О ЧИСЛЕННОМ МОДЕЛИРОВАНИИ ВОЛНОВЫХ ДВИЖЕНИЙ, ВЫЗВАННЫХ ПЕРЕМЕЩЕНИЯМИ ДНА БАССЕЙНА, ПО НЕЛИНЕЙНО-ДИСПЕРСИОННЫМ МОДЕЛЯМ* †

Л. А. КОМПАНИЕЦ

Вычислительный центр СО РАН, Красноярск, Россия

Рассматриваются разностные алгоритмы для трех одномерных вариантов нелинейно–дисперсионных моделей мелкой воды, в которых функция, задающая дно бассейна, зависит от времени. Проводится качественное сравнение результатов модельных задач, полученных по различным моделям.

1. Введение

Для моделирования волновых движений, вызываемых перемещениями дна, в частности, возникновения и распространения волн цунами, давно и успешно применяются линейная и нелинейная модели мелкой воды. Обширная библиография по этому вопросу и результаты численных расчетов приведены в [1–4].

В последнее время все больший интерес вызывают нелинейно-дисперсионные модели мелкой воды. Эти уравнения, в отличие от уравнений линейной и нелинейной мелкой воды, учитывают зависимость фазовых скоростей движения волны от волнового числа, что позволяет описывать эффекты волнового движения, не описываемые в рамках линейной и нелинейной мелкой воды. В ряде работ приводятся и анализируются результаты численного моделирования волновых процессов в бассейнах со сложной батиметрией [5, 6].

В настоящей статье рассматриваются эффекты движущегося дна при численном моделировании по линейной, нелинейной и нелинейно-дисперсионным моделям Грина — Нагди [7] и Дорфмана — Яговдика [8].

2. Описание моделей

Известно несколько моделей мелкой воды, описывающих возникновение волн при движении дна. Во-первых, это линейная модель:

$$h_t + (Hu)_x = 0,$$

^{* ©} Л. А. Компаниец, 1997.

[†]Работа выполнена при финансовой поддержке Красноярского краевого фонда науки, грант №6F0111.

$$u_t + g\eta_x = 0,\tag{1}$$

где u — скорость, h — полная глубина, $h = \eta + H(x, t)$, η — возвышение свободной поверхности, H(x, t) — глубина бассейна, $H(x, t) = \tilde{H}(x) - \tilde{h}(x, t)$. Во-вторых, нелинейная модель:

$$h_t + (hu)_x = 0,$$

$$u_t + uu_x + g\eta_x = 0,$$
(2)

и нелинейно-дисперсионные модели: модель Грина — Нагди [9], которая в одномерном случае имеет вид

$$n_t + (nu)_x = 0,$$

$$u_t + uu_x + g\eta_x = -1/6(-D^2H(2\eta - H) + D^2\eta(4\eta + H)_x + h(2D^2\eta - D^2H)_x),$$

$$D = \partial/\partial t + u\partial/\partial x,$$
(3)

и нелинейно-дисперсионные модели Дорфмана— Яговдика [8]. Третья модель Дорфмана — Яговдика имеет одинаковое с (3) дисперсионное соотношение, в котором частота есть вещественная функция волнового числа, и записывается в виде

$$h_t + (hu)_x + 1/2(\tilde{H}\tilde{H}_x\tilde{h}_t)_x = 1/6(3\tilde{H}\tilde{H}_x^2 u + \tilde{H}^2\tilde{H}_x u_x)_x,$$

$$u_t + uu_x + g\eta_x + 1/2(\tilde{H}\tilde{h}_{tt})_x = (1/3\tilde{H}^2 u_{tx} + 1/2\tilde{H}\tilde{H}_x u_t)_x.$$
 (4)

При $\tilde{h} = 0$, $\tilde{H} = \text{const}$ данная модель, как и модель Грина — Нагди, совпадает с первой моделью Перегрина [10]:

$$\eta_t + (hu)_x = 0,$$

$$u_t + uu_x + g\eta_x = 1/2H((Hu)_{xx} - 1/3Hu_{xx})_t.$$

Уравнения первой модели Дорфмана — Яговдика в этом случае запишутся в виде

$$h_t + (hu)_x + 1/2(\tilde{H}^2 \tilde{h}_t)_{xx} = 1/6(\tilde{H}^3 u)_{xxx},$$

$$u_t + uu_x + g\eta_x + (\tilde{H} \tilde{h}_{tt})_x = 1/2(\tilde{H}^2 u_t)_{xx}.$$
 (5)

Эта модель представляет собой модель, описанную в [11], в которой теперь учтена зависимость положения дна от времени. По своему дисперсионному соотношению модель [11] совпадает с моделью [12], из которой она получается при определенном условии на параметры нелинейности и дисперсии. При этом частота есть вещественная функция волнового числа и возможно построение устойчивых разностных схем [13].

