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Работа посвящена построению и исследованию схем методов конечных объемов/
конечных элементов на симплициальных сетках для решения задач конвекции — диф-
фузии. Рассматривается проблема точного интегрирования интерполяционных поли-
номов, построения противопотоковых схем повышенного порядка точности на ком-
пактных шаблонах триангуляций. Предлагаемые технологии используются для моде-
лирования вязких течений несжимаемого газа.

Introduction

Finite volume methods on unstructured grids have become widespread tool for the solution
of computational fluid dynamics problems. They combine such attractive features of finite
element unstructured approaches as local grid refinement realization, adaptation techniques,
unstructured multigridding and advantages of classical finite volume difference method (FVDM)
[1, 2], namely discrete local conservation, simplicity of approximation and high accuracy of
one-dimensional upwind schemes. At the same time some points — development of high-order-
accurate genuinely multidimensional upwind schemes, asymmetric nature of the finite volume-
finite element approximations, existence of p-version of the finite volume element method —
are still open.

Unstructured technologies are rooted in the finite element context, with the advantages of
the method being, in particular, inherence of the symmetrical nature of the self-adjoint part of
differential operators in their discrete analogues and the possibility of increment of interpolation
polynomial degree (p-version of the finite element method [3]). At present, technologies of the
finite element methods on simplicial grids are well-settled and include interpolation procedures
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and technologies of the inner product approximation with the use of piecewise-polynomial
representation of the solution and coefficients of differential equations. Special classes of integra-
tion formulas for the exact integration of barycentric coordinates monomials obtained by
Eisenberg and Malvern [4] are used as the basis of the finite element approximations.

Attempts at systematization of FVDM approximation techniques and extension of the
method to irregular geometries lead to partial combination of the finite element method techno-
logies and discretization principles of the finite volume method. The first class of methods
combining ideas from both the finite element and finite volume techniques has been proposed
by B. R. Baliga, S. Ramadhyani, C. Prakash and S. V. Patankar in the mid-1970s for the solution
of convection-diffusion problems and referred to as control-volume-based finite element methods
(CVFEMs) [1, 5]. The control-volume-based finite element methods inherit such principles of
the finite element method as specification of element based interpolation polynomials for the
solution, source terms and coefficients of the boundary value problems and element-by-element
assembly of discrete analogue matrices and vectors.

Both the finite volume element and the control-volume-based finite element method use the
family of conforming spaces of piecewise-linear functions over triangles and belong to the class
of the cell-vertex finite volume approximations. We shall refer to these classes of discretization
techniques as the finite volume-finite elements methods (FVFEMs).

At present the finite volume-finite element methods have no unified technologies of exact
integration of element-based interpolation polynomials and their combinations for the following
particular reasons. Unlike the finite element method, finite volume-finite element approximati-
ons are restricted by the discrete spaces of low degrees: with the use of several types of dual
meshes corresponding to interpolation polynomials of high and low degrees, some desirable local
conservation properties are violated [5]. The finite volume methods are diverse as characterized
by variety of possibilities for defining the weighting functions that are related to both the
arrangement of computational points (cell-centered, edge-based, cell-vertex arrangements) and
construction of the control volumes (with the use of circumcenter, ortocenter, incenters, or
barycenters).

The only paper concerned with the problem is the work of Y. Liu and M. Vinokur [6]. It is
important to note that the approach presented uses the exact integration of basis functions to
obtain high-order accurate FV schemes; formulas for the exact integration of generic monomials
in Cartesian coordinated are used as the base of the approximation. The present paper deve-
lops alternative technologies of the exact integration of polynomials in the finite volume-finite
element discretization processes on unstructured simplicial grids, we restrict the consideration
to the barycentric control volumes.

The second problem we are interested in is the development of high-order accurate upwind
schemes in the cell-vertex framework on the compact triangulation stencils. In fact, the compari-
son of various finite volume and the finite element methods for the convection-dominated
boundary value problems comes to the comparison of corresponding upwind schemes.

Finite volume methods due to their ability of sharp capturing shocks and boundary layers
are used mainly for the numerical solution of hyperbolic conservation laws. The unstructured
finite volume formulations of Jameson and Mavriplis use some form of artificial dissipation
[7]. Currently finite volume upwind schemes are dominated by cell-centered schemes based on
the solution of local Riemann problem for each cell face [8, 9], the disadvantages being one-
dimensional nature and high numerical viscosity of solvers [10]. It should be noted that for the
construction of second-order accurate FV schemes both in the upwind biasing and artificial
diffusion frameworks essential widening of the stencil support is necessary [7, 8].
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Upwind residual distribution schemes proposed by P. L. Roe [11] following the concept of
fluctuation also combines principles of both the finite element and finite volume methods.
Unlike Riemann-solver-based upwind schemes the residual distribution schemes adequately
capture the multidimensional flow structure and allow to obtain second-order approximations
on the compact stencils corresponding to conforming linear finite element spaces. These schemes
have been validated in both compressible and incompressible cases [10].

Applications of the finite volume schemes to the incompressible flow modeling are relatively
rare [5, 12, 13] and corresponding upwind schemes are currently not well-developed and systema-
tized. Some of the (cell-vertex) upwind finite volume formulations actually come to the use
of one upstream nodal value of the solution for the approximation of local convection fluxes.
Early control volume based finite element formulations (CVFEMs) were based on flow-oriented
upwind schemes [5] that successfully reduced the false diffusion but suffered from appearance
of negative coefficients in the discrete analogue matrices. Development of unconditionally
monotonic mass-weighted upwind schemes in the unstructured CVFEM framework is relatively
recent and is an extension of the skewed mass-weighted upwind schemes of Schneider and Raw
[13] to the simplicial grids.

Development of high-order accurate finite volume upwind schemes using the same compact
stencils as RDS does is of high interest. In the present paper a new principle of weighting the
local mass fluxes with the use of some asymmetric profile for development of upwind schemes
is proposed.

