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The paper discusses approaches to the numerical integration of the second-kind
Manakov equation system. Emphasis is placed on the transition from writing equa-
tions in dimensional quantities to equations in dimensionless units. A combined explic-
it/implicit finite-difference integration scheme based on the implicit Crank—Nicolson
finite-difference scheme is proposed and substantiated, which allows integrating a non-
linear system of equations with a choice of nonlinear term at the previous integration
step. An algorithm for levelling the disadvantage associated with the definition of
the nonlinear term from the previous integration step is proposed. The approach of
automatic selection of the integration step, which reduces the total number of inte-
gration steps while maintaining the required accuracy of the approximate solution, is
substantiated. Examples of the calculation results for some values of the disturbance
propagation are given. The limitations imposed by the computing scheme on the length
of the integrable fiber section are described, and approaches, that eliminate these lim-
itations without the need to increase arrays dimensions, are proposed. Requirements
for initial boundary conditions are discussed.
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Introduction

Due to the presence of wave properties in microparticles, classical mechanics cannot give a
correct description of their behavior. However, this can be done with the help of quantum
mechanics created by Schrödinger, Heisenberg, Dirac, and others. The basic equation of
quantum mechanics is the Schrödinger equation. The state of microparticles in quantum
mechanics is described by the wave function, which is a function of coordinates and time
and can be found by solving the Schrödinger equation, which relates the wave function to
the particle mass, the Planck constant, and the potential energy of the particle in the force
field in which it moves.

The Schrödinger equation, like Newton’s equation in classical mechanics, cannot be ob-
tained theoretically, since it is a generalization of a large number of experimental facts. The
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validity of this relation is proved by the fact that all the consequences arising from it are
consistent with the observed experimental facts and the empirical results.

The propagation of light in fiber optics is described by the nonlinear Schrödinger equa-
tion, where nonlinearity arises due to the Kerr effect. Nonlinearity is a problem for the
transmission of information with the currently used modulation format in fiber-optic com-
munication. Indeed, the greater the intensity, the more distorted the signal by nonlinear
crosstalk, which limits the receiver′s ability to recover the transmitted information. The
task is to neutralize nonlinear effects in order to compensate for distortion and provide a
high speed of information transmission through a nonlinear fiber optic channel. So far, two
main ways of solving this problem have been undertaken: the first approach is to soften
nonlinear effects using special methods, the second way is to specially encode information in
the eigenmodes of the nonlinear channel. The second approach is based on integrating the
nonlinear Schrödinger equation.

The description of the propagation of light, given its polarization dynamics, may, under
certain conditions, which are applicable to modern fiber optic communication lines, be de-
scribed by the Manakov equations, which are special case of the Schrödinger equations [1, 2].

1. Formulation of the problem

Suppose there are two polarizations with samples of complex signals in the time domain
with some modulation (for example, 16QAM), which allows transmitting spectral efficiency.
Physical signals propagate over fiber are continuous, but transmitted and received signals are
considered discrete in time. After the signal propagates through the fiber, a signal with dis-
tributed nonlinearity and linear distortions due to chromatic dispersion can be obtained [3].
The fiber channel model can be represented using the system of nonlinear Manakov equa-
tions (1) [4, 5]: ⎧⎪⎪⎨⎪⎪⎩
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where 𝐸1 = 𝐸1(𝜉,𝜏) and 𝐸2 = 𝐸2(𝜉,𝜏), 𝜉 — a spatial coordinate along a central axis of the
optical fiber, 𝜏 — time, 𝐸1 and 𝐸2 — polarizations, each of which is a complex function,
𝑖 — the imaginary unit, 𝛼, 𝛽2, 𝛾 given process constants. Under given boundary conditions
in the form:

𝐸1(𝐿, 𝜏) = 𝐸01(𝜏), 𝐸1(𝜉, 0) = 𝐸1(𝜉, 𝑇0) = 0,

𝐸2(𝐿, 𝜏) = 𝐸02(𝜏), 𝐸2(𝜉, 0) = 𝐸2(𝜉, 𝑇0) = 0,
(2)

where 𝐿 — the length of an optical fiber cable, 𝑇0 — the propagation time. The boundary
conditions (2) at the end of 𝐿 are specified as functions 𝐸01(𝜏) and 𝐸02(𝜏), specified in
discrete time samples as values of functions 𝐸01(𝜏𝑛) and 𝐸02(𝜏𝑛), with 𝜏𝑛 = 𝜏0 + ∆𝜏𝑛,
∆𝜏 = 𝑇0/𝑁 , 𝑛 = 0, 𝑁 [6].

