ON THE FOURIER TRANSFORM OF THE DISTRIBUTIONAL KERNEL $K_{\alpha, \beta, \gamma, \nu}$ RELATED TO THE OPERATOR \oplus^{k}

A. Kananthai, S. Suantai
Department of Mathematics Chiangmai University, Thailand e-mail: malamnka@science.cmu.ac.th

Рассмотрено преобразование Фурье ядра $K_{\alpha, \beta, \gamma, \nu}$, где $\alpha, \beta, \gamma, \nu$ - комплексные параметры. Исследовано преобразование Фурье свертки $K_{\alpha, \beta, \gamma, \nu} * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}$, где $\alpha, \beta, \gamma, \nu, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}$ - комплексные параметры.

1. Introduction

The operator \oplus^{k} can be factorized into the form

$$
\begin{equation*}
\oplus^{k}=\left[\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right]^{k}\left[\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}+i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right]^{k}\left[\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}-i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right]^{k}, \tag{1.1}
\end{equation*}
$$

where $p+q=n$ is the dimension of the space $\mathbb{C}^{n}, i=\sqrt{-1}$ and k is a nonnegative integer.
The operator $\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}$ is first introduced by A. Kananthai [1] and named the Dimond operator denoted by

$$
\begin{equation*}
\diamond=\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2} . \tag{1.2}
\end{equation*}
$$

Let us denote the operators L_{1} and L_{2} by

$$
\begin{align*}
& L_{1}=\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}+i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}, \tag{1.3}\\
& L_{2}=\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}-i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} . \tag{1.4}
\end{align*}
$$

Thus (1.1) can be written by

$$
\begin{equation*}
\oplus^{k}=\diamond^{k} L_{1}^{k} L_{2}^{k} \tag{1.5}
\end{equation*}
$$

(C) A. Kananthai, S. Suantai, 2002.

Now consider the convolutions $R_{\alpha}^{H}(u) * R_{\beta}^{\ell}(v) * S_{\gamma}(w) * T_{\nu}(z)$ where $R_{\alpha}^{H}, R_{\beta}^{\ell}, S_{\gamma}$ and T_{ν} are defined by (2.2), (2.4), (2.6) and (2.7) respectively.

We defined the distributional kernel $K_{\alpha, \beta, \gamma, \nu}$ by

$$
\begin{equation*}
K_{\alpha, \beta, \gamma, \nu}=R_{\alpha}^{H} * R_{\beta}^{\ell} * S_{\gamma} * T_{\nu} . \tag{1.6}
\end{equation*}
$$

Since the function $R_{\alpha}^{H}(u), R_{\beta}^{\ell}(v), S_{\gamma}(w)$ and $T_{\nu}(z)$ are all tempered distribution see [1, p. 30, $31]$ and $[6$, p. 154, 155], then the convolutions on the right hand side of (1.6) exists and is a tempered distribution. Thus $K_{\alpha, \beta, \gamma, \nu}$ is well defined and also a tempered distribution.

In this paper, at first we study the Fourier transform $\Im K_{\alpha, \beta, \gamma, \nu}$ or $\widehat{K_{\alpha, \beta, \gamma, \nu}}$ where $K_{\alpha, \beta, \gamma, \nu}$ is defined by (1.6).

After that we put $\alpha=\beta=\gamma=\nu=2 k$, then we obtain $\widehat{K_{2 k, 2 k, 2 k, 2 k}}$ related to the elementary solution of the operator \oplus^{k}.

We also study the Fourier transform of the convolution $K_{\alpha, \beta, \gamma, \nu} * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}$.

2. Preliminaries

Definition 2.1. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point in the space \mathbb{C}^{n} of the n-dimensional complex space and write

$$
\begin{equation*}
u=x_{1}^{2}+x_{2}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q}^{2} \tag{2.1}
\end{equation*}
$$

where $p+q=n$ is the dimension of \mathbb{C}^{n}.
Denote by $\Gamma_{+}=\left\{x \in \mathbb{R}^{n}: x_{1}>0\right.$ and $\left.u>0\right\}$ the set of an interior of the forward cone and $\overline{\Gamma_{+}}$denotes it closure and \mathbb{R}^{n} is the n-dimensional Euclidean space.

