ПОСТРОЕНИЕ ПОЛИНОМИАЛЬНЫХ МНОЖЕСТВ С ЗАДАННОЙ ОБЛАСТЬЮ РАЗБРОСА КОРНЕЙ

А. Г. БАБУШКИН, Е. В. ВЛАСОВ, И. Г. СОЛОВЬЕВ Институт криосферы земли СО РАН, Тюмень, Россия e-mail: dep16@diaspr.tyumen.su

The paper presents basic definitions, theoretical backgroundds and algorithms for reconstruction of polynomial sets from the complex domains that contain their zeros.

1. Введение

Задача построения множества точечных дифференциальных операторов по заданной зоне расположения собственных чисел имеет важное прикладное значение в теории управления динамическими объектами [1]. Интерес к такого рода исследованиям [2, 3] особенно возрос в связи с развитием интервального анализа [4] и особенно после публикации теоремы Харитонова об устойчивости интервальных операторов [5].

Определение 1. Пусть $CD \subset R^m$ — ограниченная область *m*-мерного пространства с элементами **c**, тогда полиномиальным множеством (ПМ) будем называть следующее выражение:

$$\mathbf{a}_n(p) = p^n + a_{n-1}^0(p) + \mathbf{c}^T \mathbf{e}(p), \quad \mathbf{c} \in CD,$$
(1)

где

$$a_{n-1}^{0}(p) = a_{n-1}^{0}p^{n-1} + \dots + a_{1}^{0}p + a_{0}^{0},$$

$$\mathbf{e}(p) = [e_{n_{1}}^{1}(p) \dots e_{n_{m}}^{m}(p)]^{T},$$

$$e_{n_{j}}^{j}(p) = e_{n_{j}}^{j}p^{n_{j}} + \dots + e_{1}^{j}p + e_{0}^{j},$$

$$n_{j} < n, \quad \forall j = \overline{1, m},$$

$$a_{i}^{0}, e_{k}^{j} \in \mathbb{R}^{1}.$$

Далее принято допущение, что область разброса параметров CD полиномиального множества содержит начало координат (нулевой элемент) в R^m .

Определение 2. Ограниченная часть комплексной плоскости $\lambda(\mathbf{a}_n(p)) \subset C^1$ с элементами $\alpha + i\beta$, где $(i^2 = -1)$, и такая, что

$$\lambda \mathbf{a}_n(p)) := \{ \alpha + i\beta | (\forall \mathbf{c} \in CD) (a_n^0(\alpha + i\beta) + \mathbf{c}^T e(\alpha + i\beta) = 0) \},$$
(2)

именуется областью расположения корней $\Pi M \mathbf{a}_n(p)$.

⁽с) А. Г. Бабушкин, Е. В. Власов, И. Г. Соловьев, 1998.

Утверждение 1. Пусть $L \subset C^1$ — выпуклая область комплексной плоскости (корневое пространство) с границей ∂L , условие

$$\lambda \mathbf{a}_n(p)) \subset \mathrm{int}L$$

выполнено тогда и только тогда, когда

$$\lambda(a_n^0(p)) \subset \text{int}L,$$

$$\forall l \in \partial L, \quad a_n^0(l) \notin \operatorname{int} D(l), \qquad l = \alpha + i\beta,$$

где область $D(l) \subset C^1$ определяется следующим образом:

$$D(l) = \{-\mathbf{c}^T \mathbf{e}(l) | \mathbf{c} \in CD\}.$$
(3)

В [6] доказано, что любая линейная трансформация выпуклой области также есть выпуклая область. Отсюда, если CD выпукла в R^m , то D(l) выпукла в C^1 .

Утверждение 1 обобщает принцип аргумента [7] на ПМ и имеет очевидный геометрический смысл. Обратимся к рис. 1, где изображена область L исследуемого корневого пространства с границей ∂L и схемой обхода от $l_{\rm H}$ до $l_{\rm K}$ (полуконтур).

Рис. 1. Изображение полуплоскости и полуконтура выделенного корневого пространства.