The task is to find a solution for backscattering [7] in the form of dependencies (3):

𝐸1(0, 𝜏) and 𝐸2(0, 𝜏), (3)

which can also be determined at discrete points in time.
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2. Equation system

The initial system of equations (1) in dimensional variables is inconvenient for its numerical
solution. To move from problem statement in dimensional values to dimensionless values, it
is necessary to replace variables (4):

𝑥 =
𝐸1√
𝑃
, 𝑦 =

𝐸2√
𝑃
, 𝑡 =

𝜏

𝑇0

, 𝑧 = − 𝜉

𝐿
, 𝑃 =

|𝛽2|
(8/9)𝛾𝑇 2

0

, (4)

where 𝐿 and 𝑇0 are related by 𝐿 = 2𝑇 2
0 / |𝛽2|.

The system of equations in dimensionless quantities will be written as (5):⎧⎪⎪⎨⎪⎪⎩
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(5)

where the nonlinear term is written in the form of the product of the desired function to the
nonlinear part, for which the notation is introduced (6):

Φ(𝑥, 𝑦) = −𝑖𝛼 + |𝑥|2 + |𝑦|2 . (6)

The boundary conditions in this case will take the form:

𝑥(−1, 𝑡) = 𝑥0(𝑡), 𝑥(𝑧, 0) = 𝑥(𝑧, 1) = 0,

𝑦(−1, 𝑡) = 𝑦0(𝑡), 𝑦(𝑧, 0) = 𝑦(𝑧, 1) = 0.
(7)

The formulation of the problem in terms of the initial conditions is initially given on a
discrete set of points, it is logical and the solution would be to look numerically, writing the
initial relations in a finite-difference form.

3. Difference scheme

The classical implicit difference scheme Crank — Nicolson (Fig. 1) was used to write equa-
tions (5) in the finite-difference form. The choice of the difference scheme is due to the fact
that it is implicit, which makes it absolutely stable. Another advantage of the Crank —
Nicolson scheme is that when integrating the equations of mathematical physics with the
first derivative with respect to one and the second derivative with respect to another vari-
able, it leads to the need to solve a system of linear equations with three diagonal matrices
at each integration step, which is performed by a simple tridiagonal matrix algorithm [8].

In the Crank — Nicolson scheme, the coordinate grid is used in space and time, in the
scheme in Fig. 1, the variable 𝑛 is used to designate the layers in time, and the variable 𝑘
in space. The parameters on the 𝑘 + 1 layer of the coordinate grid are considered known, at
the same time, the known values should be the initial and boundary values for 𝑘 = 𝐾(𝑧 =
−1), 𝑛 = 0(𝑡 = 0), 𝑛 = 𝑁(𝑡 = 1). In Fig. 1, the known values are indicated by gray circles,
the values that need to be determined are the unfilled circles.

For the system of equations (5), the integration scheme, written in a completely implicit
form, not only does not lead to the three-diagonal system of linear equations, but does
not even lead to a linear system of equations. Let us write the system of equations (5) in



Numerical approaches to Schrödinger equations solving 83

Fig. 1. The finite-difference scheme used to solve the system of equations: the rhombus in the
figure indicates the point for which the equality of the system of equations is written; circles —
nodes of a finite-difference scheme

the finite-difference form, using the six-point Crank — Nicolson scheme, having entered two
parameters 𝜎 and 𝜃, changing in the range [0, 1], the defining position of a shift for writing
the finite-difference relations between the two (known and unknown) layers of integration.