1. FVFEM discretization of convection-diffusion-reaction

equations

1.1. The model problem

Let us consider the following convection-diffusion boundary value problem

∂ (ρφ)

∂t
+ ∇ (ρuφ − λφ∇φ) + γφ = Sφ in ΩT , (1)

φ (·, 0) = φ0 (·) in Ω, (2)

φ = gD on ΓD × (0, T ) , (3)

λφ∇φn = gN on ΓN × (0, T ) , (4)

where Ω is a bounded domain in the plane, with the boundary Γ = ΓD ∪ ΓN , ΩT = Ω × (0, T )
is the space time cylinder, ρ is the fluid density, u is the velocity vector, λφ is the diffusion
coefficient, Sφ is the volumetric source of φ; gD, gN are given real-valued functions.

1.2. Domain discretization

Let Th be a triangulation of Ω: ∪en∈Th
ēn = Ω̄, such as the intersection of two distinct triangles

is either empty or consists of one common vertex or edge. Assume that computational points
and finite element vertexes coincide (“the cell-vertex” arrangement). In this paper we restrict
ourselves to dual meshes constructed on centroids of triangles and mid-points of the edges (the
Donald meshes), such that each node has the corresponding complete or “incomplete” finite
volume bounded by median segments (Fig. 1, b).
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Fig. 1. Fragment of primary (FE) and secondary (FV) grids (a); notation for the dual mesh segments
and finite element subregions (b), outward unit normals (c).

Let Si denote the boundary of Ωi. Assume that all elements and nodes are ordered and a
local numbering of nodes is fixed. Let us assume fixed global and local numbering on the set
of triangulation nodes and on each finite element.

1.3. Integral conservation form

The integral conservation form of equation (1) is

∫

Ωi

∂ (ρφ)

∂t
dΩ +

∫

Si

(ρuφ − λφ∇φ)ndS +

∫

Ωi

γφdΩ =

∫

Ωi

SφdΩ

or
∫

Ωi

∂ (ρφ)

∂t
dΩ +

∫

Si

J · ndS +

∫

Ωi

γφdΩ =

∫

Ωi

SφdΩ (5)

where J = Jc + Jd is the combined convection-diffusion flux of φ,

Jc = ρuφ, Jd = −λφ∇φ,

n is the outward unit normal to Si.
Consider a finite element en. Let Sn

nb denote a segment of the dual mesh lying on a median,
which emanates from the triangle node nb, and Jν nb, ν, nb = 1, 2, 3 is a value of the combined
convection-diffusion flux through the median segment Sn

nb in the direction of the outward normal
nν nb to the boundary of the finite volume Ων (Fig. 1, b, c):

Jν nb =

∫

Sn

nb

Jd
ν nb + Jc

ν nbnνnbdS.

It will be sufficient to approximate three of the six introduced fluxes for the element of interest,
because of the conservativity property, J21 = −J31, J13 = −J23, J32 = −J12. We shall refer to
the fluxes J21, J13, J32 as the determining fluxes of the element of interest.
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1.4. Technology of the finite volume-finite element approximations

1.4.1. Stiffness matrix

Let us demonstrate features of the proposed technology on a problem of approximation of the
diffusion flux with variable λφ.

Using Green’s formula, the diffusion flux through a median segment Sn
nb can be represented

as follows

Jd
ν nb = −

∫

Sn

nb

λφ
∂φ

∂x
dy − λφ

∂φ

∂y
dx. (6)

Consider the usual finite element space of continuous piecewise polynomial functions

Sh =
{

v ∈ C0(Ω̄) : v|en
∈ P1 ∀en ∈ T h

}

, (7)

where P1 is the space of polynomials in two variables of first degree. The basis {ψi(x)}N
i=1

of
the discrete space Sh consists of continuous piecewise linear functions ψi(x) over triangulation
T h, being equal to unity at the vertex xi and 0 elsewhere: ψi(xj) = δij, i, j = 1, ..., N .

While approximating diffusion fluxes we shall assume that FVFEM solution φh belongs to
the finite element space Sh

E, that is

Sh
E =

{

v ∈ C0(Ω̄) : v|ΓD = gD
}

;

let us use the same discrete space (7) for the local presentation of the diffusion coefficient.
Thus, the solution and interpolation function for the transfer coefficient λI

φ ∈ Sh can be locally
represented as follows:

φh(x) =
3

∑

i=1

φ̂mψ̂m(x) = aφ + bφx + cφy, λI
φ(x) =

3
∑

i=1

λ̂mψ̂m(x), x ∈ en,

where ψi(x) are local linear basis functions, λ̂m are the local nodal values of λφ, m = 1, 2, 3,

and coefficients aφ, bφ, cφ can be expressed in terms of the local discrete unknowns φ̂1, φ̂2, φ̂3

via the inverse of the Vandermonde matrix containing coordinates of the triangular nodes:





aφ

bφ

cφ



 =





1 x1 y1

1 x2 y2

1 x3 y3





−1 



φ1

φ2

φ3



 = Kφ̂.

Thus, approximation of the diffusion flux (6) becomes

Jd
ν nb = −











3
∑

i=1

λ̂m

∫

Sn

nb

ψ̂mdy











3
∑

i=1

k2lφ̂l +











3
∑

i=1

λ̂m

∫

Sn

nb

ψ̂mdx











3
∑

i=1

k3lφ̂l. (8)

It is clear from (8) that it is necessary to introduce special formulas for integration of the
local basis functions along the median segments to complete discretization of the diffusion flux.
Note that in the case of continuous triangular based linear interpolation, local basis functions
coincide with simplex barycentric coordinates Li, ψi(x) = Li, i = 1, 2, 3.

For every local basis function consider a pair of trapezoids and a triangle, which are
constructed using finite element median segments and their images on the surface of the basis
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Fig. 2.

function (Fig. 2). Projection of the trapezoids and the triangle onto the coordinate planes
gives the following formulas for the exact integration of barycentric coordinates over median
segments:

∫

Sn

nb

Lνdx =











1

6
lνx, ν = nb,

5

12
lνx, ν 6= nb;

∫

Sn

nb

Lνdy =











1

6
lνy, ν = nb,

5

12
lνy, ν 6= nb.