Принцип аргумента гласит: полная вариация аргумента функции $a_k(l)$ при обходе l по полуконтуру $\partial L = [l_{\rm H}, l_{\rm K}]$ равна числу обхватываемых областью корней, умноженному на π .

Для любого точечного полинома $a_k(p)$ такого, что $\lambda(a_k(p)) \subset \operatorname{int} L$, выполнено

$$\operatorname{var} \operatorname{arg} a_k(l) = k\pi,$$

$$l \in [l_{\mathrm{H}}, l_{\mathrm{K}}],$$

т. е. для ПМ названный принцип имеет следующий геометрический смысл (рис. 2). На рисунке изображена кривая $a_n(l)$ для полуконтура, охватывающего границей ∂L три корня, так как var $\arg a_n^0(l) = 3\pi$. Если n = 3, то ∂L охватывает все корни. На рисунке показаны фрагменты областей, которые может занимать полиномиальное множество $\mathbf{a}_n(p)$ при $p = l_2$ или $p = l_3$ и $\forall \mathbf{c} \in CD$.

Отсюда следует, что

$$\lambda \mathbf{a}_n(p) \subset \operatorname{int} L,$$

если $\forall \mathbf{c} \in CD$ выполнено

$$\operatorname{var} \arg(a_n^0(l) + \mathbf{c}^T \mathbf{e}(l)) = \pi n$$
$$l \in [l_{\scriptscriptstyle \mathrm{H}}, l_{\scriptscriptstyle \mathrm{K}}].$$

Рис. 2. Иллюстрация принципа аргумента для ПМ.

Приведенное условие эквивалентно следующему:

var
$$\arg(a_n^0(l) = \pi n$$
 или $\lambda(a_n^0(p)) \subset \operatorname{int} L,$
 $l \in [l_{\mathrm{H}}, l_{\mathrm{K}}],$

И

$$\forall \mathbf{c} \in CD$$
 и $l \in [l_{\mathrm{H}}, l_{\mathrm{K}}],$
 $0 \notin a_{\mathrm{r}}^{0}(p) - \mathrm{int}D(l).$

Последнее отношение, переписанное в виде

$$a_n^0(l) \notin \operatorname{int} D(l),$$

означает, что $\forall l \in [l_{\rm H}, l_{\rm K}]$ точка $a_n^0(l)$ не должна быть внутренней точкой области D(l), обусловленной возможным разбросом параметров $\mathbf{c} \in CD$ (рис. 3).

Рис. 3. Геометрическая иллюстрация утверждения 1.

Проведенный анализ можно рассматривать как нестрогое доказательство утверждения 1.

Справедливо и обратное утверждение.

Следствие 1.1. Пусть $L \subset C^1$ — выпуклая область корневого пространства с границей ∂L и

$$\mathbf{a}_n(p) = a_n^0(p) + \mathbf{c}^T \mathbf{e}(p), \quad \mathbf{c} \in CD - CD$$

16

полиномиальное множество с $\lambda(a_n^0(p)) \subset \operatorname{int} L$, причем на полуконтуре $l \in [l_{\scriptscriptstyle H}, l_{\scriptscriptstyle K}]$ присутствует хотя бы одна точка l_* такая, что выполнено

$$a_n^0(l_*) \in \text{int}D(l_*).$$

Tогдa

$$\lambda(\mathbf{a}_n(p)) \not\subset L$$

Иначе говоря, существует $\mathbf{c}_* \in CD$ такое, что

$$\lambda(a_n^0(p) + \mathbf{c}_*^T \mathbf{e}(p)) \not\subset \operatorname{int} L.$$

Следствие 1.2. Пусть в условиях следствия 1.1 на полуконтуре $l \in [l_{H}, l_{K}]$ найдутся отрезки или точки l_{*} такие, что

$$a_n^0(l_*) \in \partial D(l_*)$$
 и $a_n^0(l) \notin \operatorname{int} D(l).$

 $Toг \partial a$

$$\lambda(\mathbf{a}_n(p)) \subseteq L$$

причем элементы l_{*} контура ∂L являются граничными корнями ПМ (1).