Уравнения второй модели Дорфмана — Яговдика запишутся в виде

$$h_t + (hu)_x + (1/3(\tilde{H}^3 u_x)_x + 1/2\tilde{H}^2\tilde{H}_{xx}u)_x = 1/2(\tilde{H}^2\tilde{h}_{tx})_x,$$
$$u_t + uu_x + g\eta_x = 0.$$

При $\tilde{h} = 0$ эта модель совпадает с уравнениями второй модели Перегрина:

$$\eta_t + (Hu)_x + 1/2(H^2(Hu)_{xx} - 1/3H^3u_{xx})_x = 0,$$
$$u_t + uu_x + g\eta_x = 0,$$

имеющей дисперсионное соотношение, в котором частота есть мнимая функция волнового числа, и для нее не удается построить устойчивой разностной схемы [13].

Для построения устойчивого численного алгоритма следуя [9, 14] перепишем уравнения модели Грина — Нагди в виде, когда в уравнении движения производные η_t , η_{tx} , η_{tt} заменены на производные от u по x с использованием уравнения для h и все члены, содержащие дифференцирование по t, отнесены в левую часть:

$$\begin{split} h_t + (hu)_x &= 0, \quad B_t = \phi(\eta, u, H), \\ \phi &= -(u^2/2)_x - g\eta_x + uu_x(\eta_x H_x + 3/2hH_{xx}) + u^2(\eta_x H_{xx} + H_{xxx}h/2) + \\ &+ (u_x)^2\eta_x h + uu_{xx}hh_x + h^2/3(uu_{xxx} - u_x u_{xx}) - u((hu)_{xx}H_x + (hu)_x H_{xx}/2) - \\ &- u_x(h_x(hu))_x + h(hu)_{xx} - 2/3u_{xx}h(hu)_x + u(2\eta_x H_{tx} + hH_{txx}) + \eta_x H_{tt} + hu_x H_{tx} + 1/2hH_{ttx}, \\ B &= u - u(\eta_x H_x + H_{xx}h/2) - u_x hh_x - u_{xx}h^2/3. \end{split}$$

Уравнения первой и третьей моделей Дорфмана — Яговдика перепишем в виде, который ранее применялся при построении численных алгоритмов для уравнения модели Алешкова [14]. Для первой модели имеем

$$h_t + (hu)_x + 1/2(\tilde{H}^2\tilde{h}_t)_{xx} = (1/6(\tilde{H}^3u)_{xx})_x,$$
$$(u - (1/2\tilde{H}^2u)_{xx})_t = f(\eta, u, H)_x = (-g\eta - 1/2u^2 - \tilde{H}\tilde{h}_{tt})_x,$$
$$C_t = f(\eta, u, H), \quad f = -g\eta - 1/2u^2 - \tilde{H}\tilde{h}_{tt},$$
$$C_x = u - (1/2\tilde{H}^2u)_{xx},$$

для третьей модели

$$\begin{split} h_t + (uh)_x + 1/2 (\tilde{H}(x)\tilde{H}_x\tilde{h}_t)_x &= F(\eta, u, H)_x = 1/6 (3\tilde{H}\tilde{H}_x^2 u + \tilde{H}^2\tilde{H}_x u_x)_x, \\ C_t &= f(\eta, u, H), \quad (\eta, u, H) = -g\eta - 1/2u^2 - 1/2\tilde{H}\tilde{h}_{tt}, \\ C_x &= u - (1/3\tilde{H}^2 u_x + 1/2\tilde{H}\tilde{H}_x u)_x. \end{split}$$

Формулы разностных алгоритмов для таких моделей приведены, например, в [14].

3. Описание численных результатов

Ниже в таблице приведены значения максимального возвышения свободной поверхности при возмущении дна бассейна постоянной глубины $\tilde{H}_0(x) = 1$ по закону

$$\tilde{h}(x,t) = \beta_0 \beta_1(t) \beta_2(x),$$

$$\beta_1(t) = \begin{cases} t/d, & 0 < t < d\\ e^{-b(t-d)}, & t > d, d = 1 - 1/b, \end{cases}$$

$$\beta_2(x) = \beta_0 sech^2 [(3\beta_0/4(\beta_0 + H_0))^{1/2}(x - x_0)]$$

для разных значений d и различных моделей. При численных расчетах принималось $dx = 0.2, dt = 0.02, \beta_0 = 0.1, x_0 = 200 dx, g = 1.$

-									
d	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
(1)	0.1	0.0999	0.0998	0.0997	0.0995	0.0993	0.0962	0.0988	0.0963
(2)	0.1	0.0999	0.0998	0.0996	0.0995	0.0993	0.0962	0.0987	0.0962
(3)	0.1	0.0999	0.0998	0.0996	0.0994	0.0992	0.0961	0.0986	0.0961
(4)	0.1	0.0999	0.0998	0.0997	0.0995	0.0993	0.0963	0.0988	0.0964
(5)	0.107	0.107	0.107	0.106	0.106	0.106	0.102	0.105	0.102

При генерировании длинных волн подъемом дна результаты, полученные по моделям (1)-(4) практически совпадают, а модель (5) в том виде, как она записана в [8], дает значения, большие, чем другие модели.