(9)

Here lνx and lνy are the lengths of the projections of the median segment Sn
ν onto the x- and y-

axis, respectively, with the signs corresponding to the anticlockwise integration; ν, nb ∈ {1, 2, 3}.
Taking into consideration formula (9), we will have for three determining diffusion fluxes of
the element:

JD
31 = −l1y

{

1

6
λ̂1 +

5

12
λ̂2 +

5

12
λ̂3

} 3
∑

i=1

k2lφ̂l + l1x

{

1

6
λ̂1 +

5

12
λ̂2 +

5

12
λ̂3

} 3
∑

i=1

k3lφ̂l,

JD
12 = −l2y

{

5

12
λ̂1 +

1

6
λ̂2 +

5

12
λ̂3

} 3
∑

i=1

k2lφ̂l + l2x

{

5

12
λ̂1 +

1

6
λ̂2 +

5

12
λ̂3

} 3
∑

i=1

k3lφ̂l,

JD
23 = −l3y

{

5

12
λ̂1 +

5

12
λ̂2 +

1

6
λ̂3

} 3
∑

i=1

k2lφ̂l + l3x

{

5

12
λ̂1 +

5

12
λ̂2 +

1

6
λ̂3

} 3
∑

i=1

k3lφ̂l. (10)

Finally, to determine coefficients in the first, second and third row of the local diffusion
matrix of the element of interest, the combinations J c

12 − J c
23, J c

23 − J c
31 and J c

31 − J c
12 are

considered in terms of conservation unknowns. Coefficients at φ̂1, φ̂2, φ̂3 in the combinations
give three elements in the current row dn

i , i = 1, 2, 3 of the local diffusion matrix Âd
n:

Âd
n =





dn
1

dn
2

dn
3



 .

1.4.2. Source terms

The volumetric source Sφ contribution to the ith component of RHS global vector can be
represented as

∑

n

∫

Ωi∩en

SφdΩ, gathering the contributions from all triangles that share the
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vertex i. Let us consider the case of continuous piecewise-linear interpolation of volumetric
source function, therefore, at each simplex en ∈ Th we have:

SI
φ(x) =

3
∑

m=1

Sφm
ψ̂m(x), x ∈ en,

where Sφm
are values of the source function at three vertexes of the element en,m = 1, 2, 3. Let

Ω̃n
nb denote an intersection of the finite element en of interest and the finite volume of the node

with local number nb, nb = 1, 2, 3. Let us introduce the formulas for the exact integration of
the local form functions over barycentric subregions Ω̃n

nb (Fig. 1, b):

∫

Ω̃n

nb

LνdΩ =











11

54
meas en, ν = nb,

7

108
meas en, ν 6= nb.

(11)

Hence, the contribution of the element en to the global RHS vector can be represented by the
following three values:

∫

Ω̃n

1

SI
φdΩ =

(

11

54
Sφ1

+
7

108
Sφ2

+
7

108
Sφ3

)

meas en,

∫

Ω̃n

2

SI
φdΩ =

(

7

108
Sφ1

+
11

54
Sφ2

+
7

108
Sφ3

)

meas en,

∫

Ω̃n

3

SI
φdΩ =

(

7

108
Sφ1

+
7

108
Sφ2

+
11

54
Sφ3

)

meas en,

being the element s of the local RHS vector fS
n .

1.4.3. Mass matrix

It is possible to use formulas (11) of the exact integration of barycentric coordinates over
barycentric subdomains for the calculation of the mass matrix. Assume that the FVFEM
solution φh is a continuous piecewise linear function over the triangulation Th, φh ∈ Sh

E; let us
use an averaged value of γ at each simplex. The approximation becomes

∫

Ω̃n

nb

γφhdΩ ≈ γn

∫

Ω̃n

nb

3
∑

i=1

φ̂mψ̂m(x)dΩ, x ∈ en, nb = 1, 2, 3. (12)

Taking into consideration (11) we will have for the local mass matrix:

(

ÂR
n

)

ij
=











11

54
γn meas en, i = j,

7

108
γn meas en, i 6= j,

(13)

where γn is the averaged value of γ on the element en, i, j = 1, 2, 3.
Thus, the implicit time discretization scheme leads to the following local mass matrix:

(

ÂN
n

)

ij
=











11

54

ρi

4ts
meas en, i = j,

7

108

ρj

4ts
meas en, i 6= j

(14)
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(a non-lumped scheme); corresponding RHS vector contributions are calculated as ÂN
n φ̂s−1,

where ρi are local values of density, 4ts — a time step, φ̂s−1 — local vector of the conservative
variable from the previous time step. The lumped discretization of the non-steady terms will
be characterized by the following diagonal mass matrix

ÂL
n = diag

∥

∥

∥

(

ÂL
n

)

1·

,
(

ÂL
n

)

2·

,
(

ÂL
n

)

3·

∥

∥

∥ . (15)

1.5. Multidimensional upwind schemes on unstructured meshes

1.5.1. Concept of local weights matrices

In this section we will be interested in the development of high-order accurate upwind schemes
on the compact triangulation stencils corresponding to the conforming linear finite element
spaces [14, 15]. Let us introduce the notion of a cell-vertex upwind scheme internal with respect
to simplexes. An upwind scheme issaid to be internal with respect to simplexes if for the
approximation of three determining convection fluxes of an element only the local nodal values
of the scalar variable at the element are used. From the realization point of view this means
the possibility of the usage of the most simple grid data structures. Thus, we will be interested
in the construction of internal with respect to simplexes upwind schemes in the cell-vertex
FVFEM framework.