For any complex number α, define

$$
R_{\alpha}^{H}(u)= \begin{cases}\frac{u^{\frac{\alpha-n}{2}}}{K_{n}(\alpha)} & \text { for } x \in \Gamma_{+}, \tag{2.2}\\ 0 & \text { for } \\ x \notin \Gamma_{+},\end{cases}
$$

where the constant $K_{n}(\alpha)$ is given by the formula

$$
K_{n}(\alpha)=\frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{2+\alpha-n}{2}\right) \Gamma\left(\frac{1-\alpha}{2}\right) \Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right)}
$$

The function R_{α}^{H} is called the ultra-hyperbolic Kernel of Marcel Riesz and was introduced by Y. Nozaki [5, p. 72].

It is well known that R_{α}^{H} is an ordinary function if $\operatorname{Re}(\alpha) \geq n$ and is a distribution of α if $\operatorname{Re}(\alpha)<n$. Let supp $R_{\alpha}^{H}(u)$ denote the support of $R_{\alpha}^{H}(u)$ and suppose supp $R_{\alpha}^{H}(u) \subset \overline{\Gamma_{+}}$, that is $\operatorname{supp} R_{\alpha}^{H}(u)$ is compact.

Definition 2.2. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and write

$$
\begin{equation*}
v=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \tag{2.3}
\end{equation*}
$$

For any complex number β, define

$$
\begin{equation*}
R_{\beta}^{\ell}(v)=2^{-\beta} \pi^{\frac{-n}{2}} \Gamma\left(\frac{n-\beta}{2}\right) \frac{v^{\frac{\beta-n}{2}}}{\Gamma\left(\frac{\beta}{2}\right)} \tag{2.4}
\end{equation*}
$$

The function $R_{\beta}^{\ell}(v)$ is called the elliptic Kernel of Marcel Riesz and is ordinary function for $\operatorname{Re}(\beta) \geq n$ and is a distribution of β for $\operatorname{Re}(\beta)<n$.

Definition 2.3. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of the space \mathbb{C}^{n} of the n-dimensional complex space and write

$$
\begin{equation*}
w=x_{1}^{2}+x_{2}^{2}+\ldots+x_{p}^{2}-i\left(x_{p+1}^{2}+x_{p+2}^{2}+\ldots+x_{p+q}^{2}\right) \tag{2.5}
\end{equation*}
$$

where $p+q=n$ is the dimension of \mathbb{C}^{n} and $i=\sqrt{-1}$.
For any complex number γ, define the function

$$
\begin{equation*}
S_{\gamma}(w)=2^{-\gamma} \pi^{\frac{-n}{2}} \Gamma\left(\frac{n-\gamma}{2}\right) \frac{w^{\frac{\gamma-n}{2}}}{\Gamma\left(\frac{\gamma}{2}\right)} \tag{2.6}
\end{equation*}
$$

The function $S_{\gamma}(w)$ is an ordinary function if $\operatorname{Re}(\gamma) \geq n$ and is a distribution of γ for $\operatorname{Re}(\gamma)<n$.
Definition 2.4. For any complex number ν, define the function

$$
\begin{equation*}
T_{\nu}(z)=2^{-\nu} \pi^{\frac{-n}{2}} \Gamma\left(\frac{n-\nu}{2}\right) \frac{z^{\frac{\nu-n}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
z=x_{1}^{2}+x_{2}^{2}+\ldots+x_{p}^{2}+i\left(x_{p+1}^{2}+x_{p+2}^{2}+\ldots+x_{p+q}^{2}\right), \tag{2.8}
\end{equation*}
$$

