ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ВНЕЗАПНОГО ИЗМЕНЕНИЯ ТОПОЛОГИИ МАГНИТНОГО ПОЛЯ

Г. И. Дудникова, В. П. Жуков, Т. В. Лисейкина Институт вычислительных технологий СО РАН, Новосибирск, Россия e-mail: dudn@adm.ict.nsc.ru

The influence of constant background magnetic field directed along hiperbolic null line on the reconnection process initiated by magnetosonic wave in the Earth's magnetosphere is discussed.

1. Введение

При прохождении волн в окрестности особых точек магнитного поля происходит изменение топологии плазменной конфигурации, что сопровождается явлениями, играющими важную роль в астрофизической и лабораторной плазме. Так, например, пересоединение в хвосте магнитосферы Земли приводит к нарушению радиосвязи, появлению полярных сияний, изменению химико-изотопического состава атмосферы. Аналогичные процессы в токамаках приводят к катастрофическому уменьшению температуры в центре установки и перегреву ее стенок, иногда сопровождающемуся прогоранием камеры (неустойчивость срыва), что является в настоящее время основной преградой на пути создания промышленного термоядерного реактора.

В работе исследуется влияние однородного постоянного магнитного поля, направленного вдоль гиперболической нулевой линии, на течение плазмы в ее окрестности. Распространение магнитозвуковых волн в отсутствие тороидального магнитного поля подробно описано в [2]. Сильное тороидальное магнитное поле позволяет разложить исходные уравнения по малому параметру: отношению полоидального магнитного поля к тороидальному. В результате получается хорошо известная в теории пилообразных колебаний в токамаке модель Кадомцева [3]. Согласно этой модели различные величины в задаче определенным образом зависят от упомянутого параметра. Основной целью данной работы является проверка этих зависимостей для задачи о распространении магнитозвуковых волн в окрестности -линии магнитного поля. Несмотря на то, что данная задача имеет существенное значение для понимания пределов применимости широко используемой модели Кадомцева, она ранее не исследовалась систематически.

2. Постановка задачи

Математическая модель, приведенная в [1, 4], представляет собой МГД уравнения с учетом эффекта Холла в двумерном ($\partial/\partial z = 0$) плоском случае. Задача решается в квадратной

[©] Г.И. Дудникова, В.П. Жуков, Т.В. Лисейкина, 1997.

области: $G = \{-x_0 < x < x_0, -y_0 < y < y_0\}, x_0 = y_0 = 1$. Начальные условия имеют вид $H_z = H_* = \text{const} - z$ -компонента магнитного поля, $A_z = \frac{1}{2}(x^2 - y^2) - z$ -компонента векторного потенциала, $p = \beta = \text{const} - \text{давление},$ $\rho = 1 = \text{const} - \text{плотность},$ $\vec{v} = 0 - \text{скорость плазмы},$

 $\vec{H_{\perp}} = (\partial A_z/\partial y, -\partial A_z/\partial x)$ — поперечные нулевой линии компоненты магнитного поля (x = 0, y = 0 — нулевая линия). Плазма выводится из равновесия при помощи возмущения вектор-потенциала A_z , задаваемого на границе области в виде цилиндрической волны $a(r,t) = a_0(t + \ln r), a_0(\xi) = -E_1 \frac{(\xi - \xi_0)^2}{\xi}, \xi \ge \xi_0, \xi_0 = \ln(\sqrt{x_0^2 + y_0^2}), E_1$ — характерное значение электрического поля на границе. Граничные условия допускают протекание плазмы через границы расчетной области [2].

3. Результаты численного моделирования

При $H_* = 0$ течение хорошо изучено [2]. Рассмотрим влияние величины H_* на картину течения в отсутствие эффекта Холла. Прежде всего отметим, что если при $H_* = 0$ плотность плазмы изменяется на величину $\delta \rho$ порядка 1, то при увеличении H_* изменение плотности стремится к 0 (приближение несжимаемой жидкости). Это обстоятельство широко используется при создании упрощенных моделей [3]. Расчеты показывают, что зависимость $\delta \rho$ от H_* выглядит следующим образом:

 $H_* = 2, \quad \delta \rho = 0.236,$

$$H_* = 5, \quad \delta \rho = 0.12,$$

 $H_* = 10, \quad \delta \rho = 0.077,$

откуда $\delta \rho \sim H_*^{-1}$, что соответствует [3].