One of the determining convection fluxes at the element of interest will be approximated
as follows:

J c
νnb =

∫

Sn

nb

ρφu · nνnbdS ≈ φ̃nb

∫

Sn

nb

ρu · nνnbdS, (16)

where {ν nb} ∈ {{12}, {23}, {31}}. In fact, for every median segment Sn
nb we have to express a

value φ̃nb, that is the value of the scalar quantity used for the approximation of the determining
convection flux through the segment (Fig. 3) in terms of the local discrete unknowns as their
linear combination

φ̃nb =
3

∑

i=1

βi
nbφ̂i. (17)

Fig. 3. Notation used for the local conservative unknowns vectors, φ̂ and φ̃.

Upwind character. While approximating the convection flux through median segments of
the element of interest, let downstream nodal values of φh be used in the combination (17) with
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less weights βi
nb. Thus, some desirable upwind bias exists, resulting in some false diffusion level.

It should be noted that the above general upwind character principle is less categorical than one
usually introduced as an upwind character design principle for Residual Distribution Schemes
by Roe, Deconinck and co-authors [11]. Remind that the upwind character principle of RDS
prescribes for the distribibution coefficients of downstream nodes being equal to exactly zero.
Upon our experience, the schemes biasing the “information center” of the simplex of interest
but using all nodal values φ̂i for the approximation of convection fluxes have much less false
diffusion than schemes projecting the information center onto an upstream edge (or replacing
the center by an upstream node of the simplex) [12].

Let us introduce the concept of weights local matrix of an upwind scheme. B matrix is called
a weights local matrix of the upwind scheme on the element en if its first, second and third rows
contain the coefficients βi

nb corresponding to the median segments Sn
1 , Sn

2 , Sn
3 , respectively. For

example, the following weights local matrix

B =





1 0 0
1 0 0
1 0 0





prescribes for all determining convection fluxes of the element to be approximated with the use
of the upstream node with local number 1, while approximation scheme with the matrix

B =















1

3

1

3

1

3
1

3

1

3

1

3
1

3

1

3

1

3















will have the stability properties of the central scheme.
Therefore, development of an upwind scheme comes to the determination of matrix relations

of the following form
φ̃ = Bφ̂ (18)

at each simplex en ∈ Th, where φ̃ =
(

φ̃1 φ̃2 φ̃3

)T

is the local vector of the conservative

unknown values which are used for the approximation of the determining convection fluxes

through the median segments Sn
1 , Sn

2 , Sn
3 ; φ̂ =

(

φ̂1 φ̂2 φ̂3

)T

is the local vector of conservative

unknowns. Once the local weight matrices are determined at each simplex, the corresponding
upwind scheme is completely specified, not depending on the accuracy of the approximation of
the local mass fluxes in (16). We shall refer to this principle as to the design principle of separate
approximations of the local mass fluxes and the local values of the conservative unknown at
the dual mesh segments.

Let us use the following notations for the local mass fluxes:

ṁ1 =

∫

Sn

1

ρφu · n31dS, ṁ2 =

∫

Sn

2

ρφu · n12dS, ṁ3 =

∫

Sn

3

ρφu · n23dS. (19)

It is obvious that the local mass fluxes (19) have to be calculated as exact as possible.
Assume the components of vector ρ(x)u(x) varying linearly at each simplex:

ρ(x)u(x) =
3

∑

i=1

ρ(x̂i)u(x̂i)ψ̂m(x), (20)
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where ρ(x̂i) are nodal values of density, u(x̂i) = (u(x̂i), v(x̂i))
T are nodal velocity vectors and

ψ̂m(x) are local linear form functions. Using the integration formula (9) introduced above one
can obtain the following approximation of the mass fluxes (19):

ṁ1 ≈
(

1

6
ρ(x̂1)u(x̂1) +

5

12
ρ(x̂2)u(x̂2) +

5

12
ρ(x̂3)u(x̂3)

)

l1y −

−
(

1

6
ρ(x̂1)v(x̂1) +

5

12
ρ(x̂2)v(x̂2) +

5

12
ρ(x̂3)v(x̂3)

)

l1x,

ṁ2 ≈
(

5

12
ρ(x̂1)u(x̂1) +

5

12
ρ(x̂2)u(x̂2) +

1

6
ρ(x̂3)u(x̂3)

)

l2y −

−
(

5

12
ρ(x̂1)v(x̂1) +

5

12
ρ(x̂2)v(x̂2) +

1

6
ρ(x̂3)v(x̂3)

)

l2x,

ṁ3 ≈
(

5

12
ρ(x̂1)u(x̂1) +

1

6
ρ(x̂2)u(x̂2) +

5

12
ρ(x̂3)u(x̂3)

)

l3y −

−
(

5

12
ρ(x̂1)v(x̂1) +

1

6
ρ(x̂2)v(x̂2) +

5

12
ρ(x̂3)v(x̂3)

)

l3x,

where lνx and lνy are the lengths of the projections of the median segment Sn
ν onto the x- and y-

axis, respectively, with the signs corresponding to the anticlockwise integration; ν, nb ∈ {1, 2, 3}.
For the discretization of the momentum equations in the compressible conditions it can

appear essential for shock capturing to have a possibility of linear representation of both velocity
components and density at each simplex:

ρ(x) =
3

∑

i=1

ρ(x̂i)ψ̂m(x), u(x) =
3

∑

i=1

u(x̂i)ψ̂m(x),

instead of (20). Special formulas for the exact integration of barycentric coordinates monomials
of the second order, which will necessary in this case are introduced in Section 2.5.3.

Finally, expressing the combinations J c
12 − J c

23, J c
23 − J c

31 and J c
31 − J c

12 in terms of local
conservation unknowns, we will have for the local convection matrix of the element:

Âc
n =







β1
2ṁ2 − β1

3ṁ3 β2
2ṁ2 − β2

3ṁ3 β3
2ṁ2 − β3

3ṁ3

β1
3ṁ3 − β1

1ṁ1 β2
3ṁ3 − β2

1ṁ1 β3
3ṁ3 − β3

1ṁ1

β1
1ṁ1 − β1

2ṁ2 β2
1ṁ1 − β2

2ṁ2 β3
1ṁ1 − β3

2ṁ2






, (21)

where weights βi
nb are the elements of the local weights matrix of the upwind scheme. The

weights local matrices will be calculated with the use of various upwind principles, determining
a scheme of approximation of convection fluxes.

