ON THE PRODUCT OF THE ULTRA-HYPERBOLIC operator RELATED TO THE ELASTIC WAVES

A. KANANTHAI
Department of Mathematics, Chiangmai University
Chiangmai 50200, Thailand

В статье исследуется элементарное решение оператора произведения $\square_{c_{1}}^{k} \square_{c_{2}}^{k}$, где $\square_{c_{1}}^{k}$ и $\square_{c_{2}}^{k}-k$-е степени ультрагиперболических операторов, определяемые равенствами

$$
\square_{c_{1}}^{k}=\left(\frac{1}{c_{1}^{2}} \sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{k}
$$

и

$$
\square_{c_{2}}^{k}=\left(\frac{1}{c_{2}^{2}} \sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{k}
$$

где $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}, p+q=n, c_{1}$ и c_{2} - положительные константы, а $k-$ неотрицательное целое число.

Показано, что элементарное решение операторов $\square_{c_{1}}^{k} \square_{c 2}^{k}$ связано с задачей об упругих волнах, зависящих от p, q, k, c_{1} и c_{2}.

1. Introduction

We know from Trione [2, p. 11], that the generalized function $R_{2 k}^{H}(x)$ defined by (2.1) is an elementary solution of the operator \square^{k}, that is $\square^{k} R_{2 k}^{H}=\delta$ where \square^{k} is the ultra-hyperbolic operator iterated k-times, defined by

$$
\begin{equation*}
\square^{k}=\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{k} \tag{1.1}
\end{equation*}
$$

the point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$ and δ is the Dirac-delta distribution.
In this paper, we developed the operator of (1.1) to be

$$
\begin{equation*}
\square_{c_{1}}^{k}=\left(\frac{1}{c_{1}^{2}} \sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{k} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\square_{c_{2}}^{k}=\left(\frac{1}{c_{2}^{2}} \sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{k} . \tag{1.3}
\end{equation*}
$$

[^0]We study the elementary solution of the equation

$$
\begin{equation*}
\square_{c_{1}}^{k} \square_{c_{2}}^{k} u(x)=\delta \tag{1.4}
\end{equation*}
$$

We can obtain

$$
\begin{equation*}
u(x)=S_{2 k}^{H}(x) * T_{2 k}^{H}(x) \tag{1.5}
\end{equation*}
$$

as an elementary solution of (1.2) where the symbol * denote the convolution $S_{2 k}^{H}(x)$ and $R_{2 k}^{H}(x)$ are defined by (2.3) and (2.4) respectively with $\alpha=2 k$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$. In particular if $k=1, p=1$ with $x_{1}=t$ (time), c_{1} and c_{2} are velocity then (1.3) becomes the elementary solution of the Elastic Waves of fourth order. Moreover, in the case of Elastic equilibium $\left(\frac{\partial u}{\partial t}=0\right)$ we obtain the elementary solution of the equation $\triangle^{2 k} u(x)=\delta$ where $\triangle^{2 k}$ is the Laplace operator iterated $2 k$ defined by

$$
\begin{equation*}
\triangle^{2 k}=\left(\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{q}^{2}}\right)^{2 k} \tag{1.6}
\end{equation*}
$$

where $x=\left(x_{2}, x_{3}, \ldots, x_{q}\right) \in R^{q-1}$.

2. Preliminaries

Definition 2.1. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of the n-dimensional Euclidean Space R^{n}. Denote by $v=x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}, p+q=n$, the nondegenerated quadratic form. By Γ we designate the interior of the forward cone, $\Gamma_{+}=\left\{x \in R^{n}: x_{1}>0\right.$ and $\left.v>0\right\}$ and by $\bar{\Gamma}_{+}$designate its closure. For any complex number α define

$$
R_{\alpha}^{H}(x)= \begin{cases}\frac{v^{(\alpha-n) / 2}}{K_{n}(\alpha)} & \text { for } x \in \Gamma \tag{2.1}\\ 0 \text { for } x \notin \Gamma\end{cases}
$$

where $K_{n}(\alpha)$ is given by the formula

$$
\begin{equation*}
K_{n}(\alpha)=\frac{\pi^{(n-1) / 2} \Gamma\left(\frac{2+\alpha-n}{2}\right) \Gamma\left(\frac{1-\alpha}{2}\right) \Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right)} \tag{2.2}
\end{equation*}
$$

The function $R_{\alpha}^{H}(x)$ was introduced by Nozaki [3, p. 72]. It is well known that $R_{\alpha}^{H}(x)$ is an ordinary function if $\operatorname{Re}(\alpha) \geq n$ and is distribution of α if $\operatorname{Re}(\alpha)<n$.