The parameter 𝜎 is responsible for the implicit record of the linear part of equations (5),
and the parameter 𝜃 is separately allocated for the implicit record of a nonlinear multiplier
Φ(𝑥, 𝑦). The first derivative in space is written by first-order precision relations for a node
(𝑘 + 1/2, 𝑛).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(8)

To record the finite-difference relations of the second time derivative on each spatial layer,
the first-order accuracy relations are used, which are written in the grid nodes as (𝑘, 𝑛) and
(𝑘 + 1, 𝑛). By setting the 𝜎 (8) parameter to a value of 1/2, the second time derivative
and the linear multiplier on the right-hand side of the nonlinear term can be agreed, also
for the node (𝑘 + 1/2, 𝑛). The combined explicitly/implicit difference Crank — Nicolson
integration scheme (8) at each node of the finite-difference grid can be rewritten as (9), for
the tridiagonal matrix algorithm:

{︃
𝑎𝑛 𝑥

𝑛−1
𝑘 + 𝑏𝑛 𝑥

𝑛
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(9)

for 𝑘 = 1, 𝐾 and 𝑛 = 1, 𝑁 , where:
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𝑎𝑛 = −𝜎, 𝑏𝑛 = 2𝜎 − 𝑖∆𝑡2

∆𝑧
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In order to match the recording of the nonlinear multiplier in (8) for the same node of
the difference grid (𝑘 + 1/2, 𝑛), it is also necessary to give the parameter 𝜃 in (8) the value
equal to 1/2, which leads to the fact that system of equations (9) with respect to unknown
quantities becomes nonlinear. To avoid such a problem helps the choice of the parameter 𝜃
equal to zero. The simultaneous choice of parameters 𝜎 = 1/2 and 𝜃 = 0 provides practical
stability of the finite-difference scheme with the simultaneous possibility of reducing the
system of equations at each integration step to a system of linear equations solved by the
tridiagonal matrix algorithm [8].

The final system of equations takes the form (9) with the values of the tridiagonal matrix
coefficients in the form (11):

𝑎𝑛 = −𝜎, 𝑏𝑛 = 2𝜎 − 𝑖∆𝑡2

∆𝑧
− 2𝜎Φ𝑛

𝑘+1, 𝑐𝑛 = −𝜎,

𝑑𝑥𝑛 = (1 − 𝜎)(𝑥𝑛−1
𝑘+1 − 2𝑥𝑛

𝑘+1 + 𝑥𝑛+1
𝑘+1) − 𝑖∆𝑡2

∆𝑧
𝑥𝑛
𝑘+1 + (1 − 𝜎)Φ𝑛

𝑘+1𝑥
𝑛
𝑘+1, (11)

𝑑𝑦𝑛 = (1 − 𝜎)(𝑦𝑛−1
𝑘+1 − 2𝑦𝑛𝑘+1 + 𝑦𝑛+1

𝑘+1 ) − 𝑖∆𝑡2

∆𝑧
𝑦𝑛𝑘+1 + (1 − 𝜎)Φ𝑛

𝑘+1𝑦
𝑛
𝑘+1.

For the coefficients at the edges, it is necessary to take into account the boundary condi-
tions (7), and correct the coefficients 𝑏, which in general terms can be written as:

𝑑𝑏𝑥1 = 𝑑𝑥1 − 𝑎1𝑥
0
𝑘, 𝑑𝑏𝑥𝑁−1 = 𝑑𝑥𝑁−1 − 𝑐𝑁−1𝑥

𝑁
𝑘 ,

𝑑𝑏𝑦1 = 𝑑𝑦1 − 𝑎1𝑦
0
𝑘, 𝑑𝑏𝑦𝑁−1 = 𝑑𝑦𝑁−1 − 𝑐𝑁−1𝑦

𝑁
𝑘 .

