 𝑙)
as 𝑇𝐸(ℒ(𝑁, 𝑙)).

Definition 4. Total Edge Density (TED) of the landscape ℒ(𝑁, 𝑙) is defined as the ratio
𝑇𝐸(ℒ) to the total cell quantity in ℒ(𝑁, 𝑙) and would be denoted as

𝑇𝐸𝐷(ℒ(𝑁, 𝑙)) = 𝑇𝐸(ℒ(𝑁, 𝑙))/𝑁.

2. Generation of a landscape with given configuration entropy

In this section, we solve the problem to efficiently generate a landscape ℒ(𝑁, 𝑙) for the
given configuration entropy 𝑆(ℒ(𝑁, 𝑙)). This goal can be achieved by determining a vector
V = (𝑁1, . . . , 𝑁𝑙) of numbers 𝑁𝑖 of each class 𝑖 cells that satisfies the following expression

𝑙∑︁
𝑖=1

𝑁𝑖 = 𝑁, 𝑆(V) = −
𝑙∑︁

𝑖=1

𝑁𝑖

𝑁
ln

𝑁𝑖

𝑁
= 𝑆(ℒ(𝑁, 𝑙)). (1)

We select 𝑁𝑖 = 𝛽𝑖−1𝑁1, 𝑁1 ≤ 𝑁 , 𝛽 ≥ 0. Since interchange of V components obviously
does not change 𝑆(V), we consider a non-increasing sequence 𝑁𝑖 only, then 0 ≤ 𝛽 ≤ 1.
If 𝛽 = 0, we assume that 𝛽0 = 1. Then conditions (1) satisfying the known properties of
geometric progression can be rewritten as

𝑆(V) = −
𝑙∑︁

𝑖=1

𝛽𝑖−1𝑁1

𝑁
(ln 𝛽𝑖−1 + ln𝑁1 − ln𝑁) = −𝑁1 ln 𝛽

𝑁

𝑙∑︁
𝑖=1

𝛽𝑖−1(𝑖− 1) + ln
𝑁

𝑁1

. (2)
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Fig. 1. Landscapes ℒ(48 × 48, 10) generated with the algorithm from the section 2. From the
left to the right 𝑆 = 0.349119, 𝑇𝐸𝐷 = 0.40842, 𝑆 = 1.1004, 𝑇𝐸𝐷 = 1.05773, 𝑆 = 2.00013,
𝑇𝐸𝐷 = 1.63411

Numbers 𝛽𝑖−1(𝑖− 1) form arithmetico-geometric sequence, therefore

𝑁1

𝑙∑︁
𝑖=1

𝛽𝑖−1(𝑖− 1) =
𝛽

1 − 𝛽
𝑁1

1 − 𝛽𝑙

1 − 𝛽
− 𝑁1𝑙𝛽

𝑙

1 − 𝛽
=

𝑁𝛽 −𝑁1𝑙𝛽
𝑙

1 − 𝛽
. (3)

We substitute (3) into (2) and obtain that

𝑆(V) = −𝛽(1 − 𝛽𝑙) − (1 − 𝛽)𝑙𝛽𝑙

(1 − 𝛽)(1 − 𝛽𝑙)
ln 𝛽 + ln

1 − 𝛽𝑙

1 − 𝛽
. (4)

Thus, the algorithm for the constructing of vectors V = (𝑁1, . . . , 𝑁𝑙) by the given en-
tropy 𝑆 is the following

1. Solve the equation (4) with respect to 𝛽.
2. Define 𝑁1 by the solution found as 𝑁1 = 𝑁(1 − 𝛽)(1 − 𝛽𝑙)−1.
3. Construct the vector V0 = (𝑁1, 𝛽𝑁1, . . . , 𝛽

𝑙−1𝑁1). Round and random shuffle its
components to integers and obtain the vector V. It is necessary to trace that the sum
of all V components is equal to the 𝑁 .

The algorithm for the landscape ℒ(𝑁, 𝑙) = {𝐿𝑖𝑗} generation which is based on the vector
V = (𝑁1, . . . , 𝑁𝑙) is the following

1. Set the class “−1” to all cells of the ℒ(𝑁, 𝑙).
2. Generate the pair of integers (𝑖, 𝑗) ∈ 𝐼 from the uniform random distribution.
3. Generate the integer 1 ≤ 𝑘 ≤ 𝑙 from the uniform random distribution so that 𝑁𝑘 ̸= 0.
4. If the class of the 𝐿𝑖𝑗 is equal to −1, set class of the 𝐿𝑖𝑗 to 𝑘 and 𝑁𝑘 := 𝑁𝑘 − 1.
5. Repeat step 2 until V ̸= 0.
Examples of landscapes generated with the algorithm described above are shown in Fig. 1.