$x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{C}^{n}, p+q=n$ is the dimension of \mathbb{C}^{n} and $i=\sqrt{-1}$.
We have $T_{\nu}(z)$ is an ordinary function if $\operatorname{Re}(\nu) \geq n$ and is a distribution of ν for $\operatorname{Re}(\nu)<n$.
Definition 2.5. Let $f(x)$ be continuous function on \mathbb{R}^{n} where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. The Fourier transform of $f(x)$ denoted by $\Im f$ or $\hat{f}(\xi)$ and is defined by

$$
\begin{equation*}
\Im f(x)=\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i(\xi, x)} f(x) d x \tag{2.9}
\end{equation*}
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$ and $(\xi, x)=\xi_{1} x_{1}+\xi_{2} x_{2}+\ldots+\xi_{n} x_{n}$.
Definition 2.6. Let $\mu(x)$ be a tempered distribution with compact support. The Fourier transform of $\mu(x)$ is defined by

$$
\begin{equation*}
\hat{\mu}(\xi)=<\mu(x), e^{-i(\xi, x)}> \tag{2.10}
\end{equation*}
$$

Lemma 2.1. The functions $R_{\alpha}^{H}, R_{\beta}^{\ell}, S_{\gamma}$ and T_{ν} defined by (2.2), (2.4), (2.6) and (2.7) respectively, are all tempered distributions.

Proof see [1, p. 30, 31] and [6, p. 154, 155].
Lemma 2.2. The function $(-1)^{k} K_{2 k, 2 k, 2 k, 2 k}(x)$ is an elementary solution of the operator \oplus^{k}, that is $\oplus^{k}(-1)^{k} K_{2 k, 2 k, 2 k, 2 k}(x)=\delta$ where \oplus^{k} is defined by (1.1), $K_{2 k, 2 k, 2 k, 2 k}(x)$ is defined by (1.6) with $\alpha=\beta=\gamma=\nu=2 k$ and δ is the Dirac-delta distribution.

Proof see [4, p. 66].
Lemma 2.3. 1. The Fourier transform of the convolution $R_{\alpha}^{H}(u) * R_{\beta}^{\ell}(v)$ is given by the formula
$\Im\left(R_{\alpha}^{H}(u) * R_{\beta}^{\ell}(v)\right)=\frac{(i)^{q} 2^{\alpha+\beta} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \pi^{n}}{K_{n}(\alpha) H_{n}(\beta) \Gamma\left(\frac{n-\alpha}{2}\right) \Gamma\left(\frac{n-\beta}{2}\right)}\left(\sqrt{\sum_{r=1}^{p} \xi_{r}^{2}-\sum_{j=p+1}^{p+q} \xi_{j}^{2}}\right)^{-\alpha}\left(\sqrt{\sum_{r=1}^{n} \xi_{r}^{2}}\right)^{-\beta}$,
where $R_{\alpha}^{H}(u)$ and $R_{\beta}^{\ell}(v)$ are defined by (2.2) and (2.4) respectively,

$$
H_{n}(\beta)=\frac{\Gamma\left(\frac{\beta}{2}\right) 2^{\beta} \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-\beta}{2}\right)} \quad \text { and } \quad i=\sqrt{-1}
$$

In particular, if $\alpha=\beta=2 k$ then (2.11) becomes

$$
\begin{equation*}
\Im\left(R_{2 k}^{H}(u) * R_{2 k}^{\ell}(v)\right)=\frac{(-1)^{k}}{\left[\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right]^{k}} \tag{2.12}
\end{equation*}
$$

where k is nonnegative integer and $(-1)^{k} R_{2 k}^{H}(u) * R_{2 k}^{\ell}(v)$ is an elementary solution of the operator \diamond^{k} iterated k-times defined by (1.2).

Moreover $\left|\Im\left(R_{2 k}^{H}(u) * R_{2 k}^{\ell}(v)\right)\right| \leq M$, where M is constant, that is \Im is bounded, that implies \Im is continuous on the space S^{\prime} of the tempered distribution.
2. The Fourier transform of the convolution $S_{\gamma}(w) * T_{\nu}(z)$ is given by the formula