1.5.2. Mass Weighted Upwind scheme

The MAW scheme defines a mass-weighted average of φ at each of the median segments of
the element of interest following [12], thus projecting the information center onto an upstream
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edge (or replacing the center by an upstream node of the simplex). The treatment of the local
mass fluxes is performed depending on the local mass fluxes values:

φ̃1 =

{

fpφ̃2 + (1 − fp)φ3, where fp = min [max(ṁ2/ṁ1, 0)] if ṁ1 > 0,

fpφ̃3 + (1 − fp)φ2, where fp = min [max(ṁ3/ṁ1, 0)] if ṁ1 < 0,

φ̃2 =

{

fpφ̃3 + (1 − fp)φ1, where fp = min [max(ṁ3/ṁ2, 0)] if ṁ2 > 0,

fpφ̃1 + (1 − fp)φ3, where fp = min [max(ṁ1/ṁ2, 0)] if ṁ2 < 0,

φ̃3 =

{

fpφ̃1 + (1 − fp)φ2, where fp = min [max(ṁ1/ṁ3, 0)] if ṁ3 > 0,

fpφ̃2 + (1 − fp)φ1, where fp = min [max(ṁ2/ṁ3, 0)] if ṁ3 < 0.
(22)

Let us obtain the expression for the corresponding local weights matrix. Let us write equations
(22) in the matrix form φ̃ = C̃φ̃+ Ĉφ̂, where all non-zero elements of matrices C̃, Ĉ are placed
out of its diagonals depending on the local mass flow rates ṁ1, ṁ2, ṁ2 signs. Therefore, the
local weights matrix of the MAW scheme can be found as

B =
(

E − C̃
)−1

Ĉ,

thus, for realization of the MAW upwind scheme a 3 × 3 matrix have to be inverted on each
element.

1.5.3. Modification of the Flow Oriented Upwind scheme

The interpolation function used in the Flow-Oriented Upwind scheme [5] is defined using a
local flow-oriented coordinate system (X,Y ), with the origin in the barycenter of an element
and X axis oriented along the element-averaged velocity Uav (Fig. 4). The convection fluxes
are approximated by assuming that over any element φh varies exponentially in the direction
of the average velocity vector and linearly in the normal direction:

φh = A + Bξ + CY, where (23)

ξ =
λφ

ρUav

{

exp

[

Pe∆ (X − Xmax)

(Xmax − Xmin)

]

− 1

}

, (24)

Pe∆ = ρUav
Xmax − Xmin

λφ

, Xmax = max(X1, X2, X3), Ymax = max(Y1, Y2, Y3),

Fig. 4. Auxiliary coordinate system used in FLO upwind scheme.
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and Xi, Yi, i = 1, 2, 3 are coordinates of the simplex nodes in the new coordinate system.
Introduction of auxiliary variable ξ results in the modification of the linear shape function (23)
and appearance of numerical diffusion only in the averaged flow direction.

Let us use the profile (23) for the local weighting of the mass fluxes ṁ1, ṁ2, ṁ3, thus
taking into consideration all vertexes of the element, unlike the MAW scheme. The new upwind
scheme will be called the Modified Flow-Oriented Upwind scheme (FLOM). While constructing
the local weights matrix for the FLOM scheme, we shall represent the combinations φ̃1, φ̃2,
φ̃3 as images of the median segments Sn

1 , Sn
2 , Sn

3 midpoints on the surface (23). Thus, the
combinations are close to the nodal values of the conservative unknown in the upstream nodes
(Fig. 5). From the interpolation condition we have for the coefficients A, B, C:





A
B
C



 =





1 ξ1 Y1

1 ξ2 Y2

1 ξ3 Y3





−1 



φ̂1

φ̂2

φ̂3



 . (25)

Fig. 5. FLOM: weighting of the local mass fluxes with the use of the asymmetric profile.

On the other hand, components of the local vector φ̃ =
(

φ̃1 φ̃2 φ̃3

)T

being the images of

the median midpoints, can be found as:

φ̃1 = A + Bξ̃1 + CỸ1, φ̃2 = A + Bξ̃2 + CỸ2, φ̃3 = A + Bξ̃3 + CỸ3, (26)

where ξ̃i, Ỹi, i = 1, 2, 3 are coordinates of the median segment middles in the new coordinate
system. Substitution of (25) to (26) allows to express φ̃ in terms of the local unknowns:

φ̃nb =
(

k11 + k21ξ̃nb + k31Ỹnb

)

φ̂1 +
(

k12 + k22ξ̃nb + k32Ỹnb

)

φ̂2 +
(

k13 + k23ξ̃nb + k33Ỹnb

)

φ̂3 .

Thus, the component (nb, i), nb, i = 1, 2, 3 of the FLOM local weights matrix becomes

βi
nb = k1i + k2iξ̃nb + k3iYnb. (27)

Resulting convection local matrix of the element is calculated using (21) with the weights (27).
One of the advantages of the FLO profiles lies in its flexible dependence on local Peclet number
Pe4, so the shape can vary from nearly linear at the rim of the flow to boundary layer form at
its kernel.
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1.5.4. Analogue of the FLOM upwind scheme for the cell-centered arrangement

Let us construct a FLOM type scheme for the cell-centered finite volume discretization of the
conservation equation (1). Consider a control volume consisting of an elementary triangle Ti

with boundary Si. Integration of the conservation equation (1) over Ti gives
∫

Ti

∂ (ρφ)

∂t
dΩ +

∫

Si

J · ndS +

∫

Ti

γφdΩ =

∫

Ti

SφdΩ.

For the approximation of convection flux some average φ has to be expressed in terms of values
of φk, φl, φj, φi. Consider the triangle (l j k) constructed with the use of the barycenters of the
neighboring triangles. Let a, b, c be intersections of lines connecting node i with centers of the
neighboring cells and edges of the control triangle ei (Fig. 6). The intersection points seemed to
lie on the edges of the control simplex for quite general triangulation. The exponential profile

Fig. 6. Analogue of the FLOM scheme for the cell-centered arrangement.