The author has established via the computational experiment that the temporal computati-
onal complexity of the algorithm for a rectangular landscape depends on the number of cells
𝑁 as 𝑂(𝑁3/2), and on the number of classes of cells 𝑙 as 𝑂(1).

3. Generation of landscape with given Total Edge

Suppose that the landscape ℒ(𝑁, 𝑙) = ℒ(𝑁, 𝑙) = {𝐿𝑖𝑗|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}. The minimum
value of 𝑇𝐸(ℒ(𝑁, 𝑙)) will be obtained by the landscape ℒ(𝑁, 𝑙) wherein 𝐶𝑙1 class cells are
sequentially placed into one line, then 𝐶𝑙2 cells etc, starting from one of corners. If cells of
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one class end, the line of these cells continues by cells of another class. If 𝑁𝑘 is the quantity
of 𝑘-th class cells, then we set 𝑁𝑘 := 𝑁𝑘 − 1 when place a cell of 𝑘-th class on the landscape.
When the entire line is processed then proceed to the next one, which we process in the
opposite direction. Introduce the strict order relation “<” on the lanscape ℒ(𝑁, 𝑙) as follows

𝐿𝑖𝑗 < 𝐿𝑠𝑟 =

⎧⎪⎨⎪⎩
𝑖 < 𝑠,

𝑗 < 𝑟, 𝑖 = 𝑠 = 2𝑘 − 1, 1 ≤ 𝑘 ≤ [𝑛/2] + 1,

𝑗 > 𝑟, 𝑖 = 𝑠 = 2𝑘, 1 ≤ 𝑘 ≤ [𝑛/2].

The relation “<” naturally generates operations pred(𝐿𝑖𝑗) = 𝐿𝑠𝑟 of the previous cell finding,
𝐿𝑠𝑟 < 𝐿𝑖𝑗 and it does not exist 𝐿𝑝𝑞 so that 𝐿𝑠𝑟 < 𝐿𝑝𝑞 < 𝐿𝑖𝑗, succ(𝐿𝑖𝑗) = 𝐿𝑠𝑟 of the successive
cell finding, 𝐿𝑖𝑗 = pred(𝐿𝑠𝑟). Let us denote 𝐶𝑙(𝐿𝑖𝑗) as the class of the 𝐿𝑖𝑗 cell.

The aforementioned algorithm of the landscape filling may be described as the cellular
automaton in which the initial state 𝑠𝑖𝑗 of any cell 𝐿𝑖𝑗, (𝑖, 𝑗) ̸= (1, 1) is equal to −1, the
initial state 𝑠11 = 𝜉, where 𝜉 ∈ 1, 𝑙 is an random class number. The quantity 𝑁(𝐶𝑙𝑘)
of “remaining in reserve” cells of the 𝐶𝑙𝑘 class is defined at each moment of the cellular
automaton functioning for each cell class 𝐶𝑙𝑘. The local transition function is defined as

𝑠𝑖𝑗(𝜀) =

{︃
𝐶𝑙(pred(𝐿𝑖𝑗)), 𝐶𝑙(pred(𝐿𝑖𝑗)) > 0, 𝑁(𝐶𝑙(pred(𝐿𝑖𝑗))) > 0, 𝑖 + 𝑗 ̸= 0, 𝜁 ≤ 1 − 𝜀,

𝜂, 𝜂 ̸= 𝐶𝑙(pred(𝐿𝑖𝑗)) ∨ 𝑖 = 𝑛 ∧ 𝑗 = 𝑚, 𝜁 > 1 − 𝜀,

𝑁(𝐶𝑙(𝑠𝑖𝑗)) := 𝑁(𝐶𝑙(𝑠𝑖𝑗)) − 1,

where 𝜁 ∈ [0, 1] is an uniformly distributed random number, 𝜂 ∈ 1, 𝑙 is an uniformly distri-
buted random number, 0 ≤ 𝜀 < 1.