$$
\begin{align*}
& \Im\left(S_{\gamma}(w) * T_{\nu}(z)\right)=\frac{1}{H_{n}(\gamma) H_{n}(\nu)} \frac{2^{\gamma+\nu} \pi^{n} \Gamma\left(\frac{\gamma}{2}\right) \Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{n-\gamma}{2}\right) \Gamma\left(\frac{n-\nu}{2}\right)} \times \\
& \times\left(\sqrt{\sum_{r=1}^{p} \xi_{r}^{2}+i \sum_{j=p+1}^{p+q} \xi_{j}^{2}}\right)^{-\gamma}\left(\sqrt{\sum_{r=1}^{p} \xi_{r}^{2}-i \sum_{j=p+1}^{p+q} \xi_{j}^{2}}\right)^{-\nu} \tag{2.13}
\end{align*}
$$

where $S_{\gamma}(w)$ and $T_{\nu}(z)$ are defined by (2.6) and (2.7) respectively,

$$
H_{n}(\gamma)=\frac{\Gamma\left(\frac{\gamma}{2}\right) 2^{\gamma} \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-\gamma}{2}\right)} \quad \text { and } \quad H_{n}(\nu)=\frac{\Gamma\left(\frac{\nu}{2}\right) 2^{\nu} \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-\nu}{2}\right)}
$$

In particular, if $\gamma=\nu=2 k$ then (2.13) becomes

$$
\begin{equation*}
\Im\left(S_{\gamma}(w) * T_{\nu}(z)\right)=\frac{1}{\left[\left(\xi_{1}^{2}+\xi_{2}^{2}+\ldots+\xi_{p}^{2}\right)^{2}+\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\ldots+\xi_{p+q}^{2}\right)^{2}\right]^{k}} \tag{2.14}
\end{equation*}
$$

where k is a nonnegative integer and $(-1)^{k}(-i)^{\frac{q}{2}} S_{2 k}(w)$ and $(-1)^{k}(-i)^{\frac{q}{2}} T_{2 k}(z)$ are elementary solutions of the operators L_{1} and L_{2} defined by (1.3) and (1.4) respectively.

Proof: 1. To prove (2.11) and (2.12) see [2] and to show that \Im is bounded, now

$$
\left|\Im\left(R_{2 k}^{H}(u) * R_{2 k}^{\ell}(v)\right)\right|=\left|\frac{(-1)^{k}}{\left[\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right]^{k}}\right| \leq \frac{1}{\left|\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{2}+\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right|^{k}} \leq M
$$

where $p+q=n$ for large $\xi_{r} \in \mathbb{R}(r=1,2, \ldots, n)$.
That implies that \Im is continuous on the space S^{\prime} of tempered distribution. For the case $(-1)^{k} R_{2 k}^{H}(u) * R_{2 k}^{\ell}(v)$ is an elementary solution of the operator \diamond^{k}, see [1].
2. We have

$$
S_{\gamma}(w)=\frac{w^{\frac{\gamma-n}{2}}}{H_{n}(\gamma)}, \quad \text { where } H_{n}(\gamma)=\frac{\Gamma\left(\frac{\gamma}{2}\right) 2^{\gamma} \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-\gamma}{2}\right)}
$$

and $w=x_{1}^{2}+x_{2}^{2}+\ldots+x_{p}^{2}-i\left(x_{p+1}^{2}+x_{p+2}^{2}+\ldots+x_{p+q}^{2}\right)$.
Now, changing the variable $x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{p}=y_{p}$,

$$
x_{p+1}=\frac{y_{p+1}}{\sqrt{-i}}, \quad x_{p+2}=\frac{y_{p+2}}{\sqrt{-i}}, \quad \ldots, \quad x_{p+q}=\frac{y_{p+q}}{\sqrt{-i}} .
$$