(12)

For (9) and (11), the integration is carried out along the spatial coordinate, and the system
of equations is solved on each spatial layer. Thus, the obtained difference scheme is a
generalization of a special case of the Crank — Nicolson difference scheme, in which all linear
terms of the equations are written according to an implicit finite-difference scheme, and the
nonlinear term is taken from the previous computational layer. The integration is carried
out in layers, from 𝑘 + 1 to the 𝑘-th layer along the 𝑧 coordinate.

4. Initial and boundary conditions

The initial conditions for solving the system of equations (9) with (11), (12) are the given
values of the 𝑥 and 𝑦 arrays at 𝑘 = 𝐾(𝑧 = −1) for all values of 𝑛 = 1, 𝑁 . In terms of the
problem statement, the initial conditions (given values of the distribution of 𝑥 and 𝑦 as a
function of time at the remote end of the optical fiber at 𝑧 = 1) determine the shape of
the optical signal received at the remote end. Let’s set, for example, at the remote end of
reception of the ideal signal in the form of 16QAM with switching the information signal
for 𝑥 and for 𝑦. The system of equations (1), even if written in discrete-difference form (9)
with (11), (12), requires that the desired functions x and y be continuous, along with their
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second derivatives with respect to time and first derivatives with respect to space. Switching
the information signal to 16QAM implies a discontinuity of both the function itself and its
derivative. The use of a knowingly discontinuous function as initial conditions for solving
the system of equations formulated for continuous functions immediately leads to unreliable
results. In order to avoid the problem of breaking the initial data curves, the smooth joining
technique of two discontinuous curves was used. The classical function that is conveniently
used for these purposes is the hyperbolic tangent:

𝑆(𝑡, 𝑝, 𝑞) =
1 − th(𝑞(𝑡− 𝑝))

2
, (13)

where 𝑡 — an abscissa, along which it is necessary to sew two functions on the interval
[𝑡0, 𝑡𝑁 ]; 𝑝 — a point from the interval [𝑡0, 𝑡𝑁 ], determines the location of the joining; 𝑞 —
parameter responsible for the degree of smoothness of the joining.

For single switching information signal, the initial distribution and for the 𝑥 and 𝑦 rep-
resents the joining four functions in the interval [𝑡0, 𝑡𝑁 ]. The first interval is 𝑥(𝑡) = 0,
𝑦(𝑡) = 0 for 𝑡0 < 𝑡 ≤ 𝑡𝐵; the second segment is 𝑥(𝑡) = 16QAM𝑖1(𝑡), 𝑦(𝑡) = 16QAM𝑗1(𝑡) for
𝑡𝐵 < 𝑡 ≤ 𝑡𝑀 ; the third segment is 𝑥(𝑡) = 16QAM𝑖2(𝑡), 𝑦(𝑡) = 16QAM𝑗2(𝑡) for 𝑡𝑀 < 𝑡 ≤ 𝑡𝐸;
the fourth segment is 𝑥(𝑡) = 0, 𝑦(𝑡) = 0 for 𝑡𝐸 < 𝑡 ≤ 𝑡𝑁 . The initial and final parts specified
by zero values of 𝑥 and 𝑦 are determined by the requirements of the boundary conditions (7).

The initial distribution is given by discrete samples:

𝑥𝑛 = 𝐴max𝑒
−𝑖𝜔𝑡𝑛(𝑆(𝑡𝑛, 𝑝𝑀 , 𝑞𝑀)𝑄𝐴𝑀16(𝑖𝐵)+

+(1 − 𝑆(𝑡𝑛, 𝑝𝑀 , 𝑞𝑀))𝑄𝐴𝑀16(𝑖𝐸))(1 − 𝑆(𝑡𝑛, 𝑝𝐵, 𝑞𝐵))𝑆(𝑡𝑛, 𝑝𝐸, 𝑞𝐸), for 𝑛 = 1, 𝑁. (14)

In (14), the first multiplier forms the unmodulated carrier frequency, the second multiplier
describes the switching at the 𝑝𝑀 point of the 16QAM signal from the value determined by
the 𝑖𝐵 index to the value determined by the 𝑖𝐸 index, with the smoothing parameter 𝑞𝑀 .
The third factor in (14) determines the switching of signals with zero boundary values at
the points 𝑝𝐵 and 𝑝𝐸 with the corresponding smoothing parameters 𝑞𝐵 and 𝑞𝐸.

