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Для решения задачи Дирихле в рамках потенциальной теории предлагается мо-
дификация метода граничных элементов, основанная на замене интегрирования в
уравнении потенциала двойного слоя по области границы на интегрирование по углу.
Использование угловой переменной, представляющей собой естественную параметри-
зацию границы, позволяет полностью исключить необходимость ее аппроксимации
и существенно улучшает точность вычислений. Описаны результаты тестирования
алгоритма на двумерных областях.

1. Introduction

Recently, the boundary elements method (BEM) has been used frequently along with the other
method for solving the boundary-value problems [1, 2]. It is widely used for calculations in the
theory of water waves, in problems on elastic and plastic deformation, in electrostatics and in
other practical applications.

One of the problems inherent to this method is a necessity to approximate both the functions
on the boundary and the boundary itself. In practice, most frequently used are the simple low-
order schemes. Note, however, that a low order of boundary approximation does not justify
a higher order of approximation of the function itself, as the latter does not guarantee an
improvement in accuracy [3].

The present paper proposes an approach based on a substitution, in the framework of the
potential method, of the integral over the domain boundary by an integral over the angle.
This approach does not require any approximation of the boundary, opening new prospects for
solving the problem numerically.

Let us first examine the problem setup and its solution in the framework of the BEM. As
an example, we shall use the internal Dirichlet problem in a two-dimensional domain.

2. Problem setup

In the framework of the potential theory [4], finding the solution u(p), p ∈ Ω, of the boundary-
value Dirichlet problem in the domain Ω ∈ R2, satisfying within the domain the Laplace
equation and the boundary condition u = f on the boundary Γ, may be reduced to the problem
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of calculating the double layer potential µ on the same boundary. For the latter, the following
integral equation is valid:

1

2
µ(p) +

1

2π

∫

Γ

µ(q)
(~nq~rpq)

r2
pq

dlq = f(p), p, q ∈ Γ, (1)

where ~rpq is the radius vector from the boundary point p to the point q, ~nq is the outward
unit normal to the boundary at the point q, dlq is the length element of the boundary Γ. The
direction of circulation is chosen so that the domain Ω stays always at the left side.

Solution of the Dirichlet problem u(p) in the domain Ω is determined by the integral

u(p) =
1

2π

∫

Γ

µ(q)
(~nq~rpq)

r2
pq

dlq, q ∈ Γ, p ∈ Ω. (2)

In the simplest case, the BEM relies upon an approximation of the domain boundary by a
polyline formed by m segments boundary elements. The discrete grid functions µj = µ(pj) and
fj = f(pj) are defined on these boundary elements with centres in the points pj, j = 1, ...,m.
Thus, the problem for the unknown µ is reduced to a system of m linear algebraic equations
of the following form:

1

2
µi +

m
∑

j=1

aijµj = fi, i = 1, ...,m. (3)

The matrix aij is defined by the expression

aij = (~nj~rij)hj/2πr2

ij, i 6= j, (4)

where ~rij is a vector from pi to pj, rij = |~rij|, hj is the size of the j-th boundary element, ~nj is
the given external unit normal vector to the respective boundary element.

The Gauss theorem is used to calculate the singular diagonal elements of the aii matrix:

aii =
1

2
−

m ,
∑

j=1,i6=j

aij. (5)

The system of linear algebraic equations (3) is then solved to determine the double layer
potential µ.

3. Angular integral method

Considering now the new algorithm, note that integration over the domain boundary in (1)
may be substituted by integration over the angle θ [4]:

dθ = (~nq~rpq)dlq/r
2

pq. (6)

Let {pj ∈ Γ}, j = 1, ...,m be the set of boundary points. Let us define θi for a fixed point pi as
the angle between the abscissa of the Cartesian reference system with an origin at pi and the
respective radius vector. For convenience, we shall rotate the reference system for the ordinate
to coincide with the tangent to the boundary at the point pi, leaving alone for a while the
eventual angular points. Thus, every point pj 6= pi will correspond to an angle θij given by

θij = arctan

(

xj − xi

yj − yi

)

.
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This angle defines in fact a natural boundary parametrisation, which enables to avoid its
approximation by the boundary elements.

Note that, in case of a convex smooth boundary without angular points, the integration
limits after rotating the reference system as explained above will be −π/2, +π/2.

Thus, the problem of finding the matrix elements aij is reduced to finding the numerical
integration formula coefficients for calculation of integrals over the angle using the integrated
function values in the points of an (uneven) grid θij, defined by the points pj, j = 1, ...,m, at
a fixed pi, in the interval from −π/2 to +π/2. This problem may be solved using any suitable
numerical integration formulae. In particular, rectangular and trapezoidal integration formulas
were tested.

For the rectangular integration, the matrix elements aij are given by the relations:

aij = (θij+1 − θij)/2π,

θij+1 = arctan

(

yj+1 − yi

xj+1 − xi

)

, (7)

note that θij+1 = +π/2 for j + 1 = i, and θij = −π/2 for j = i. Similarly, for the trapezoidal
integration it is easy to obtain:

aij = (θij+1 − θij−1)/4π,

aij = (θij+1 − θij−1 + π)/4π for i = j, where (8)

θij+1 = arctan

(

yj+1 − yi

xj+1 − xi

)

, θij−1 = arctan

(

yj−1 − yi

xj−1 − xi

)

, (9)

note that θij+1 = π/2 for j + 1 = i, and θij−1 = −π/2 for j − 1 = i.
The algorithm was tested for a known solution in a circular domain. Using a polar reference

system with the angle α, whose origin coincided with the centre of the circle, the exact
distribution of the double layer potential µ was chosen in the form:

µ(α) = α sin(α). (10)

Thus the right term of the equation (1) equals:

f(α) =
1

2
(α sin(α) − 1). (11)

The Table presents a comparison of the relative calculation uncertainty ε (%) for the standard
BEM as described above, with that for the new algorithm as presently proposed, both applied
to the test problem using various values of m.

Method Number of points

10 20 30 40 50

Form. (4), (5) (BEM) 3.339 0.787 0.346 0.194 0.124

Form. (8) (AIM) 0.658 0.164 0.073 0.041 0.026
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The calculations demonstrated that the approach proposed improves significantly the accuracy
of the numerical solution of the Dirichlet problem in a circular domain as compared to the
traditional approach expressed by equations (4) – (5), provided the same number of points is
used in the two cases. This is true even when the simplest rectangular integration is used. As
is evident from the Table, the relative uncertainty for the rectangular integration is almost a
factor of 5 lower as that for the calculations using formulas (4) – (5), being the same as the
uncertainty for trapezoidal integration for the solution (10) in a circle.

4. Conclusion

We shall finish with a few notes regarding the non-convex domains and the three-dimensional
generalisations of the algorithm.

The approximation order of the function on the boundary may be improved by, for example,
using a polynomial of the order m. As regards non-convex domains, here we have to integrate
a non-uniqueness function. In this case the integral should be separated into integrals over the
respective uniqueness intervals. Note that here one has to integrate in an interval wider than
[−π/2, π/2].

The algorithm may be also generalised for three dimensions. In this case the problem is
reduced to calculations of quadrature of a two-dimensional integral over the solid angle.

Finally, the algorithm proposed offers new possibilities to deal with the angular points of
the boundary, requiring a special consideration, which is out of the scope of the present paper.

The author expresses his gratitude to V. L. Frumin and L. B. Chubarov for the useful
discussions and also to I. V. Khmelinski for his help in translation.
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