The rectangular landscape ℒ(𝑛 × 𝑚, 𝑙) will have the maximal TE if all cells belong to
different classes. The maximum of the configuration entropy for the such landscape will be
𝑆max = 𝑆max(ℒ(𝑛×𝑚, 𝑙)) = ln 𝑙. Numerical experiment (see Fig. 2), which was repeated 50
times for each value of parameters, showed that the average value of the TED depends on 𝜀

Fig. 2. Dependencies of the TED on the 𝜀 with different values of the configuration entropy 𝑆,
𝑛 = 𝑚 = 48, 𝑙 = 152
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T a b l e 1. Values of constants for dependencies of the entropy and TED

Number 1 2 3 4 5

𝑎0 0.631706 1.04616 1.50153 3.92962 5.29811

𝑏0 0.902495 1.7169 2.53405 7.66127 10.9732

𝑐0 0.541963 0.489177 0.392038 0.188599 0.154264

𝑘 0.0896779 0.105287 0.0763552 0.0183298 0.00576306

Fig. 3. Landscapes with 𝑆 = 1.90026, 𝑇𝐸𝐷 = 0.728733, 𝜀 = 0.05, 𝑆 = 2.19722, 𝑇𝐸𝐷 = 1.03125,
𝜀 = 0.2, 𝑆 = 1.90026, 𝑇𝐸𝐷 = 1.57552, 𝜀 = 0.9

almost linearly. The form of such dependence only insignificantly varies with a change of the
number of classes 𝑙. Therefore, it is possible to find the average value of the 𝑇𝐸𝐷(ℒ(𝑁, 𝑙))
in the form

𝑇𝐸𝐷 = 𝑎0(𝑆/𝑆max) ln
𝑐0(𝑆/𝑆max)𝜀

𝑘

(1 − 𝑐0(𝑆/𝑆max)𝜀)
+ 𝑏0(𝑆/𝑆max),

where 𝑎0, 𝑏0 are constants which depends on the configuration entropy of the landscape.
Values of these constants for dependencies showed in Fig. 2, are given in Table 1.

Results of the algorithm can be seen in Fig. 3. The temporal computational complexity
of this algorithm depends on the number of cells 𝑁 as 𝑂(𝑁) and on the number of classes
of cells 𝑙 as 𝑂(𝑙).

4. The relationship between entropy and Total Edge

Suppose that the rectangular landscape 𝑛 × 𝑚 cells generated by the algorithm described
in the section 2. The author performed 50 numerical experiments to explain the nature
of the relationship between TE and configurational entropy. It became apparent during
experiments that the average value of the TED for the landscape generated by the above
algorithm virtually does not depend on the number of cells in the landscape, but depends
only on the number of cell classes. We will search the dependence of the 𝑇𝐸𝐷(ℒ(𝑛×𝑚, 𝑙))
average value on 𝑙 and configuration entropy 𝑆 in the form

𝑇𝐸𝐷 = 𝑎1(𝑙)𝜎
(︀
𝑏1(𝑙)𝑆/ ln 𝑙

)︀
+ 𝑎1(𝑙)/2,
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Fig. 4. The dependence of the 𝑇𝐸𝐷 on the 𝑆/𝑆max and cells classes quantities 𝑙 (𝑛 = 𝑚 = 48)

where 𝜎(𝑥) = (1 + 𝑒−𝑥)−1, 𝑎1, 𝑏1 are unknown functions from empirical considerations (see
Fig. 4). We can obtain acceptable (with coefficients of determination 𝑟2 = 0.999999 for 𝑎1
and 𝑟2 = 1.0 for 𝑏1) approximations

𝑎1(𝑙) = 3.90302 + 5.25218(𝑥− 10.9641)−2.19235,

𝑏1(𝑙) = 1.15228 ln(0.990096𝑥− 1.18397).

Conclusion

The relationship between landscape metrics was established, and the algorithm for con-
struction of a landscape with a given Total Edge metric was developed in this article. It has
been discovered that the more random the filling of a landscape with cells of different classes
is, the stronger the relationship between the configuration entropy and the Total Edge of a
landscape. The formula of such dependence was inferred by a computational experiment.
The landscape may be filled not only from top to bottom, in a line-by-line fashion, but
also by a more complex way as a further improvement of landscape generation algorithms
outlined in this paper. Another possible improvement might be the creation of a landscape
by some smaller landscapes with specified characteristics.
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