Then we obtain $w=y_{1}^{2}+y_{2}^{2}+\ldots+y_{p}^{2}+y_{p+1}^{2}+y_{p+2}^{2}+\ldots+y_{p+q}^{2}$.
Let $\rho^{2}=y_{1}^{2}+y_{2}^{2}+\ldots+y_{p+q}^{2}, p+q=n$. Then

$$
\begin{gather*}
\Im S_{\gamma}(w)=\frac{1}{H_{n}(\gamma)} \int_{\mathbb{R}^{n}} e^{-i(\xi, x)} w^{\frac{\gamma-n}{2}} d x=\frac{1}{H_{n}(\gamma)} \int_{\mathbb{R}^{n}} e^{-i(\xi, x)} \rho^{\gamma-n} \frac{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\partial\left(y_{1}, y_{2}, \ldots, y_{n}\right)} d y_{1} d y_{2} \ldots d y_{n}= \\
=\frac{1}{H_{n}(\gamma)(-i)^{\frac{q}{2}}} \int_{\mathbb{R}^{n}} \rho^{\gamma-n} e^{-i\left(\xi_{1} y_{1}+\xi_{2} y_{2}+\ldots+\xi_{p} y_{p}+\frac{\xi_{p+1}}{\sqrt{-1}} y_{p+1}+\ldots+\frac{\xi_{p+q}}{\sqrt{-1}} y_{p+q}\right)} d y= \\
=\frac{1}{H_{n}(\gamma)(-i)^{\frac{q}{2}}} 2^{\gamma} \pi^{\frac{n}{2}} \frac{\Gamma\left(\frac{\gamma}{2}\right)}{\Gamma\left(\frac{n-\gamma}{2}\right)}\left(\sqrt{\xi_{1}^{2}+\xi_{2}^{2}+\ldots+\xi_{p}^{2}+i\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\ldots+\xi_{p+q}^{2}\right)}\right)^{-\gamma} \tag{2.15}
\end{gather*}
$$

by [5, p. 194]
Similarly, for $T_{\nu}(z)=\frac{z^{\frac{\nu-n}{2}}}{H_{n}(\nu)}$ we have $z=x_{1}^{2}+x_{2}^{2}+\ldots+x_{p}^{2}+i\left(x_{p+1}^{2}+x_{p+2}^{2}+\ldots+x_{p+q}^{2}\right)$. Putting $x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{p}=y_{p}, x_{p+1}=\frac{y_{p+1}}{\sqrt{i}}, \ldots, x_{p+q}=\frac{y_{p+q}}{\sqrt{i}}$. Thus $z=y_{1}^{2}+y_{2}^{2}+\ldots+y_{p+q}^{2}$, $p+q=n$. Let $\rho^{2}=y_{1}^{2}+y_{2}^{2}+\ldots+y_{p+q}^{2}, p+q=n$. Then

$$
\begin{gathered}
\Im T_{\nu}(z)=\frac{1}{H_{n}(\nu)} \int_{\mathbb{R}^{n}} e^{-i(\xi, x)} z^{\frac{\nu-n}{2}} d x= \\
=\frac{1}{H_{n}(\nu)(i)^{\frac{q}{2}}} \int_{\mathbb{R}^{n}} \rho^{\nu-n} e^{-i\left(\xi_{1} y_{1}+\xi_{2} y_{2}+\ldots+\xi_{p} y_{p}+\frac{\xi_{p+1}}{\sqrt{\imath}} y_{p+1}+\ldots+\frac{\xi_{p+q}}{\sqrt{i}} y_{p+q}\right)} d y=
\end{gathered}
$$

$$
\begin{equation*}
=\frac{2^{\nu} \pi^{\frac{n}{2}}}{H_{n}(\nu)(i)^{\frac{q}{2}}} \frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{n-\nu}{2}\right)}\left(\sqrt{\xi_{1}^{2}+\xi_{2}^{2}+\ldots+\xi_{p}^{2}-i\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\ldots+\xi_{p+q}^{2}\right)}\right)^{-\nu} \tag{2.16}
\end{equation*}
$$

Since $S_{\gamma}(w)$ and $T_{\nu}(z)$ are tempered distributions, then $S_{\gamma}(w) * T_{\nu}(z)$ exists and $\Im\left(S_{\gamma}(w) *\right.$ $\left.T_{\nu}(z)\right)=\Im\left(S_{\gamma}(w)\right) \Im\left(T_{\nu}(z)\right)$.