Сформулированные утверждения позволяют эффективно конструировать оценки корневых областей L по CD и наоборот по заданным L строить область CD.

2. ПМ с эллипсоидной областью разброса параметров

Справедливо следующее.

Утверждение 2. Пусть $L \in C^1$ и $CD \subset R^m$ — априорно заданные выпуклые области корневого и параметрического пространств, а (1) — анализируемое ПМ. Тогда

$$\lambda(\mathbf{a}_n(p)) \subset \operatorname{int} L_2$$

если выполнено $\rho_* > 0$, где

$$\begin{cases} \rho_* = \min \rho_+(l), \quad l \in [l_{\scriptscriptstyle \rm H}, l_{\scriptscriptstyle \rm K}],\\ \rho_+(l) = \min |a_n^0(l) + \mathbf{c}^T \mathbf{e}(l)|, \quad \mathbf{c} \in CD. \end{cases}$$
(4)

Сформулированное утверждение выступает критерием проверки условия

$$\lambda(\mathbf{a}_n(p)) \subset \operatorname{int} L$$

На основании введенных соотношений (4) можно строить итеративные процессы формирования области L минимального размера для заданной области разброса параметров CD. Очевидно, что решение этой задачи, в равной степени как и обратной, зависит от способов описания областей L и CD.

Рассмотрим задачу синтеза ПМ по заданной тройке $\langle a_n^0(p), \mathbf{e}(p), L \rangle$.

Искомая область разброса параметров ${\bf c}$ будет назначаться в виде эллипсоидов рассеивания

$$CD_{\rho} = \{ \mathbf{c} | \mathbf{c}^T Q \mathbf{c} \le \rho_*^2 \},\tag{5}$$

где $Q = Q^T > 0$ — положительно-определенная матрица ориентации эллипсоидов в R^m . В условиях, когда Q априорно задано, решение поставленной задачи сводится к поиску параметра ρ_* , определяющего размер эллипсоида рассеивания.

Поставленная задача допускает почти аналитическое решение. Будем, как и ранее, обозначать полуконтур границы ∂L выпуклой области L в виде спрямленного отрезка $[l_{\rm H}, l_{\rm K}]$. Выберем произвольную точку отрезка $l \in [l_{\rm H}, l_{\rm K}]$. Линейное многообразие векторов $\mathbf{c} \in C_{m-2}(l)$, на котором ПМ достигает граничного корневого условия с l, запишется следующим образом:

$$C_{m-2}(l) = \{ \mathbf{c} | a_n^0(l) + \mathbf{c}^T \mathbf{e}(l) = 0 \}$$

Выписывая данное тождество для реальной и мнимой частей в отдельности, имеем:

$$C_{m-2}(l) = \{ \mathbf{c} | \mathbf{c}^T z_1(l) + a_1(l) = 0, \quad \mathbf{c}^T z_2(l) + a_2(l) = 0 \},$$
(6)

где

$$\mathbf{e}(l) = z_1(l) + iz_2(l),$$

 $a_n^0(l) = a_1(l) + ia_2(l).$

Расстояние в Q-метрике¹ в R^m от $a_n^0(l)$ до $C_{m-2}(l)$ определяется из решения экстремальной задачи

$$\rho(l) = \mathbf{c}^T Q \mathbf{c} \to \min, \quad \mathbf{c} \in C_{m-2}(l).$$
(7)

Аналитическая запись решения поставленной экстремальной задачи в условиях, когда a_2 , $z_2 \neq 0$, имеет вид

$$\begin{cases}
\rho_{+}^{2}(l) = \frac{1}{2}[a_{1}(l)a_{2}(l)] \begin{bmatrix} \lambda_{1}(l) \\ \lambda_{2}(l) \end{bmatrix}, \\
\mathbf{c}_{+}(l) = -\frac{1}{2}Q^{-1}[z_{1}(l)z_{2}(l)] \begin{bmatrix} \lambda_{1}(l) \\ \lambda_{2}(l) \end{bmatrix}, \\
\begin{bmatrix} \lambda_{1}(l) \\ \lambda_{2}(l) \end{bmatrix} = 2\left(\begin{bmatrix} z_{1}^{T}(l) \\ z_{2}^{T}(l) \end{bmatrix} Q^{-1}[z_{1}(l)z_{2}(l)]\right)^{-1} \begin{bmatrix} a_{1}(l) \\ a_{2}(l) \end{bmatrix}.$$
(8)