Let $\operatorname{supp} R_{\alpha}^{H}(x) \subset \bar{\Gamma}_{+}$, where $\operatorname{supp} R_{\alpha}^{H}(x)$ denote the support of $R_{\alpha}^{H}(x)$.
From (2.1) we redefine

$$
\begin{align*}
S_{\alpha}^{H}(x) & =\left\{\begin{array}{l}
\frac{V^{(\alpha-n) / 2}}{K_{n}(\alpha)} \\
\text { for } x \in \Gamma_{+}, \\
0 \text { for } x \notin \Gamma_{+},
\end{array}\right. \tag{2.3}\\
T_{\alpha}^{H}(x) & = \begin{cases}\frac{W^{(\alpha-n) / 2}}{K_{n}(\alpha)} & \text { for } x \in \Gamma_{+}, \\
0 & \text { for } x \notin \Gamma_{+},\end{cases} \tag{2.4}
\end{align*}
$$

where $V=c_{1}^{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}\right)-x_{p+1}^{2}-x_{p+2}^{2}-\cdots-x_{p+q}^{2}$ and $W=c_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}\right)-$ $x_{p+1}^{2}-x_{p+2}^{2}-\cdots-x_{p+q}^{2}, c_{1}$ and c_{2} are positive constants.

By putting $p=1$ in (2.2), (2.3) and (2.4) and using the Legendre's duplication of $\Gamma(z)$.
$\Gamma(2 z)=2^{2 z-1} \pi^{-1 / 2} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)$ then the formulae (2.3) and (2.4) reduced to

$$
\begin{align*}
& M_{\alpha}^{H}(x)=\left\{\begin{array}{l}
\frac{V^{(\alpha-n) / 2}}{H_{n}(\alpha)} \text { for } x \in \Gamma_{+}, \\
0 \text { for } x \notin \Gamma_{+},
\end{array}\right. \tag{2.5}\\
& N_{\alpha}^{H}(x)=\left\{\begin{array}{l}
\frac{W^{(\alpha-n) / 2}}{H_{n}(\alpha)} \text { for } x \in \Gamma_{+}, \\
0 \text { for } x \notin \Gamma_{+},
\end{array}\right. \tag{2.6}
\end{align*}
$$

here $V=c_{1}^{2} x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-\cdots-x_{n}^{2}, W=c_{2}^{2} x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-\cdots-x_{n}^{2}$ and $H_{n}(\alpha)=\pi^{(n-2) / 2} 2^{\alpha-1} \times$ $\Gamma\left(\frac{\alpha-n+2}{2}\right), M_{\alpha}^{H}(x)$ and $N_{\alpha}^{H}(x)$ are, precisely, the hyperbolic Kernel of Marcel Riesz.

Lemma 2.1. Given the equations

$$
\begin{equation*}
\square_{c_{1}}^{k} u(x)=\delta, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\square_{c_{2}}^{k} u(x)=\delta, \tag{2.8}
\end{equation*}
$$

where $\square_{c_{1}}^{k}$ and $\square_{c_{2}}^{k}$ are defined by (1.2) and (1.3) respectively, $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$ and δ is the Dirac-delta distribution. Then $u(x)=S_{2 k}^{H}(x)$ and $u(x)=T_{2 k}^{H}(x)$ are the elementary solution of (2.7) and (2.8) respectively, where $S_{2 k}^{H}(x)$ and $T_{2 k}^{H}(x)$ are defined by (2.3) and (2.4) respectively, with $\alpha=2 k$.

Proof. See [2, p. 11].
Lemma 2.2. (The convolution $\left.S_{\alpha}^{H}(x) * T_{\alpha}^{H}(x)\right)$.
The function $S_{\alpha}^{H}(x)$ and $T_{\alpha}^{H}(x)$ are tempered distributions. The convolution $S_{\alpha}^{H}(x) * T_{\alpha}^{H}(x)$ exists and also a tempered distribution.

Proof. See [4].

3. Main Results

Theorem. Given the equation

$$
\begin{equation*}
\square_{c_{1}}^{k} \square_{c_{2}}^{k} u(x)=\delta, \tag{3.1}
\end{equation*}
$$

where $\square_{c_{1}}^{k}$ and $\square_{c_{2}}^{k}$ are defined by (1.2) and (1.3) respectively, δ is the Dirac-delta distribution, $x=\left(x_{1}, x_{2}, \ldots x_{n}\right) \in R^{n}$. Then

$$
\begin{equation*}
u(x)=S_{2 k}^{H}(x) * R_{2 k}^{H}(x) \tag{3.2}
\end{equation*}
$$