Thus

$$
\begin{gather*}
\Im\left(S_{\gamma}(w) * T_{\nu}(z)\right)=\Im\left(S_{\gamma}(w)\right) \Im\left(T_{\nu}(z)\right)= \\
=\frac{2^{\gamma+\nu} \pi^{n}}{H_{n}(\gamma) H_{n}(\nu)} \frac{\Gamma\left(\frac{\gamma}{2}\right)}{\Gamma\left(\frac{n-\gamma}{2}\right)} \frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{n-\nu}{2}\right)}\left(\sqrt{\sum_{r=1}^{p} \xi_{r}^{2}+i \sum_{j=p+1}^{p+q} \xi_{j}^{2}}\right)^{-\gamma}\left(\sqrt{\sum_{r=1}^{p} \xi_{r}^{2}-i \sum_{j=p+1}^{p+q} \xi_{j}^{2}}\right)^{-\nu} \tag{2.17}
\end{gather*}
$$

by (2.15) and (2.16).
Now consider

$$
\begin{equation*}
\frac{2^{\gamma+\nu} \pi^{n}}{H_{n}(\gamma) H_{n}(\nu)} \frac{\Gamma\left(\frac{\gamma}{2}\right) \Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{n-\gamma}{2}\right) \Gamma\left(\frac{n-\nu}{2}\right)} \tag{2.18}
\end{equation*}
$$

Putting $\gamma=\nu=2 k$, thus (2.18) becomes

$$
\begin{gathered}
\frac{2^{4 k} \pi^{n}}{H_{n}(2 k) H_{n}(2 k)} \frac{\Gamma\left(\frac{2 k}{2}\right) \Gamma\left(\frac{2 k}{2}\right)}{\Gamma\left(\frac{n-2 k}{2}\right) \Gamma\left(\frac{n-2 k}{2}\right)}=\frac{2^{4 k} \pi^{n}}{2^{4 k} \pi^{n}} \frac{\Gamma\left(\frac{n-2 k}{2}\right) \Gamma\left(\frac{n-2 k}{2}\right)}{\Gamma(k) \Gamma(k)} \times \\
\times \frac{\Gamma(k) \Gamma(k)}{\Gamma\left(\frac{n-2 k}{2}\right) \Gamma\left(\frac{n-2 k}{2}\right)}=1 .
\end{gathered}
$$

Thus, from (2.17)

$$
\begin{equation*}
\Im\left(S_{2 k}(w) * T_{2 k}(z)\right)=\frac{1}{\left[\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}+\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right]^{k}} \tag{2.19}
\end{equation*}
$$

3. Main results

Theorem 3.1. The Fourier transform of the distributional kernel $K_{\alpha, \beta, \gamma, \nu}(x)$ is given by the formula

$$
\Im K_{\alpha, \beta, \gamma, \nu}(x)=\left(\frac{(\pi)^{2 n}(i)^{q} 2^{\alpha+\beta+\gamma+\nu} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \Gamma\left(\frac{\gamma}{2}\right) \Gamma\left(\frac{\nu}{2}\right)\left(\sqrt{\sum_{r=1}^{p} \xi_{r}^{2}-\sum_{j=p+1}^{p+q} \xi_{j}^{2}}\right)^{-\alpha}}{K_{n}(\alpha) H_{n}(\beta) H_{n}(\gamma) H_{n}(\nu)}\right) \times
$$

$$
\begin{equation*}
\times\left(\frac{\left(\sqrt{\sum_{r=1}^{n} \xi_{r}^{2}}\right)^{-\beta}\left(\sqrt{\sum_{r=1}^{p} \xi_{r}^{2}+i \sum_{j=p+1}^{p+q} \xi_{j}^{2}}\right)^{-\gamma}\left(\sqrt{\sum_{r=1}^{p} \xi_{r}^{2}-i \sum_{j=p+1}^{p+q} \xi_{j}^{2}}\right)^{-\nu}}{\Gamma\left(\frac{n-\alpha}{2}\right) \Gamma\left(\frac{n-\beta}{2}\right) \Gamma\left(\frac{n-\gamma}{2}\right) \Gamma\left(\frac{n-\nu}{2}\right)}\right) \tag{3.1}
\end{equation*}
$$