Распределение j_z -компоненты электрического тока на квазистационарной стадии процесса $(t \ge 6)$ (рис. 1) мало меняется по сравнению со случаем $H_* = 0$. Как и в отсутствие продольного магнитного поля (H_*) , образующийся токовый слой располагается вблизи сепаратрисных поверхностей.

Рис. 1. Распределение тока j_z ($H_* = 10.0$).

Рис. 2. Распределение j_{\perp}^2 ($H_* = 2.0$).

Распределение квадрата поперечной компоненты электрического тока $\vec{j_{\perp}} = (\partial H_z / \partial y)$ $-\partial H_z/\partial x$) показано на рис. 2 (при $H_* = 0$ эта компонента отсутствует). Областью локализации токового слоя является окрестность сепаратрисных поверхностей. С увеличением H_* уменьшается максимальное значение величины j_\perp^2 :

 $H_* = 2, \quad \max(j_{\perp}^2) = 0.178,$ $H_* = 5, \quad \max(j_{\perp}^2) = 0.042,$ $H_* = 10, \quad \max(j_{\perp}^2) = 0.012.$ То есть $\max(j_{\perp}^2) \sim H_*^{-2}$ в соответствии с [3].

Наличие продольного магнитного поля (H_*) существенно влияет на распределение давления плазмы (рис. 3). Видно, что имеет максимум в месте расположения токового слоя (рис. 3, δ , ϵ), а не минимум, как в случае отсутствия H_* (рис. 3, a). При увеличении H_* этот максимум тоже увеличивается, но незначительно.

На рис. 4 изображена поверхность продольной компоненты магнитного поля H_z. Видно, что с ростом H_* уменьшается максимальное значение величины $\delta = \max(H_z - H_*)/H_*$:

 $H_* = 2, \quad \delta = 0.0375,$

 $H_* = 5, \quad \delta = 0.0096,$

 $H_* = 10, \quad \delta = 0.0026.$

Величина $P_{\rm tot} = p + H_z^2/2 - H_*^2/2$ мало зависит от значения H_* , а ее распределение (рис. 5) сходно с распределением давления плазмы в случае $H_* = 0$ (см. рис. 3, *a*).

На распределение поперечных скоростей плазмы присутствие продольного магнитного поля существенного влияния не оказывает, и поле скорости близко к полученному в [2].

В заключение отметим, что наличие продольного магнитного поля существенно влияет на распределение плотности плазмы, ее давления, а также на распределение квадрата поперечной компоненты тока и оказывает малое влияние на распределение $p + H_z^2/2$, тока j_z и на поле скоростей плазмы. Образующиеся токовые слои располагаются в окрестности сепаратрисных поверхностей. Условия применимости упрощенной модели [3] весьма хорощо выполняются уже при достаточно небольших значениях однородного магнитного поля H_* .

Рис. 3. Распределение давления плазмы: $H_* = 0$ (*a*), 2.0 (*б*), 10.0 (*в*).

Рис. 5. Распределение $P_{\text{tot}} = p + H_z^2 - H_*^2 \ (H_* = 5.0).$

Список литературы

- [1] Буланов С. В., Дудникова Г. И., Инновенков И. Н., Пичушкин В. В. Токовые слои в окрестности критических точек магнитного поля. Влияние эффекта Холла. Численное моделирование формирования токовых слоев. *Тр. ИОФАН*, **51**, 1995, 101–123.
- [2] БРУШЛИНСКИЙ К. В., ЗАБОРОВ А. М., СЫРОВАТСКИЙ С. И. Численный анализ токового слоя в окрестности магнитной нулевой линии. Физика плазмы, 6, №8, 1986, 297–311.
- [3] КАДОМЦЕВ Б. Б., ПОГУЦЕ О. П. Нелинейные спиральные возмущения плазмы в токамаке. ЖЭТФ, **65**, вып. 2(8), 1973, 575–589.
- [4] БУЛАНОВ С. В., ДУДНИКОВА Г. И., ЖУКОВ В. П. И ДР. Пересоединение магнитных силовых линий в окрестности критических точек. Физика плазмы, 22, №10, 1996, 867–895.

Поступила в редакцию 8 ноября 1995 г., в переработанном виде 11 июня 1997 г.