is an elementary solution of (3.1), where $S_{2 k}^{H}(x)$ and $R_{2 k}^{H}(x)$ are defined by (2.1) and (2.3) respectively, with $\alpha=2 k$. Moreover, in particular if $p=1$ with $x_{1}=t$, and $c_{1} \neq c_{2}$ then (3.2) becomes $u(x)=M_{2 k}^{H}(x) * N_{2 k}^{H}(x)$ is an elementary solution of Elastic Wave equation

$$
\left(\frac{1}{c_{1}^{2}} \frac{\partial^{2}}{\partial t^{2}}-\sum_{i=2}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}\right)^{k}\left(\frac{1}{c_{2}^{2}} \frac{\partial^{2}}{\partial t^{2}}-\sum_{i=2}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}\right)^{k} u(x)=\delta,
$$

where $M_{2 k}^{H}(x)$ and $N_{2 k}^{H}(x)$ are defined by (2.5) and (2.6) respectively. If elastic equilibrium $\left(\frac{\partial u}{\partial t}=0\right)$ then (3.1) becomes $\triangle^{2 k} u(x)=\delta$, where $\triangle^{2 k}$ is defined by (1.6) and we obtain $u(x)=R_{4 k}^{e}(x)$, where $x=\left(x_{2}, x_{3}, \ldots, x_{q}\right) \in R^{q-1}$ is an elementary solution of such equation and $R_{\alpha}^{e}(x)$ defined by

$$
\begin{equation*}
R_{\alpha}^{e}(x)=\frac{|x|^{\alpha-n}}{W_{n}(\alpha)} \tag{3.3}
\end{equation*}
$$

where $|x|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}, W_{n}(\alpha)=\frac{\pi^{n / 2} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{n-\alpha}{2}\right)}, \alpha$ is a complex parameter.
Proof. Convolving both sides of (3.1) by $S_{2 k}^{H}(x)$ we obtain

$$
\begin{gathered}
S_{2 k}^{H}(x) * \square_{c_{1}}^{k} \square_{c_{2}}^{k} u(x)=S_{2 k}^{H}(x) * \delta=S_{2 k}^{H}(x), \\
\square_{c_{1}}^{k} S_{2 k}^{H}(x) * \square_{c_{2}}^{k} u(x)=\delta * \square_{c_{2}}^{k} u(x)=S_{2 k}^{H}(x),
\end{gathered}
$$

or $\square_{c_{2}}^{k} u(x)=S_{2 k}^{H}(x)$ by Lemma 2.1. Convolving both sides of the equation again by $T_{2 k}^{H}(x)$ and Lemma 2.1 we obtain $u(x)=T_{2 k}^{H}(x) * S_{2 k}^{H}(x)$. Since $T_{2 k}^{H}(x) * S_{2 k}^{H}(x)=S_{2 k}^{H}(x) * T_{2 k}^{H}(x)$ exists by Lemma 2.2.

Thus $u(x)=S_{2 k}^{H}(x) * T_{2 k}^{H}(x)$ is an elementary solution of (3.1). In particular, if $p=1$ with $x_{1}=t$ and $c_{1} \neq c_{2}$ the function $S_{\alpha}^{H}(x)$ reduces to $M_{\alpha}^{H}(x)$ defined by (2.5) and $T_{\alpha}^{H}(x)$ reduces to $N_{\alpha}^{H}(x)$ defined by (2.6). Thus the equation (3.2) becomes $u(x)=M_{2 k}^{H}(x) * N_{2 k}^{H}(x)$ as the elementary solution of the Elastic Wave. Moreover if elastic equilibrium $\left(\frac{\partial u}{\partial t}=0\right)$ we obtain $u(x)=R_{4 k}^{e}(x)$ is an elementary solution of the Laplace equation $\triangle^{2 k} u(x)=\delta$, see [1, p. 31, Lemma 2.4], where $R_{4 k}^{e}(x)$ is defined by (3.3) and $\triangle^{2 k}$ is defined by (1.6).

References

[1] Kananthai A. On the solutions of the n-dimentional Diamond operator. Appl. Math. and Comput. Elsevier Science Inc. New-York, 88, 1997.
[2] Trione S. E. On Marcel Riesz's ultra-hyperbolic Kernel. Trabajos de Matematica, 116, 1987, preprint.
[3] Nozaki Y. On Riemann-Liouville integral of ultra-hyperbolic type. Kodai Math. Seminar Reports, 6, No. 2, 1964, 69-87.
[4] Aguirre Tellez M., Trione S. E. The distributional convolution products of Marcel Riesz's ultra-hyperbolic Kernel. Revista de la Union Matematica Argentina, 39, 1995.

[^0]: (c) A. Kananthai, 1999.