Если контур ∂L вырожден и не содержит комплексной составляющей ($\alpha + i\beta = \alpha$, при этом $\mathbf{c}^T z_2(l) + a_2(l) \equiv 0$), то аналитическая запись решения примет вид:

$$\begin{cases} \rho_{+}^{2}(l) = \frac{1}{2}a_{1}(l)\lambda_{1}(l), \\ \mathbf{c}_{+}(l) = -\frac{1}{2}Q^{-1}z_{1}(l)\lambda_{1}(l), \\ \lambda_{1}(l) = 2\left(z_{1}^{T}(l)Q^{-1}z_{1}(l)\right)^{-1}a_{1}(l). \end{cases}$$

$$(9)$$

На основании изложенного сформулируем следующий результат.

Утверждение 3. Пусть $L \subset C^1$ — выпуклая область корневого пространства со спрямленной полуграницей $[l_{\rm H}, l_{\rm K}]$, а ПМ имеет вид (1) с $a_n^0(p)$, удовлетворяющей условию

$$\lambda(a_n^0(p)) \subset \text{int}L.$$

¹Длина $x \in \mathbb{R}^m$ в Q-метрике определяется по формуле $||x||_Q = \sqrt{x^T Q x}$, где $Q = Q^T > 0$.

Тогда для области разброса параметров CD_{ρ} , заданной в виде эллипсоида рассеивания (5), справедлива оценка

$$\rho_*^2 = \min\{\rho_+^2(l_{\rm H}), \quad \rho_+^2(l_{\rm K}), \quad \min_{l\in]l_{\rm H}, l_{\rm K}[}\rho_+^2(l)\}$$

(в условиях $l \in]l_{\rm H}, l_{\rm K}[, \rho_+^2(l)$ из (8) при $l = l_{\rm H} \forall l_{\rm K}, \rho_+^2(l)$ из (9)). При этом, если $l_* = \arg\min \rho_+^2(l)$, то вектор $\mathbf{c}_+(l_*)$ (8) доставляет точное условие достижения гранично-го корня $l_* \in [l_{\rm H}, l_{\rm K}]$.

Доказательство очевидно следует из схемы решения экстремальной задачи (6), (7) по методу множителей Лагранжа. Необходимое и достаточное условие экстремума, выписанное для функции Лагранжа

$$LG = \mathbf{c}^{T}Q\mathbf{c} + \lambda_{1}(l)(\mathbf{c}^{T}z_{1}(l) + a_{1}(l)) + \lambda_{2}(l)(\mathbf{c}^{T}z_{2}(l) + a_{2}(l)),$$

имеет вид для $a_2, z_2 \neq 0$

$$2Q\mathbf{c}_{+}(l) + \lambda_{1}(l)z_{1}(l) + \lambda_{2}(l)z_{2}(l) = 0,$$

и в случае $\mathbf{c}^T z_2(l) + a_2(l) \equiv 0$ (т.е. при одном ограничении)

$$2Q\mathbf{c}_{+}(l) + \lambda_{1}(l)z_{1}(l) = 0.$$

Последовательные преобразования данного соотношения с выделением $\mathbf{c}_{+}(l)$, домножением слева на $\mathbf{c}_{+}^{T}(l)$ и т.п. с учетом (6) приведут к искомому результату (8) и (9).

