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St. Mählmann

Aerodynamisches Institut Aachen

Rheinisch-Westfälische Technische Hochschule Aachen, Germany

e-mail: stefan@aia.rwth-aachen.de

Локализация перехода ламинарного режима в турбулентный в сверхзвуковых по-
граничных слоях необходима для точного расчета аэродинамических сил и тепловых
режимов при аэродинамическом проектировании гиперзвуковых летательных аппа-
ратов и при управлении ими. Характеристики устойчивости сверхзвуковых погранич-
ных слоев зависят, например, от параметров затупления носовой части, поперечной
кривизны, температуры стенок, ударных волн и т. д. Эти параметры могут быть те-
оретически исследованы с помощью численного моделирования условной устойчиво-
сти с заданием на удаленной границе либо нулевых краевых условий, либо условий,
описывающих асимптотические возмущения. В этом подходе формирование ударной
волны перед передним фронтом затупленного тела игнорируется. Тем не менее для
улучшения понимания взаимодействия между волнами неустойчивости, возникаю-
щими внутри сверхзвукового пограничного слоя, с волнами, идущими от невязкого
энтропийного слоя, наличие этой ударной волны должно приниматься во внимание. В
работе представлен метод моделирования устойчивости с физически согласованным
включением разрывов. Внешние условия на свободный поток заменяются соответ-
ствующими условиями на разрыве. Необходимые уравнения возмущений могут быть
выведены из из линеаризованных нестационарных уравнений Рэнкина — Гюгонио с
учетом эффекта ударных осцилляций, образующихся вследствие волн возмущения,
которые возникают из поля течения с наветренной стороны разрыва.

Introduction

The physical understanding of the stability properties of supersonic boundary layers is based
mainly on results obtained with the linear stability theory. In most stability computations of
supersonic boundary layers the presence of a shock-wave is ignored and vanishing perturbation
conditions are imposed at the far field or the asymptotic form outside the boundary layer. This
approach simplifies the upper boundary conditions and allows one to focus on the flow stability
due to the viscous boundary layer. However, for supersonic flows over bodies with blunt leading
edges, where the inviscid entropy layer between the boundary layer and the shock wave has a
significant impact on the global stability behaviour of the flow [1], the free-stream conditions
should be replaced by appropriate shock conditions.
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In stability analysis of supersonic flows the interaction between the shock-wave and instability
waves originating inside the boundary-layer and free-stream disturbances has to be taken into
account [2]. Furthermore, it is well known that any kind of modes, for instance, acoustic,
vorticity or entropy modes, which can generally be found in any real supersonic free stream,
produces all three modes when passing the shock wave [3]. One of the first attempts to
understand the effect of a shock wave on the boundary-layer stability was Petrov’s work [4]. In
his study the inviscid eigensolution outside the boundary layer was replaced by the linearized
Rankine — Hugoniot jump conditions for the normal momentum equation. By coupling this
boundary conditions with asymptotic conditions associated with the viscous eigensolutions in
the free stream, he obtained solutions for a two-dimensional flow over a wegde in the hypersonic
limit.

We are interested in the investigation of shock effects on the stability of the windward
supersonic flow field over blunt flat plates. A set of perturbation equations is derived from
the unsteady Rankine — Hugoniot conditions by accounting for the effect of shock velocity
due to perturbated waves which originate behind the shock. These perturbation equations are
then applied as outer boundary conditions for the quasi-parallel linearized interior stability
equations [2].

1. Formulation

1.1. Equations

The compressible flow over a blunt flat plate confined between two boundaries located at the
wall (y∗ = 0) and the shock shape (y∗ = L∗) is analysied for linear stability. In a system of
cartesian coordinates the streamwise, wall-normal and spanwise directions are represented by
x∗, y∗ and z∗, where the superscript ∗ denotes dimensional quantities. A perfect Newtonian gas
is assumed. The three dimensional Navier — Stokes equations are

ρ∗

[

∂q∗

∂t∗
+ q∇q∗

]

= −∇p∗ + ∇[λ∗(∇q∗)I + µ∗(∇q∗ + ∇q∗tr), (1)

∂ρ∗

∂t∗
+ ∇(ρ∗q∗) = 0, (2)

ρ∗cp
∗

[

∂T ∗

∂t∗
+ q∗∇T ∗

]

= ∇(k∗∇T ∗) +
∂p∗

∂t∗
+ q∗∇q∗ + Φ∗, (3)

p∗ = ρ∗R∗T ∗, (4)

where u∗ is the velocity vector [u, v, w]tr, ρ∗ is the density, p∗ is the pressure, T ∗ is the
temperature, R∗ is the gas constant, cp