(23) can be constructed with the use of three centers of adjacent triangles and velocity vector
corresponding to the node i (the velocity vector will play the same role as the averaged velocity
vector at an element in vertex-based approaches), as shown in Fig. 6. The average values φ̃a, φ̃b,
φ̃c which are necessary for the approximation of the convection fluxes, can be picked as images
of points a, b, c at the profile, which is exponential in the direction of ui and linear in the
direction normal to ui. The scheme combines features of both central and upwind differencing.
On the one hand, the upstream nodes are used with more significant weights. On the other
hand, the control node i is used only in the sense of the velocity vector ui analyzed, hence, the
average φ̃a, φ̃b, φ̃c are expressed in terms of φk, φl, φj and the scheme characterized by zero
diagonal contribution in the steady-state case.

In the light of this fact the scheme proposed seems to be suitable for the construction of
some composite schemes as follows. In finite element literature several examples are reported
[16] concerning the development of a composite upwind scheme by means of calculation of local
convection contribution as linear combination of the form

Â = (1 − α)Âpositive + αÂless diffusive,
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where Âpositive is the local matrix corresponding to some positivity preserving but crude

upwind scheme and Âless diffusive is the local matrix calculated according to some less diffusive
but oscillating scheme. Following [16], the weighting coefficient α is specified such that the
resulting matrix is maintained as an M-matrix.

By analogy with the FEM approach, one can calculate contribution of the control triangle
Ti as combination of local contribution vectors corresponding to different schemes:

q̂ = (1 − α)q̂positive + αq̂FLOM,

where α is chosen in such a way to ensure non-positivity of non-diagonal convection contributions
to the ith row of the global matrix.

1.6. Exact integration of barycentric coordinates monomials
of second order over median segments

Consider the control element (Fig. 7). With the use of barycentic coordinates of the centroid,

Fig. 7. Barycentric coordinates of the simplex points used for the exact integration of barycentric
coordinates monomials over dual mesh lines.

midpoints of the edges and midpoints of the median segments one can obtain the following
integration formulas:

∫

Sn

k

LνLµdξ =



























1

27
lkξ, ν = µ = k,

7

108
lkξ, ν 6= µ, k = µ or k = ν,

19

108
lkξ, ν 6= µ, k 6= µ, k 6= ν,

(28)

where lkξ is the length of the projections of the median segment Sn
k onto the ξ axis, with the

signs corresponding to the anticlockwise integration; ξ ∈ {x, y}, k = 1, 2, 3. While performing
discretization it is more convenient to use the following tables, which are equivalent to (28).
For the integration over Sn

1 , Sn
2 and Sn

3 respectively, we have:

L1 L2 L3

L1

1

27

7

108

7

108

L2

7

108

19

108

19

108

L3

7

108

19

108

19

108

L1 L2 L3

L1

19

108

7

108

19

108

L2

7

108

1

27

7

108

L3

19

108

7

108

19

108

L1 L2 L3

L1

19

108

9

108

7

108

L2

19

108

19

27

7

108

L3

7

108

7

108

1

21
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2. Numerical experiments

2.1. Stability analysis on the solutions of boundary layer type

In this section the results of numerical experiments are presented for CVFEM P1/FLOM
and CVFEM P1/MAW techniques (piecewise linear interpolation for φ in diffusion terms and
FLOM (MAW) upwind schemes for the discretisation of convection fluxes, respectively) from
its comparison and accuracy estimation point of view.

Test problem 1. The first problem considered in this section is widely used for stability
analysis of discretization techniques of convection dominated problems:

∂2φ

∂x2
+

∂2φ

∂y2
− u

α

∂φ

∂x
= 0, (x, y) ∈ Ω = (0, 1) × (0, 1),

φ(0, y) = sin πy, φ(1, y) = φ(x, 0) = φ(x, 1) = 0.

The exact solution has the boundary-layer form in the neighborhood of x = 1:

φ(x, y) =
sin πy

ea − eb

(

ea+bx − eb+ax
)

,

a =
u

2α
+

(

u2

4α2
+ π2

)1/2

, b =
u

2α
−

(

u2

4α2
+ π2

)1/2

.

Two types of techniques — CVFEM P1/MAW, CVFEM P1/FLOM were applied to this
problem for different local Peclet number, with results depicted in Fig. 8, a, b. While the MAW
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Fig. 8. Computed solutions of φ(x, 0.5) for different upwind schemes: different local Peclet numbers,
21 × 21 uniform triangulation (a), 51 × 51 uniform triangulation (b).

scheme is positivity preserving by construction (at the level of element contribution [12, 13]),
the FLOM scheme does not meet the requirement of positivity. Existence of some positive
non-diagonal convective contribution which is characteristic of FLOM more probably results in
local extrema if simplexes with significantly varying volumes share the same node (Fig. 9, a).
In Table 1 the computed global L2 error norms are presented together with experimental rates
of convergence for different local Peclet numbers. The FLOM and the MAW schemes are seen
to have second and first order behavior, respectively, but every time with the growth of the
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Fig. 9. Appearance of the local maximum in the neighborhood of boundary layer region while using
FLOM scheme and unconditionally monotonic solution given by MAW scheme, 21 × 21 non-uniform
triangulation (a); more accurate capturing of the sharp profile given by the MAW scheme in conjunction
with a uniform grid refinement (b).