Figure 2 shows the dependence of signal intensity 𝑥 on time for its real part at the remote
end of the fiber.

The imaginary part 𝑥, as well as the distribution for the real and imaginary parts of 𝑦, are
not shown in the Fig. 2, because the imaginary and real parts of the signal are shifted relative
to each other by a quarter of the period, and the distribution for 𝑦 is similar. A fragment
of the graph illustrating ensuring continuity when switching the 16QAM information signal
is shown in the inset of Fig. 2. This shows that the smoothing technique provides both the
continuity of the function itself and its derivative. In the places where switching from the
information signal to the zero value, similar requirements of the continuity of the sought
functions are provided together with their derivatives.

5. Ensuring the necessary accuracy of integration

Two layers along the spatial coordinate are the values of the sought functions on the 𝑘
and 𝑘 + 1 layers for all values of 𝑛 = 1, 𝑁 over which integration is performed at each
computational moment. Despite the absolute stability of the implicit Crank — Nicolson
scheme, it is necessary to be sure that during the transition from layer to layer there is no
loss of calculation accuracy and accumulation of error, which can become significant with
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Fig. 2. The initial conditions for the real part 𝑥 at the remote end of the optical fiber: the initial
distribution and switching of the information signal from 0000 to 1001 in Gray standard coding

a sufficiently large number of integration steps along the spatial coordinate. In addition,
it is necessary not to lose sight of the fact that the scheme proposed above does not use a
purely implicit, but a mixed Crank — Nicolson scheme. There is an approach that helps to
minimize the disadvantage that the nonlinear addend is used in the scheme in an explicit
form.

The transition at each integration step from 𝑘 to 𝑘 + 1 layers in space is carried out
according to the following algorithm. The first step of the algorithm is to calculate the
values of the sought functions 𝑥 and 𝑦 on the 𝑘-th unknown layer, using the values for the
implicit multiplier (6) with 𝑘 + 1 of the calculated layer from the explicit scheme. Denote
the calculated values of the functions on the 𝑘-th layer:

(𝑥𝑛
𝑘)𝑖 and (𝑦𝑛𝑘 )𝑖, (15)

for 𝑛 = 1, 𝑁 and 𝑖 — an iteration number taken after the first run is a value equal to one.
Further, an iterative process is organized to find the desired functions 𝑥 and 𝑦 on the

𝑘-th unknown layer at the 𝑖 + 1 iteration. In this case, the implicit multiplier (6) in the
computational scheme is corrected each time as if its value on the 𝑘-th layer is already
known. The value on the 𝑘-th layer itself is taken as the half-sum of the values on the 𝑘-th
and 𝑘 + 1 layers, but calculated at the previous iteration:

(Φ𝑛
𝑘)𝑖+1 =

(Φ𝑛
𝑘)𝑖 + (Φ𝑛

𝑘+1)𝑖

2
, for 𝑛 = 1, 𝑁, (16)

The iteration process is carried out until the maximum difference between the values calcu-
lated on the 𝑖 and 𝑖 + 1 iterations is less than the predetermined error:

max
(︀
max |(𝑥𝑛

𝑘)𝑖+1 − (𝑥𝑛
𝑘)𝑖| , max |(𝑦𝑛𝑘 )𝑖+1 − (𝑦𝑛𝑘 )𝑖|

)︀
< 𝜀, for 𝑛 = 1, 𝑁. (17)
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The proposed iterative process is rapidly converging and requires 3−7 iterations, depending
on the specified error value.

6. Integration with variable step

Another factor that allows to increase the accuracy of calculations is the mechanism for
automatic selection of the integration step. In this case, it is the automatic choice of the
integration step by the spatial coordinate — ∆𝑧. The use of variable integration step allows
to take into account the behavior of the solution and reduce the total number of steps, while
maintaining the required accuracy of the approximate solution. Thus, the amount of work
and machine time can be reduced and the growth of computational error is slowed down.