∗ is the specific heat at constant pressure, k∗ the thermal
conductivity, µ∗ the first coefficient of viscosity, and λ∗ is the second coefficent of viscosity.
The viscous dissipation function Φ∗ is given as

Φ∗ = λ∗(∇u∗)2 +
µ∗

2
[∇u∗ + ∇utr]2. (5)

The flow variables and equations are nondimensionalized by the corresponding values on the
boundary-layer edge: velocities by u∗

e, length scales by l∗b =
√

ν∗

es
∗/u∗

e, where s∗ is streamwise
coordinate in the body-oriented coordinate system with is origin in the stagnation point, the
density by ρ∗

e, temperature by T ∗

e , pressure by ρ∗

eu
∗

e
2, and the time scale by l∗b/u

∗

e. The Reynolds
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number Relb is defined as

Relb =
ρe

∗ue
∗lb

∗

µe
∗

, (6)

and the Mach number Mae is

Mae =
ue

∗

√

γR∗T ∗

e

, (7)

where R∗ = c∗p − c∗v, c∗v is the specific heat at contant volume, and γ is the ratio of specific
heats. The Prandtl number is defined as Pr = µ∗c∗p/k

∗. The viscosity coefficient is determined
by Sutherland’s law,

µ = T 1.5

(

1 + C

T + C

)

, (8)

where C is a constant. In this paper we set C = 0.375, λ = −2/3µ, γ = 1.4, and Pr = 0.715.

1.2. Basic-flow solution

The full Navier — Stokes equations for a two-dimensional, compressible flow are solved using
the Advection Upstream Splitting Method (AUSMDV) of Wada and Liou [5] with a modified
Limiter of Van Albada [6]. A second order accurray in space is obtained with the MUSCL
interpolation of Van Leer [7]. Earlier studies [8] have shown that the solutions for the basic
flow are sufficiently accurate to allow reliable instability analysis.

1.3. Linear stability equations

The stability investigation of the laminar basic flow is based on the a normal mode analyis
of the linearized perturbationd equations of the three-dimensional Navier — Stokes equations.
The governing stability equations are derived be representing as the sum of a mean and a
fluctuation quantity, i. e.

u = Ū(y) + u′(x, y, z, t),

v = V̄ (y) + v′(x, y, z, t),

w = w′(x, y, z, t),

T = T̄ + T ′(x, y, z, t),

p = p̄ + p′(x, y, z, t). (9)

Substituting Eq. (9) into the nondimensional form of the governing Eqs. (1) – (5), and dropping
the nonlinear and high-order terms yields to a set of linear differential equations for the
perturbations equations. Further details of the linear perturbation equations and other formulations
are described in Malik [9]. In the normal mode analysis for linear disturbance scenarios, the
fluctuations of the flow quantities are assumed as harmonic waves of the following form:

[u′, v′, w′, T ′, p′]tr = [û(y), v̂(y), ŵ(y), T̂ (y), p̂(y)]trei(αx+βz−ωt), (10)

where α and β are the streamwise and spanwise wavenumbers and ω denotes the frequency of
the disturbance wave. Substituting Eq. (10) into the linearized perturbation equations leads
(to a system of ordinary differential equations:

(AD2 + BD + C)Φ = 0, (11)
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where D is the differential operator in the wall-normal direction, i. e. D = d/dy,D2 = d2/dy2.
In Eq. (11), Φ is a vector defined as

Φ = [û(y), v̂(y), ŵ(y), T̂ (y), p̂(y)]tr. (12)

A complete listing of the 5 × 5 matrices A,B and C can be found in [9].

1.4. Boundary conditions for linear stability analysis

The governing stability equations (11) are solved as a boundary value problem. Therefore
appropriate boundary condition have to be formulated. At the body surface no-slip conditions
are imposed

y∗ = 0 : Φ1 = 0, Φ2 = 0, Φ3 = 0, Φ4 = 0. (13)

Here temperature fluctuations are assumed to vanish at the solid wall boundary. This is a
reasonable approach for high frequency disturbances where the temperature fluctuactions will
not penetrate deep into the solid boundary due to the thermal inertia of the wall. Therefore
the wall will appear insulated on the time scale of the mean flow but not on the short time
scales of the disturbances. Additionally, Neumann conditions for the pressure eigenfunction are
enforced as