3. Алгоритм построения ПМ с расширенной областью разброса параметров

Поиск CD в виде эллипсоида рассеивания (5) существенно сужает размер области возможного разброса параметров **c**, соответствующий зоне корней L. Более эффективными оказываются следующие построения. Согласно (6), линейное многообразие $C_{m-2}(l)$ содержит все множество векторов **c**(l), на которых ПМ (1) достигает граничного корневого условия с l, в том числе и Q-ортогональную проекцию **c**₊(l) начала координат. Используя этот вектор, введем в \mathbb{R}^m гиперплоскость $C_{m-1}(l)$:

$$C_{m-1}(l) = \{ \mathbf{c} | \mathbf{c}_{+}(l)^{T} Q \mathbf{c} = \rho_{+}^{2}(l) \}.$$

Если в силу построения $C_{m-1}(l)$ содержит линейное многообразие $C_{m-2}(l)$, то подмножество $C_m^-(l) \in \mathbb{R}^m$, заданное строгим неравенством

$$C_m^{-}(l) = \{ \mathbf{c} | \mathbf{c}_+(l)^T Q \mathbf{c} < \rho_+^2(l) \},$$
(10)

уже не включает таких $\mathbf{c}(l)$, которые доставляют граничное корневое условие для ПМ с l. Проведенный анализ позволяет сформулировать следующее положение.

Утверждение 4. В условиях утверждения 3 выпуклая область CD_Q^- возможных значений параметров с для ПМ (1), соответствующая зоне L, назначается соотношением

$$CD_Q^- = \{ \mathbf{c} | \forall l \in [l_{\scriptscriptstyle \mathrm{H}}, l_{\scriptscriptstyle \mathrm{K}}], \quad \mathbf{c}_+(l)^T Q \mathbf{c} < \rho_+^2(l) \}.$$

$$\tag{11}$$

Доказательство. Условие (11) представляет собой "непрерывное по $l \in [l_{\rm H}, l_{\rm K}]$ " объединение выпуклых подмножеств $C_m(l)$ (10), не содержащих по построению граничного многообразия $C_{m-2}(l)$. Следовательно CD_Q^- выпукло в R^m и на CD_Q^- выполнены условия утверждения 1, что и требовалось доказать.

Переход от (11) к нестрогому равенству

$$CD_Q = \{ \mathbf{c} | \forall l \in [l_{\text{H}}, l_{\text{K}}], \quad \mathbf{c}_+(l)^T Q \mathbf{c} \le \rho_+^2(l) \}$$
(12)

дополняет CD_Q^- границей ∂CD_Q , доставляющей контакты корневого множества ПМ с контуром ∂L ($CD_D = CD_D^- \cup \partial CD_Q$).

Дальнейший путь поиска областей CD с большими объемами для заданной зоны L связан с переходом к невыпуклым областям разброса параметров в R^m путем вариации матрицы ориентации Q. Такой переход имеет наглядное геометрическое представление. На рис. 4 в R^2 изображены три эллипсоида рассеивания CD_{ρ_i} , i = 1, 2, 3, с неодинаковыми матрицами ориентации Q_i ($Q_2 = I$).

Рис. 4. Иллюстрация задачи с объединением эллипсоидов.

Поиск эллипсоидов с оптимальной ориентацией, в наилучшей степени учитывающих границы действительной зоны возможного разброса параметров ∂CD^* для L (как CD_{ρ_4} на рис. 4), является одним из важных направлений дальнейшего развития такого подхода.

Конструктивное описание области CD_ρ в этом случае

$$CD_{\rho} = \bigcup_{i=\overline{1,k}} CD_{\rho_i}$$

может быть задано соотношением

$$\partial CD_{\rho} = \arg \max\{ \|\mathbf{c}_i\| \, | \mathbf{c}_i^T Q_i \mathbf{c}_i \le \rho_{+_i}^2 \}, \quad i = \overline{1, k}.$$

На рис. 5 показан пример построения CD_Q на основе объединения CD_{Q_i} , заданных условиями типа (12). Описание такого объединения $CD_Q = \bigcup_{i=\overline{1,k}} CD_{Q_i}$, как и ранее, назна-

чается следующим образом:

$$\partial CD_Q = \{ \arg \max \| \mathbf{c}_i \| \, | \forall l \in [l_{\scriptscriptstyle \mathrm{H}}, l_{\scriptscriptstyle \mathrm{K}}] \mathbf{c}_{+_i}(l)^T Q_i \mathbf{c}_i = \rho_{+_i}^2(l) \}.$$
(13)

Рис. 5. Иллюстрация к задаче формирования невыпуклой области рассеивания.