The algorithm for automatic selection of the integration step is traditional, where two sets
of values of the sought functions are compared in the norm — the calculated two integration
steps with a step ∆𝑧𝑗, and the calculated one integration step with a double step 2∆𝑧𝑗. In
case the norm is lower than the specified error, the integration step is increased 1.1−1.3
times, and the current values are recorded. At the norm above the specified error, the
integration step decreases by 0.7−0.9 times, and the integration steps are recalculated.

Combining integration with variable steps and an iterative process that levels the use of
the explicit/implicit scheme gives quite good results.

7. Numerical results

To implement the proposed numerical method, a computer program was written in the C++
programming language. Figure 3 shows screenshots of the working area of the program,
at all time points at different distances from the remote end of the optical fiber. In the
left part of the program working area, the dependences of the sought functions 𝑥 and 𝑦 on
time are displayed at different distances. On the upper right graph, the distribution of the
perturbation of the function 𝑥 (real — blue and imaginary — red parts) along the fiber from
time at point 0.45 sr. units from the beginning of the fiber counted from the beginning of
one. Service messages are displayed in the lower right part of the program, control buttons
are located and calculation parameters are set.

Despite the fact that the discussion of the results of calculations is beyond the scope of
the objectives of this article, below there are given some analysis results of this work. First,
there is a noticeable influence of nonlinear distortions, which consist in a blurring of wave
front and the distortion of the switching front of the information signal for 16QAM. Figure 3
shows a noticeable shift of the signal to the beginning of the time axis, with increasing
distance from the far end of the optical fiber, which agrees well with the physical conditions
for the propagation of optical disturbance in the fiber. The boundary conditions in the form
of (2) (or (7)) determine that there was no disturbance in the entire fiber at the initial and
final moments of time, in other words, there was a complete absence of a signal. However, the
initial perturbation indicates that all perturbation is inside the fiber section. Therefore, the
numerical calculation is possible only up to the moment when the signal was introduced into
the optical fiber. Figure 3, b shows that with continued integration beyond the fiber section
in which the perturbation is introduced, the perturbation is reflected from the beginning of
time 𝑡 = 0, which leads to results explained from a physical point of view.
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a b

c d

Fig. 3. The working screen of the numerical integration program of the equation system (5) for
different values of the fiber length: a — at the fiber end (initial distribution); and at a distance:
b — 50×Δ𝑧; c — 674×Δ𝑧; d — 881×Δ𝑧 from the remote end. Task parameters are: Δ𝑡 = 10−4,
Δ𝑧 = 2.5−7, 𝑁 = 10 000, 𝜎 = 0.5

Figure 4 shows the calculations for the initial conditions, describing a single Gauss of a
similar pulse in time, given only for the real part of the function 𝑥. The initial values of the
imaginary part of the function 𝑥 and the real and imaginary parts of the function 𝑦 are set
equal to zero.

a b

Fig. 4. The working screen of the program of numerical integration of the equation system (5) for
the single Gauss of the similar pulse: a — at the end of the fiber (initial distribution); b — at a
distance of 312×Δ𝑧 from the remote end of the fiber
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The shape of the deformation signal of the similar Gaussian, the nature and form of the
appearance of its imaginary part, corresponds to the results outlined in the works of other
authors [9], which further indicates the correctness of the made assumptions, the chosen
integration methods and the correctness of the obtained results.

8. Calculations for a long section of optical fiber

Distribution of the disturbance along the time axis from its current position to the beginning
of the time reference point imposes a restriction on the possibility of calculations for extended
sections of optical fiber. Combating this restriction directly leads to the need to dramatically
increase the length of the arrays used to store information of the time interval containing all
the disturbances from the beginning to the end, while ensuring that there is no disturbance
in the entire fiber at the initial and final points of time.

However, there is an approach that can provide continuous integration for long sections
of optical fiber. For this purpose, it is necessary to consider a time segment with a sliding
integration window. Figure 5 shows an explanation diagram, which makes it possible to im-
plement calculation algorithms for long sections of optical fiber without the need to increase
the size of arrays.