∂p̂

∂y

∣

∣

∣

∣

y∗=0

= a,
∂p̂

∂y

∣

∣

∣

∣

y∗=L∗

= b, (14)

where a and b are evaluated at the two boundaries using the normal momentum equation.
At the bow shock location y∗ = L∗, shock conditions must hold. To understand the

interaction between an oscillating shock wave and instability modes, which originate from
the flow field behind the shock, the unsteady motion of the shock wave has to be taken into
account. Under the assumption of an inviscid shock nature this unsteady motion can be fully
described by the Euler equations. For a given shock position y0 = f(x, z, t) with the time
averaged shock position ȳ0 = f̄0 and a local shock slope a = df̄/dx the jump conditions arcoss
the shock are

∂f

∂t
[Q] +

∂f

∂x
[E] − [F] +

∂f

∂z
[G] = 0. (15)

The vectors Q, E, F and G are defined as

Q = [ρ, ρu, ρv, ρw, e]tr,

E = [ρu, ρu2, ρuv, ρuw, (e + p]u)tr,

F = [ρv, ρuv, ρv2, ρvw, (e + p]v)tr,

G = [ρw, ρuw, ρvw, ρw2, (e + p)w]tr, (16)

where the total energy e is given by the relation

e =
p

γ − 1
+

1

2
ρ(u2 + v2). (17)

We note that Eq. (15) represents the unsteady Rankine — Hugoniot relation which governs the
motion of a shock wave. For the blunt flat plate we consider the mean flow as “quasi-parallel”.
Under the assumption of small disturbance amplitudes the time dependent position function of
the shock can now be perturbated according to f = f̄ +f ′. Although only perturbations behind
the shock are considered in our study, Eq. (15) is in general valid for any small disturbancies
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across the shock. After introducing harmonic waves into equation (15) we finally get the
relations of eigenfunctions for normal mode analysis

i(α[Ē] + β[Ḡ] − ω[Q̄]) + α[Ẽ] − [F̃] = 0, (18)

with the vectors Ẽ and F̃

Ẽ =













ρ2ũ + ρ̃u2

ρ̃u2
2 + 2ρ2u2ũ + p̃

ρ̃u2v2 + ρ2ũv2 + ρ2u2ũ
ρ̃u2w2 + ρ2u2w2 + ρ2u2w̃
(e2 + p2)ũ + u2(ẽ + p̃)













, F̃ =













ρ2ṽ + ρ̃v2

ρ̃u2v2 + ρ2ũv2 + ρ2u2ṽ
ρ̃v2

2 + 2ρ2ũv2 + p̃
ρ̃v2w2 + ρ2v2w2 + ρ2v2w̃
(e2 + p2)ṽ + v2(ẽ + p̃)













, (19)

where the quantity ẽ can be derived from

ẽ =
p̃

γ − 1
+

u2
2 + v2

2

2
ρ̃ + ρ2(u2ũ + v2ṽ). (20)

2. Numerical methods and validation

For a given set of real-value α and β, the temporal stability analysis leads to ω and Φ as
eigenvalues and eigenfunctions of the boundary value problem. Various numerical methods
for solving the eigenvalue problem were discussed and tested by Malik [9]. The eigenvalue
problem can by solved by either global of local methods. In this paper the eigen spectra
of the discretized eigenvalue problem is computed with a global method determines yieds
all eigenvalues together the associated eigenvectors, taking into bargain the computational
more expensive effort compared to the local methods. To approximate the derivatives of the
eigenfunctions in the wall-normal direction, we use a Chebychev spectral collocation method.
The numerical procedure will be descibed in the this section

2.1. Chebychev spectral collocation method

The N -th order Chebychev polynominals TN are defined on the interval ξj ∈ [−1, 1], where ξj

denotes the Gauss — Lobatto collocation points

ξj = cos

(

πj

N

)

, j = 0, 1, ..., N. (21)

In order to apply the spectral collocation method, an interpolation polynominal is constructed
for the dependent variables in terms of their values at the collocations points. A N -order
polynominal is

Φ(ξ) =
N

∑

k=0

λk(ξ)Φ(ξk), (22)

where the interpolants λk(ξ) for the Chebychev scheme is

λk(ξ) = (−1)(k+1)

(

1 − ξ2
k

ξ − ξk

)

T ′

N(ξ)

N2ck

(23)
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where c0 = cN = 2, and ck = 1 for 0 < k < N . From Eq. (22) the first derivative of Φ(ξ) can
be written as

dΦ

dξ

∣

∣

∣

∣

j

=
N

∑

k=0

EjkΦk, (24)

where Eij are the elements of the derivatives matrix defined as:

Eij =
cj

ck

(−1)k+j

ξj − ξk

, for j 6= k, (25)

Ejj = −
ξj

2(1 − ξ2
j )

,

E00 = −ENN =
2N2 + 1

6
.