In particular, if $\alpha=\beta=\gamma=\nu=2 k$ then (3.1) becomes

$$
\begin{equation*}
\Im K_{\alpha, \beta, \gamma, \nu}(x)=\frac{(-1)^{k}}{\left[\left(\xi_{1}^{2}+\xi_{2}^{2}+\ldots+\xi_{p}^{2}\right)^{4}-\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\ldots+\xi_{p+q}^{2}\right)^{4}\right]^{k}} \tag{3.2}
\end{equation*}
$$

Moreover $(-1)^{k} K_{2 k, 2 k, 2 k, 2 k}(x)$ is an elementary solution of the operator \oplus^{k} defined by (1.1).
Proof. Now $K_{\alpha, \beta, \gamma, \nu}(x)=R_{\alpha}^{H}(u) * R_{\beta}^{\ell}(v) * S_{\gamma}(w) * T_{\nu}(z)$ by (1.6). Since $R_{\alpha}^{H}, R_{\beta}^{\ell}, S_{\gamma}(w)$ and $T_{\nu}(z)$ are all tempered distributions by Lemma 2.1, thus $\Im K_{\alpha, \beta, \gamma, \nu}(x)=\Im\left(R_{\alpha}^{H}(u) *\right.$ $\left.R_{\beta}^{\ell}(v)\right) \Im\left(S_{\gamma}(w) * T_{\nu}(z)\right)$. By (2.11) and (2.17), we obtained (3.1) as required. For the case $\alpha=\beta=\gamma=\nu=2 k$, by (2.12) and (2.19) we obtain (3.2) as required.

For $(-1)^{k} K_{2 k, 2 k, 2 k, 2 k}(x)$ is an elementary solution of the operator \oplus^{k} see [4, p. 66].
Theorem 3.2. The Fourier transform of the convolution $K_{\alpha, \beta, \gamma, \nu}(x) * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}(x)$ is given by the formula

$$
\begin{equation*}
\Im\left(K_{\alpha, \beta, \gamma, \nu}(x) * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}(x)\right)=\Im K_{\alpha, \beta, \gamma, \nu}(x) \Im K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}(x), \tag{3.3}
\end{equation*}
$$

where $K_{\alpha, \beta, \gamma, \nu}(x)$ is defined by (1.6), $\alpha, \beta, \gamma, \nu, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ and ν^{\prime} are complex numbers.
Proof. Now $K_{\alpha, \beta, \gamma, \nu}(x)=R_{\alpha}^{H}(u) * R_{\beta}^{\ell}(v) * S_{\gamma}(w) * T_{\nu}(z)$ by (1.6). Since $K_{\alpha, \beta, \gamma, \nu}(x)$ is the convolutions of all tempered distributions, thus $K_{\alpha, \beta, \gamma, \nu}(x)$ is also a tempered distribution and the convolution $K_{\alpha, \beta, \gamma, \nu}(x) * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}(x)$ exists.

Since $K_{\alpha, \beta, \gamma, \nu}(x)$ is a tempered distribution, then the Fourier transform

$$
\Im\left(K_{\alpha, \beta, \gamma, \nu}(x) * K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}(x)\right)=\left(\Im K_{\alpha, \beta, \gamma, \nu}(x)\right)\left(\Im K_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \nu^{\prime}}(x)\right),
$$

where $\Im\left(K_{\alpha, \beta, \gamma, \nu}(x)\right)$ is given by (3.1).
Corollary 3.1. (The alternative proof of Theorem 3.1). The Fourier transform

$$
\Im K_{2 k, 2 k, 2 k, 2 k}(x)=\frac{(-1)^{k}}{\left[\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{4}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{4}\right]^{k}}
$$

where k is a nonnegative integer and $K_{\alpha, \beta, \gamma, \nu}(x)$ is defined by (1.6).
Proof. From Theorem 3.1 with the particular case $\alpha=\beta=\gamma=\nu=2 k$, we can find $\Im K_{2 k, 2 k, 2 k, 2 k}(x)$ directly from the elementary solution of the operator \oplus^{k} defined by (1.1). Since $(-1)^{k} K_{2 k, 2 k, 2 k, 2 k}(x)$ is an elementary solution of the operator \oplus^{k}.