The one-dimensional array that forms the sought functions on the 𝑘-th and 𝑘 + 1 spatial
layers contains discrete samples with the values of the sought functions along the time axis.
The initial distribution of the disturbance at the remote end looks like a dependence shown
in the Fig. 5, bounded by a red frame (state A), and located in the array 𝑥 from the first to
the last (𝑁) element. With an increase of time 𝑡 the disturbances shift relative to the array
indices and at some point further integration will be difficult as the disturbance approaches
the left border of the array — the blue frame in the Fig. 5 (state B). As soon as such a
moment has arrived, it is sufficient to shift the perturbation curve with respect to the array,
returning it to state A. With such a reindexing (displacement of the perturbation relative to
the array indices), the values of the sought functions in the initial part of the array (in the
Fig. 5 indicated by a blue dot-and-dash line) will be undefined. However, this disadvantage
is easily remedied by smoothly stitching a part of the values in the array region that falls
into both states (A and B) with the zero function. The values on the right-hand side (falling
into state B, but not falling into state A) may be considered unnecessary.

Fig. 5. Scheme explanation for the implementation of the calculation algorithms for long sections
of optical fiber
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Conclusion

Finding an approximate solution of the Manakov equation system, associated with the mod-
eling of optical communication lines based on multimode fibers, can be carried out using
a combined explicit/implicit numerical integration scheme based on the Crank — Nicolson
scheme. Writing an implicit term in the finite difference form, taken from the previous in-
tegration step, by itself gives a good result. An approach to the formation of the initial
distribution 16QAM, which meets the requirements of continuity and smoothness of the
sought functions, is proposed. The algorithm of automatic selection of the integration step
ensures better convergence of the integration results over a long distance; moreover, it causes
a decrease in the total number of integration steps. The proposed algorithm to refine the
solution at each integration step allows levelling the deficiency of the proposed method for
determining the implicit term from the previous integration step, which in turn allows in-
tegration to be carried out with larger step. Both of the proposed iterative algorithm for
choosing the integration step and refining the solution at each step leads to a significant
reduction in the total computation time and reduces the requirements for the size of the
integration step. The algorithm has been tested that allows the calculation of compensation
distribution parameters for extended fiber sections. The results of test calculations indicate
the feasibility of the development of this algorithm in future.
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Аннотация

Предложена разработка метода приближенного решения системы уравнения Манакова как
одного из частных случаев системы уравнений Шрёдингера, связанного с моделированием
оптических линий связи на основе многомодовых волокон. Решение ищется методами чис-
ленного интегрирования. Показано, что численное интегрирование может быть осуществлено
с использованием комбинированной явно-неявной схемы численного интегрирования на осно-
ве схемы Кранка— Николсон с записью нелинейного слагаемого в конечно-разностной форме,
взятого с предыдущего шага интегрирования. Использован алгоритм автоматического выбо-
ра шага интегрирования, реализован итерационный алгоритм уточнения решения на каждом
шаге, предложен алгоритм, позволяющий производить расчет параметров на протяженных
участках. Нахождение приближенного решения системы уравнения Манакова может быть
осуществлено с использованием комбинированной явно-неявной схемы Кранка— Николсон,
а запись нелинейного слагаемого в конечно-разностной форме, взятого с предыдущего шага
интегрирования, дает неплохой результат. Алгоритм автоматического выбора шага интегриро-
вания обеспечивает лучшую сходимость результатов интегрирования на большом расстоянии
и снижение необходимого количества шагов интегрирования. Алгоритм уточнения решения на
каждом шаге позволяет нивелировать недостаток метода явной записи неявного слагаемого и
интегрировать с большим шагом. Алгоритм расчета параметров распространения возмущения
со сдвигом фрейма позволяет сделать вывод о целесообразности развития этого алгоритма.

Ключевые слова: Система уравнений Шрёдингера, система уравнений Манакова, явно/не-
явная схема Кранка — Николсон, распространение волн, распространение света в оптическом
волокне.
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