With the scaling factor

Sj =
∂ξ

∂y j

, j = 0, 1, ..., N, (26)

the first derivative matrix F in the physical domain may be written as

Fij = SjEij, (27)

and the second derivative matrix Gij is

Gij = FjmFmk. (28)

Now the governing system of stability equations can be formulated at the collocation points as

Aj

N
∑

k=0

GjkΦk + Bj

N
∑

k=0

FjkΦk + CjΦj = 0. (29)

To cluster grid points near the wall, algebraic and exponential stretching functions may be
employed to transform the physical domain 0 ≤ y ≤ ymax to the computational domain −1 ≤

ξ ≤ 1. However, algebraic stretchings are more robust for spectral methods. We employ the
stretching

y = a
1 + ξ

b − ξ
, (30)

where a = yiymax/(ymax − 2yi) and b = 1 + 2a/ymax. Here yi is the location corresponding to
ξ = 0, i. e. half the grid points are clustered in the region 0 ≤ y ≤ yi, and ymax denotes the
upper boundary location.

The discretized formulation of the interior stability equations (29) together with the boundary
conditions (13), (14), (18) leads to a matrix eigenvalue problem, which is solved numerically
with the QZ matrix eigenvalue algorithm.

2.2. Validation of the stability solver

The stability code was validated first by comparing the eigenvalue solutions of a linear stability
analysis of a flat-plate compressible boundary-layer with zero pressure gradient with those of
Malik [9] and Hu and Zhong [10]. For this test the flow condition are: Mae = 2.5, Relb = 3000,
T0 = 333.3K, and Tw/Tadb = 1. The three methods tested by Malik are a fourth-order compact
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finite-difference (4CD) scheme, a single domain spectral collocation (SDSP) method and a
multi-domain spectral collocation (MDSP) method. He applied a global method to compute all
eigenvalues and purified them with a local iteration precedure. Hu and Zhong used a spectral
collocation (SC) global method. Tab. 1 shows that our results agree very well this those of the
other authors.

T a b l e 1

Comparison of the eigenvalue solution of complex frequency ω
for the linear stability of a compressible boundary-layer over a flat

plate with zero pressure gradient at Mae = 2.5, Relb = 3000,
T0 = 333.3K, Tw/Tadb = 1.0, α = 0.06, β = 0.1

Methods Grids ω

4CD (Malik [9]) 61 (0.0367321, 0.005847)
SDSP (Malik [9]) 61 (0.0367339, 0.005840)
MDSP (Malik [9]) 61 (0.0367340, 0.005840)
SC (Hu, Zhong [10]) 100 (0.0367337, 0.005845)
4CD (Hu, Zhong [10]) 100 (0.0367338, 0.005840)
SC (Pres. Calculation) 90 (0.0367336, 0.005842)

The second test case concerns the compressible stability equations in the limit of Mach
number approaching 0 to simulate the Orr — Sommerfeld results. Calculations were actually
done for Mae = 10−6 and Relb = 580. Some of the computed eigenvalues are compared in
Tab. 2 with the results of Mack [11] using an Orr — Sommerfeld (OS) solver and Malik [9]’s
MDSP methods for the compressible stability equations, where the real and imaginary parts of
the computed phase velocity (c = ω/α) are presented. We note, that our results agree very well
with those computed by Mack [11] and Malik [9]. Also the second mode in Tab. 2, which is an
eigenvalue of the energy equation and therefore cannot be calculated with the Orr — Sommerfeld
solver, is well resolved.

T a b l e 2

Comparison of the first 5 modes (phase velocity c = ω/α)
of the compressible stability equations in the incompressible

limit (Mae = 10−6) with the Orr — Sommerfeld modes computed
by Mack [11] and Malik at Relb = 580, α = 0.179, β = 0

Pres. Calculation Malik [9] (MDSP) Mack [11] (OS)

(0.3641, 0.0079) (0.3641, 0.0079) (0.3641, 0.0080)
(0.2329, −0.1344) (0.2329, −0.1343) —
(0.2897, −0.2769) (0.2897, −0.2768) (0.2897, −0.2769)
(0.4840, −0.1921) (0.4839, −0.1921) (0.4839, −0.1921)
(0.5573, −0.3654) (0.5571, −0.3655) (0.5572, −0.3653)