T a b l e 1

Discrete L2 Error norm for the solutions computed with the use of the
CVFEM P1/FLOM and CVFEM P1/MAW schemes for different local

peclet numbers and estimated rate of convergence α

1/h CVFEM P1/MAW α CVFEM P1/FLOM α

Pe4 = 1/6

10 6.812e−3 — 9.934e−4 —
20 3.241e−3 1.07 2.632e−4 1.916
40 1.570e−3 1.045 6.714e−5 1.971
80 7.708e−4 1.026 1.692e−5 1.988

160 3.816e−4 1.014 4.249e−6 1.994
320 1.898e−4 1.007 1.069e−6 1.990

Pe4 = 5/6

10 2.277e−2 — 6.093e−3 —
20 1.642e−2 0.472 1.799e−3 1.760
40 9.730e−3 0.755 4.689e−4 1.940
80 5.279e−3 0.882 1.192e−4 1.976

160 2.747e−3 0.942 3.009e−5 1.986
320 1.401e−3 0.971 7.567e−6 1.992

Pe4 = 25/3

10 7.491e−3 — 8.485e−3 —
20 1.052e−2 −0.490 9.929e−3 −0.227
40 1.371e−2 −0.382 8.445e−3 0.234
80 1.378e−2 −0.017 4.154e−3 1.0236

160 1.021e−2 0.442 1.340e−3 1.632
320 6.178e−3 0.724 3.588e−4 1.901

local Peclet number the approximation properties of both schemes are rapidly getting worse at
a fixed reasonable grid resolution. Experimental rate of convergence α is computed as

α = log2

‖φ − φh‖
‖φ − φh/2‖ ,
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with the use of approximate solutions φh, φh/2, corresponding to a triangulation Th and Th/2

twice as dense; the discrete norm is defined as follows

‖φ − φh‖ =





∑

en∈Th

∫

en

(

φ − φh
)2

dxdy





1/2

,

where the integral over the nth element is approximated by the 1-point Gauss barycenters
based quadrature.

While analyzing influence of grid refinement on the accuracy of the schemes investigated,
it can be pointed out that Mass Weighted scheme in combination with grid refinement gives
better results than Modified Flow Oriented scheme (Fig. 9, b). Taking into consideration the
possibility of appearance of unphysical maxima in FLOM solutions, the MAW with an adaptive
strategy and a local grid refinement algorithm should be recommended for real problems.

It is well known that expected false diffusion contribution often depends on the main flow
direction with respect of the grid lines. In this work two patterns of discretization were selected

Fig. 10. The two types of triangulation patterns used for numerical experiments.

(Fig. 10). The results obtained by both CVFEM P1/MAW and CVFEM P1/FLOM were found
to be absolutely independent of the triangulation pattern used.

Test problem 2. The second problem has been considered to make a comparison between
CVFEM and some of quadrilateral-based FEM high-resolution upwind techniques [16]:

u
∂φ

∂x
+ v

∂φ

∂x
= µ

(

∂2φ

∂x2
+

∂2φ

∂y2

)

, (x, y) ∈ Ω = (0, 1) × (0, 1),

φ(0, y) =
sinπy

sinπys

exp
[v

2
(y − ys)

]

, φ(1, y) = φ(x, 0) = φ(x, 1) = 0.

The analytical solution:

φ(x, y) =
sin(πy) exp(r2x) exp [(v/2)(y − ys)] {1 − exp [(r1 − r2)(x − 1)]}

{1 − exp(r1 − r2)} sin(πys)
,

where h is the grid size and

u =
µ

4h
cotθ, v =

µ

4h
, θ = tan−1

(v

u

)

, ys = 1 − 1

π
tan−1

(

2π

v

)

,

r1 =
1

2

[

u +
√

u2 + v2 + 4π2

]

, r2 =
1

2

[

u −
√

u2 + v2 + 4π2

]

.

The local Peclet numbers are h-independent:

Pex =
1

4
cotθ, Pey =

1

4
.

For small local Peclet number the quadrilateral based FEM composite scheme proposed in
[16] was found to give a little better approximation than the CVFEM upwind schemes, but
CVFEM P1/MAW and CVFEM P1/FLOM give essentially the best results for moderate and
large Peclet numbers (Tables 2 – 4). It is also clear from Figs 11, a and 11, b that the CVFEM
schemes allow for more exact treatment of sharp profiles in the solutions.
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Fig. 11. Comparison of CVFEM P1/FLOM, CVFEM P1/MAW, finite element model of Rice and
Schnipke, Legendre polynomial finite element model and high-resolution composite scheme of Sheu.
θ = 2◦ (a), θ = 1◦ (b).

T a b l e 2

Discrete L2 error norm for the solutions computed with the use
of the composite scheme [16], for different local peclet numbers

1/h θ = 15◦, Pex = 0.033 θ = 2◦, Pex = 7.159 θ = 1◦, Pex = 14.322

10 2.125e−3 7.522e−2 5.800e−2
20 1.660e−3 5.132e−2 3.977e−2
30 8.976e−4 4.694e−2 3.703e−2
40 4.757e−4 4.507e−2 3.589e−2
50 3.036e−4 4.332e−2 3.465e−2

T a b l e 3

Discrete L2 error norm for the solutions computed with the use of the
CVFEM P1/MAW scheme, for different local peclet numbers

1/h θ = 15◦, Pex = 0.033 θ = 2◦, Pex = 7.159 θ = 1◦, Pex = 14.322

10 1.780e−2 2.532e−2 1.475e−2
20 1.884e−2 1.772e−2 1.003e−2
30 1.593e−2 1.375e−2 7.801e−3
40 1.346e−2 1.137e−2 6.522e−3
50 1.157e−2 9.850e−3 5.733e−3

T a b l e 4

Discrete L2 error norm for the solution computed with the use of the
CVFEM P1/FLOM scheme, for different local peclet numbers

1/h θ = 15◦, Pex = 0.033 θ = 2◦, Pex = 7.159 θ = 1◦, Pex = 14.322

10 3.028e−3 1.914e−2 1.487e−2
20 2.030e−3 1.284e−2 9.411e−3
30 1.476e−3 9.609e−3 6.988e−3
40 1.103e−3 7.562e−3 5.514e−3
50 8.473e−4 6.159e−3 4.519e−3
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2.2. Laminar flow over a backward-facing step