На рис. 1 показана волновая картина при первоначальном опускании и дальнейшем подъеме дна для dx = 0.2, dt = 0.02, $\beta_0 = -0.1$, d = 0.1, $x_0 = 200dx$, t = 300dt, g = 1. В соответствии с моделью (3) получаем волну большей амплитуды, чем по моделям (1) и (2). На рис. 2 приведены волновые картины при опускании и дальнейшем подъеме дна, представляющего откос с тангенсом угла наклона 0.025 для dx = 0.2, dt = 0.04, $\beta_0 = -0.2$, d = 0.2, $x_0 = 120dx$, t = 300dt, 700dt. Различия в поведении волновых картин становятся более ощутимы при выходе волны на берег, где существенны параметры нелинейности и дисперсии (рис. 3).

Рис. 1.

Рис. 2.

Рис. 3.

Список литературы

- [1] МАРЧУК АН. Г., ШОКИН Ю. И., ЧУБАРОВ Л. Б. *Численное моделирование волн цунами*. Наука, Сиб. отд-ние, Новосибирск, 1983.
- [2] ШОКИН Ю. И., ЧУБАРОВ Л. Б., МАРЧУК АН. Г., СИМОНОВ К. В. Вычислительный эксперимент в проблеме цунами. Наука, Сиб. отд-ние, Новосибирск, 1989.
- [3] Стурова И. В. Численные расчеты в задачах генерации плоских поверхностных волн. ВЦ СО АН СССР, Красноярск, препринт №9, 1990.
- [4] СЕЛЕЗОВ И. Т., ЖЕЛЕЗНЯК М. И., ТКАЧЕНКО В. А., ЯКОВЛЕВ В. В. О численном моделировании генерирования и распространения волн цунами. В "Эволюция цунами от очага до выхода на берег", Радио и связь, М., 1982, 6–15.
- [5] НОВИКОВ В. А., ФЕДОТОВА З. И. Численное моделирование распространения длинных волн в бухтах на основе упрощенной модели Буссинеска. В "Труды Всесоюзн. совещ. по численным методам в задачах волновой гидродинамики", Ростов-на-Дону, 1990. Изд-во Красноярского гос. ун-та, 1991, 21–26.
- [6] БАРАХНИН В. Б., ХАКИМЗЯНОВ Г. С. Численная реализация краевых условий в одномерных задачах. В "Актуальные проблемы современной математики", Новосибирск, т. 1, 1995, 18–30.
- [7] GREEN A. E., NAGHDI P. M. A derivation of propagation in water of variable depth. J. Fluid Mech., 71, 1976, 237–246.
- [8] ДОРФМАН А. А., ЯГОВДИК Г. И. Уравнения приближенной нелинейно-дисперсионной теории длинных гравитационных волн, возбуждаемых перемещениями дна и распространяющихся в бассейне переменной глубины. В "Численные методы механики сплошной среды", 8, №1, 1977, 36–48.
- [9] ERTEKIN R.C., WEBSTER W.C., WEHAUSEN J.V. Waves Caused by a Moving Disturbance in a Shallow Channel of Finite Width. J. Fluid Mech., 169, 1986, 275–292.

- [10] PEREGRINE D. H. Long Waves on a Beach. J. Fluid Mech., 27, pt 4, 1967, 815–827.
- [11] MEI C. C., LE MEHAUTE B. Note on the Equations of Long Waves on Uneven Bottom. J. Geophys. Res., 72, No. 2, 1966, 393–400.
- [12] АЛЕШКОВ Ю. З. Теория взаимодействия волн с преградами. Изд-во Ленинградского гос. ун-та, 1990.
- [13] КОМПАНИЕЦ Л. А. Об устойчивости разностных схем для некоторых классов нелинейно-дисперсионных уравнений. В "Вычислительные технологии", ИВТ СО РАН, Новосибирск, 2, №7, 1993, 83–91.
- [14] Компаниец Л. А., Новиков В. А. Качественный анализ некоторых разностных схем для нелинейно-дисперсионных уравнений Грина — Нагди и Алешкова. В "Вычислительные технологии", ИВТ СО РАН, Новосибирск, 2, №4, 1993, 21–225.

Поступила в редакцию 15 сентября 1995 г.