Furthermore, results of a stability investigation of the supersonic flow field over a blunt flat
plate with a nose radius of R∗

n = 2.5 mm at a free-stream Mach number Ma∞ = 2.5, a Reynolds
number per unit length Re∞/l∗ = 9.9·106/m and angle of attack α = 70 are compared with those
obtained from the spatial theory using the NOLOT (NOnLOcal Transition analysis) stability
solver [12] of the DLR1. We remark that the NOLOT code is based on a local eigenvalue iteration
procedure. The lower computational effort of this method allows one to cluster more points in
critial layers than for the global method. Asymptotic vanishing disturbance amplitudes are
assumed at the upper boundary. As the spatial theory yields complex wavenumbers for a given

1Institut für Strömungsmechanik, Deutsches Zentrum für Luft- und Raumfahrt e. V. Germany
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real frequency and the temporal theory a complex frequency for given real-value wavenumbers,
the frequencies, determined from both theories, can be compared. The reduced frequencies
wred = 2πlb/(Relbue)×105 are shown in Tab. 3 for the first boundary-layer instability (BL) mode
and an instability mode of the inviscid entropy-layer (ES). The slight differences in the reduced
frequencies can be explained by the limited resolution of the temporal scheme especially outside
the boundary-layer. A subsequent local iteration combined with a multi-domain decomposition
might improve the accuracy of the global results.

T a b l e 3

Comparison of temporal/spatial solutions of the reduced frequency wred = 2πlb/(Relbue) × 105

for the supersonic flow field over a blunt body of R∗

n = 2.5 mm at Ma∞ = 2.5,
Re∞/l∗ = 9.9 · 106/m, α = 70

Relb (Re(α), Re(β)) ωred Temp. Theory ωred Spat. Theory [12] Type

547.7 (6.7529E−2, 7.4844E−2) 6.2009 6.2006 BL-Mode
593.8 (5.0882E−2, 0) 0.8843 0.8833 ES-Mode

2037.6 (3.3300E−2, 6.3100E−2) 0.6496 0.6483 BL-Mode
2112.5 (1.2092E−2, 0) 0.5440 0.5454 ES-Mode

3. Results

The linear stability of the supersonic flow field over a flat plate with a semicircle leading edge of
R∗

n = 2.5 mm is investigated at Ma∞ = 2.5, Re∞/l∗ = 9.9 ·106/m, α = 70. The shock conditions
Eq. (18) are imposed at the upper boundary to study the effect of the shock on the entropy-layer
and first boundary-layer instability modes for different positions x1 = s∗/R∗

n in streamwise
direction. The wall-normal coordinate in the following figures in non-dimensionalized with
characteristic boundary-layer length scale according to η = y∗/l∗b

√

(Relb).
For the entropy-layer mode, we pass the region of high flow gradients around the body

slope singularity and start at position x1 = 20.2. Here Fig. 1 shows clearly differences between
the eigenfunctions computed using the asymptotic approch and those with imposed shock
conditions. At the same streamwise position, Fig. 2 demonstrates, that the amplitude of the
pressure eigenfunction has a finite amplitude at the shock wave for the shock conditions
in contrast to the asymptotic condition. Further downstream, at position x1 = 101.2 the
eigenfunctions for both boundary conditions fall complety into each other, which is documented
in Fig. 3.

Furthermore, the shock has no effect on the boundary-layer instability mode at position
x1 = 2.95, as shown in Fig. 4. The eigenfunctions decay exponentially and therefore do not
notice the presence of the shock. Going downstream, the shock distance increases faster than
the critical layer shifts away from the wall, so we expect to find no shock influence on the
boundary-layer stability at higher streamwise positions.

4. Concluding remarks

The linearized shock conditions Eq. (18), derived from the unsteady Rankine — Hugoniot relations
yield to a more realistic mathematical modelling for stability analysis of supersonic flows over
blunt bodies including shock waves compared to the common asymptotic approach. However,
far downstream the nose region, the simplified conditions imposed at the upper boundary, are
a rational approximation due to the fact that disturbance waves from the flow field windward
of the shock vanish before they can interact with the shock wave.
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Fig. 1. Wall-normal distribution of the
eigenfunction û, T̂ and P̂ of the entropy-
layer instability mode at streamwise position
x1 = 20.2.

Fig. 2. Scope of the pressure eigenfunction of
the entropy-layer instability mode p̂ near the
shock wave position.

Fig. 3. Wall-normal distribution of the
eigenfunction û, T̂ and P̂ of the entropy-
layer instability mode at streamwise position
x1 = 101.2.

Fig. 4. Wall-normal distribution of the
eigenfunction û, T̂ and P̂ of the first
boundary-layer instability at streamwise
position x1 = 2.95.
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