2.2.1. Comparison of MAW and FLOM upwind schemes

The MAW and FLOM schemes give the following results for the laminar flow over backward-
facing step flow benchmark. Experimental data of Armaly et al. [17] are used for the comparison.
The case considered is Re = 389 — the maximal value, for which the experimental data are
reported with the planar laminar regime of the flow. Figure 12 shows the geometry and a sketch
of the flow field. In accordance with [17], upstream channel height h = 5.2 mm, step height
S = 4.9 mm. The outlet boundary is at a distance of 32S downstream of the step. Components

Fig. 12. Geometry and schematic of the laminar flow over a backward facing step benchmark.
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Fig. 13. Laminar flow over a backward-facing step, Re = 389. Experimental and calculated velocity
profiles for Re=389 at different locations; “¦” — experiment Armaly et al., “–” — the CVFEM P1/MAW
solution (a), CVFEM P1/FLOM solution (b).

of viscous stress tensor were imposed to vanish at the outlet boundary, thus, for the edges
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approximating outlet boundary, only corresponding convection fluxes are approximated. Two
types of the inlet boundary placement are considered: four times upstream of the step and at
the line of sudden expansion. The parabolic velocity profile approximating experimental one
was imposed at the inlet boundary.

The first series of numerical experiments has been performed in the computational domain
limited to the region downstream of the expansion, with the CVFEM P1/FLOM results much
more closer to the experimental one in comparison with CVFEM P1/MAW. Longitudinal
velocity profiles calculated with the use of different upwind schemes at various sections behind
the step have been plotted in Figs 13 a and b. The reattachment point computed is 7.14S for
the CVFEM P1/MAW and 8.22S for the CVFEM P1/FLOM technique. The result is quite
close to the experimental one 7.81S. The velocity profiles at two axial stations, the first at
the rim of the main vortex and the second in the neighborhood of the reattachment point
computed with the use of different upwind schemes are shown in Figs 14 and 15. Convergence
of predicted velocity profiles to the experimental data with the mesh refinement is presented.
The use of the modified flow-oriented upwind scheme clearly results in much better prediction
of the experimental values than the use of first-order accurate MAW scheme.
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Fig. 14. Velocity profiles at x/S = 4.18.

2.2.2. On the mutual compensation of the entrance effect and the false diffusion

effect

The so-called entrance effect for the laminar flows over backward facing step has been demonst-
rated first by Barton [18] and consists in the difference between the finite difference solutions
obtained with the different placement of the inlet boundary with respect to sudden expansion.
It has been shown by the author of [18], that for the calculations where the domain of interest is
limited by the wide channel, the main vortex appears to be longer than for the same calculations
taking into consideration the small channel. On the other hand, remind that the use of highly
diffusive upwind schemes amounts to the introduction of additional viscosity in the flow, thus
we will have the smaller reattachment lengths.

The essence of our contribution lies in the demonstration of the interaction (mutual compen-
sation) of the entrance effect, demonstrated by I. Barton, and numerical viscosity effect intro-
duced by unstructured upwinding. Several series of computational experiments have been
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Fig. 15. Velocity profiles at x/S = 7.14.

performed for the solution of the laminar flow over backward-facing step and it has been shown
that the following is true. If the computational domain is limited to the region downstream
of the expansion, then erroneous arguments of high accuracy of reattachment point prediction
can be obtained as a result of the mutual compensation of the entrance effect and numerical
viscosity.

Thus, the numerical modeling of the flows over a backward-facing step is the case, then
experimental data are in use for the validation of codes, but the physics of the problem is not
well understood at the moment.
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Fig. 16. Laminar flow over a backward-facing step. Pressure distribution along the centerline of the
small channel.

The reattachment points computed with respect to the small channel are 6.79S and 7.57S
for the CVFEM P1/MAW and CVFEM P1/FLOM techniques respectively (triangulation for
the wide channel is the same as in the previous section, and a matching grid is used for the
small one). Thus, the CVFEM P1/MAW scheme, which had resulted in the underestimation
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of the reattachment length (7.14S), gives even worse result. At the same time results of the
CVFEM P1/FLOM scheme, which had lead to the exceeding values of the reattachment length
(8.22S), have become closer to the experiment since the calculations are performed in the correct
manner.

The pressure fields calculated with the use of different upwind schemes and four pressure
distributions along the centerline of the small channel calculated with and without consideration
of the small channel with the use of the MAW and FLOM schemes are presented in Fig. 16. It is
clear from the figures that the pressure field downstream of the step essentially depends on the
upwind scheme used, especially in the neighborhood of the reattachment point; the entrance
effect and the false diffusion effect are comparable with each other.

3. Conclusions and future works

With the unsteady incompressible flows modeling in mind, we consider FVFEM technologies
for approximation of convection-diffusion problems on unstructured simplicial grids. The paper
is concerned, in particular, with the design and investigation of higher-order-accurate upwind
schemes for complex incompressible flow modeling by means of cell-vertex finite volume method
based on simplicial grids. New finite-element-like technology of exact integration of polynomials
in finite volumes methods proposed by the authors and based on the exact integration of
simplex barycentric coordinates monomials is used as the basis of the accurate approximations.
Concept of weights local matrix of an upwind scheme and the principle of weighting of local
mass fluxes with the use of asymmetric profile have been introduced first in cell-vertex finite
volume context. It has been shown experimentally for the solutions of boundary layer type
that with the use of asymmetric profiles of the Flow-Oriented Upwind scheme, exponential in
the direction of the flow and linear in the normal direction, proposed schemes are second-order
accurate while Mass-Weighted scheme (MAW) has first order behavior. A comparison of MAW
and proposed Modified Flow-Oriented upwind scheme (FLOM) is presented for the complex
incompressible flow modeling, with the results that are much more accurate for the last one.
Excellent agreement of FVFEM P1/FLOM solutions with experimental data of Armaly et al.
for laminar flow over backward-facing step is demonstrated. For the benchmark — laminar flow
over backward-facing step problem — an interaction (mutual compensation) of the entrance
effect demonstrated by I. Barton, and numerical viscosity effect introduced by unstructured
upwinding has been demonstrated first.
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