Схема построения CD_Q (11) как непрерывная процедура объединения бесконечного количества подмножеств $C_m(l), l \in [l_{\rm H}, l_{\rm K}]$ может быть неконструктивна в практическом использовании. Поэтому аппроксимация CD_Q вписанным многогранником, задаваемым конечным числом линейных неравенств, видится полезной в практическом смысле.

4. Пример

Рассмотрим пример построения ПМ вида (1) со следующими исходными данными:

$$a_2^0(p) = p^2 + 8p + 15, \quad \mathbf{e}(p) = [1, p]^T$$

В соответствии с (6) для данного примера справедливы соотношения

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \alpha^2 - \beta^2 + 8\alpha + 15 \\ (2\alpha + 8)\beta \end{bmatrix}, \quad z_1 = \begin{bmatrix} 1 \\ \alpha \end{bmatrix}, \quad z_2 = \begin{bmatrix} 0 \\ \beta \end{bmatrix}$$

Приведем общие выражения $\rho_*^2(l)$ и $\mathbf{c}_+(l)$ для произвольной точки контура $l = \alpha + i\beta$ и матрицы $Q = \text{diag}\{1, 1\}.$

Преобразование по (6) приводит к следующим рассчитанным соотношениям:

$$\begin{bmatrix} c_{1_{+}} \\ c_{2_{+}} \end{bmatrix} = -\begin{bmatrix} 15 - \alpha^{2} - \beta^{2} \\ 2\alpha + 8 \end{bmatrix},$$

$$\rho_{+}^{2} = \begin{cases} c_{1_{+}}^{2} + c_{2_{+}}^{2} \text{ для точек } \beta \neq 0, \\ \rho_{+}^{2} = (\alpha^{2} + 8\alpha + 15)^{2}/(1 + \alpha^{2}) \text{ для точек } \beta = 0 \end{cases}$$

Построим графики $\rho_+(l)$ для контуров, указанных на рис. 6. Для анализа удобно выбрать также и вырожденный контур 3.

Проиллюстрируем полученные данные (рис. 7): для контура 1 $\rho_+^2 = 1.73$ в точке контура ($\alpha = -3.35$, $\beta = 2$, $c_1 = 0.2225$, $c_2 = 1.3$), для контура 2 $\rho_+^2 = 1.73$ в точке контура ($\alpha = -3.75$, $\beta = 1$, $c_1 = 0.0625$, $c_2 = 0.5$), для контура 3 $\rho_+^2 = 0$ в точках, где контур пересекает корни полинома ($\alpha = -3$, $\beta = 0$, $\alpha = 5$, $\beta = 0$).

Рис. 6. Графики контуров обхода ∂L .

Рис. 7. Графики критерия ρ_+^2 для контуров 1, 2, 3.

Список литературы

- [1] АРТЮШОК В. П., СОЛОВЬЕВ И. Г. Прямое адаптивное управление с интервальной эталонной динамикой. Приборостроение, №7–8, 1994, 42–46.
- [2] KAESHAUR D., AKERMANN J. The Distance from stability or r-stability boundaries. 11th IFAC World Congress, 5, 1990, 130–136.
- [3] SOH V. C. Strict Hurwits of polynomials under coefficient perturbations. *IEEE Trans.* Autom. Control, **34**, 1989, 629–632.
- [4] КАЛМЫКОВ С. А., ШОКИН Ю. И., ЮЛДАШЕВ З. Х. Методы интервального анализа. Наука, Новосибирск, 1986.
- [5] ХАРИТОНОВ В. Л. Асимптотическая устойчивость линейных дифференциальных уравнений. Дифференциальные уравнения, **14**, №11, 1978, 2086–2088.
- [6] РОКАФЕЛЛАР Р. Выпуклый анализ. Мир, М., 1973.
- [7] ПОСТНИКОВ М. М. Устойчивые многочлены. Наука, М., 1981.

Поступила в редакцию 24 сентября 1996 г., в переработанном виде 26 ноября 1997 г.