Thus $\oplus^{k}(-1)^{k} K_{2 k, 2 k, 2 k, 2 k}(x)=\delta$ or $\left(\oplus^{k}(-1)^{k} \delta\right) * K_{2 k, 2 k, 2 k, 2 k}(x)=\delta$.
By taking the Fourier transform both sides, we obtain

$$
\begin{equation*}
\Im\left(\oplus^{k}(-1)^{k} \delta\right) * \Im K_{2 k, 2 k, 2 k, 2 k}(x)=\Im \delta=1 . \tag{3.4}
\end{equation*}
$$

Now consider $\Im\left(\oplus^{k}(-1)^{k} \delta\right)$. Since δ is tempered distribution with compact support. Thus $\Im\left(\oplus^{k}(-1)^{k} \delta\right)=<\oplus^{k}(-1)^{k} \delta, e^{-i(\xi, x)}>=<\diamond^{k} L_{1}^{k} L_{2}^{k}(-1)^{k} \delta, e^{-i(\xi, x)}>$ by (2.10) where $\oplus^{k}=$ $\diamond^{k} L_{1}^{k} L_{2}^{k}$ by (1.5). Thus

$$
<\diamond^{k} L_{1}^{k} L_{2}^{k}(-1)^{k} \delta, e^{-i(\xi, x)}>=<\diamond^{k} L_{1} \delta,(-1)^{k} L_{2}^{k} e^{-i(\xi, x)}>=
$$

$$
\begin{gathered}
\begin{array}{c}
=<\diamond^{k} L_{1} \delta,(-1)^{k}(-1)^{k}\left(\sum_{r=1}^{p} \xi_{r}^{2}-i \sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{k} e^{-i(\xi, x)}>=<\diamond^{k} \delta,\left(\sum_{r=1}^{p} \xi_{r}^{2}-i \sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{k} L_{1} e^{-i(\xi, x)}>= \\
=<\diamond^{k} \delta,\left(\sum_{r=1}^{p} \xi_{r}^{2}-i \sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{k}\left(\sum_{r=1}^{p} \xi_{r}^{2}+i \sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{k}(-1)^{k} e^{-i(\xi, x)}>= \\
=<\delta,(-1)^{k}\left(\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{2}+\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)^{k} \diamond^{k} e^{-i(\xi, x)}>= \\
=<\delta,(-1)^{k}\left(\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{2}+\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)^{k} v \times\left(\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)^{k} e^{-i(\xi, x)}> \\
=<\delta,(-1)^{k}\left(\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{4}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{4}\right)^{k} e^{-i(\xi, x)}>=(-1)^{k}\left(\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{4}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{4}\right)^{k} \\
\text { Thus } \Im\left(\oplus^{k}(-1)^{k} \delta\right)=(-1)^{k}\left(\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{4}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{4}\right)^{k} .
\end{array} \text {. }
\end{gathered}
$$

Thus by (3.4) we obtain

$$
\Im K_{2 k, 2 k, 2 k, 2 k}(x)=\frac{(-1)^{k}}{\left[\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{4}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{4}\right]^{k}}
$$

References

[1] Kananthai A. On the solution of the n-dimensional Diamond operator // Appl. Math. and Comput. 1997. Vol. 88. P. 27-37.
[2] Kananthai A. On the spectrum of the Distributional Kernel related to the Residue // Intern. J. of Mathematics and Mathematical Sci.
[3] Nozaki Y. On Riemann - Liouville integral of Ultra-hyperbolic type // Kodai Mathematical Sem. Reports. 1964. Vol. 6, No. 2. P. 69-87.
[4] Kananthai A., Suantai S. On the weak solutions of the equation related to the Diamond operator // Comput. Technologies. 2000. Vol. 5, No. 5. P. 61-67.
[5] Gelfand I. M., Shilov G. E. Generalized Functions. Vol. 1. N. Y.: Acad. Press, 1964.
[6] Donoghue W. F. Distributions and Fourier transforms. N. Y.: Acad. Press, 1969.

