ON THE FOURIER TRANSFORM OF THE DISTRIBUTIONAL KERNEL $K_{\alpha,\beta,\gamma,\nu}$ RELATED TO THE OPERATOR \oplus^k

A. KANANTHAI, S. SUANTAI

Department of Mathematics Chiangmai University, Thailand e-mail: malamnka@science.cmu.ac.th

Рассмотрено преобразование Фурье ядра $K_{\alpha,\beta,\gamma,\nu},$ где $\alpha,\beta,\gamma,\nu-$ комплексные параметры. Исследовано преобразование Фурье свертки $K_{\alpha,\beta,\gamma,\nu} * K_{\alpha',\beta',\gamma',\nu'}$, где $\alpha, \beta, \gamma, \nu, \alpha', \beta', \gamma', \nu'$ — комплексные параметры.

1. Introduction

The operator \oplus^k can be factorized into the form

$$\oplus^{k} = \left[\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}} \right)^{2} - \left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right)^{2} \right]^{k} \left[\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}} + i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right]^{k} \left[\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}} - i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}} \right]^{k}, \quad (1.1)$$

where p + q = n is the dimension of the space \mathbb{C}^n , $i = \sqrt{-1}$ and k is a nonnegative integer.

The operator $\left(\sum_{r=1}^{p} \frac{\partial^2}{\partial x_r^2}\right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\right)^2$ is first introduced by A. Kananthai [1] and named the Dimond operator denoted by

$$\diamondsuit = \left(\sum_{r=1}^{p} \frac{\partial^2}{\partial x_r^2}\right)^2 - \left(\sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2}\right)^2.$$
(1.2)

Let us denote the operators L_1 and L_2 by

$$L_1 = \sum_{r=1}^p \frac{\partial^2}{\partial x_r^2} + i \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2},$$
(1.3)

$$L_{2} = \sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}} - i \sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}.$$
 (1.4)

Thus (1.1) can be written by

$$\oplus^k = \diamondsuit^k L_1^k L_2^k. \tag{1.5}$$

[©] A. Kananthai, S. Suantai, 2002.

Now consider the convolutions $R^H_{\alpha}(u) * R^{\ell}_{\beta}(v) * S_{\gamma}(w) * T_{\nu}(z)$ where $R^H_{\alpha}, R^{\ell}_{\beta}, S_{\gamma}$ and T_{ν} are defined by (2.2), (2.4), (2.6) and (2.7) respectively.

We defined the distributional kernel $K_{\alpha,\beta,\gamma,\nu}$ by

$$K_{\alpha,\beta,\gamma,\nu} = R^H_{\alpha} * R^\ell_{\beta} * S_{\gamma} * T_{\nu}.$$
(1.6)

Since the function $R^{H}_{\alpha}(u), R^{\ell}_{\beta}(v), S_{\gamma}(w)$ and $T_{\nu}(z)$ are all tempered distribution see [1, p. 30, 31] and [6, p. 154, 155], then the convolutions on the right hand side of (1.6) exists and is a tempered distribution. Thus $K_{\alpha,\beta,\gamma,\nu}$ is well defined and also a tempered distribution.

In this paper, at first we study the Fourier transform $\Im K_{\alpha,\beta,\gamma,\nu}$ or $\widehat{K_{\alpha,\beta,\gamma,\nu}}$ where $K_{\alpha,\beta,\gamma,\nu}$ is defined by (1.6).

After that we put $\alpha = \beta = \gamma = \nu = 2k$, then we obtain $\widehat{K_{2k,2k,2k,2k}}$ related to the elementary solution of the operator \oplus^k .

We also study the Fourier transform of the convolution $K_{\alpha,\beta,\gamma,\nu} * K_{\alpha',\beta',\gamma',\nu'}$.

2. Preliminaries

Definition 2.1. Let $x = (x_1, x_2, ..., x_n)$ be a point in the space \mathbb{C}^n of the n-dimensional complex space and write

$$u = x_1^2 + x_2^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2,$$
(2.1)

where p + q = n is the dimension of \mathbb{C}^n .

Denote by $\Gamma_+ = \{x \in \mathbb{R}^n : x_1 > 0 \text{ and } u > 0\}$ the set of an interior of the forward cone and $\overline{\Gamma_+}$ denotes it closure and \mathbb{R}^n is the n-dimensional Euclidean space.

For any complex number α , define

$$R_{\alpha}^{H}(u) = \begin{cases} \frac{u^{\frac{\alpha-n}{2}}}{K_{n}(\alpha)} & \text{for } x \in \Gamma_{+}, \\ 0 & \text{for } x \notin \Gamma_{+}, \end{cases}$$
(2.2)

where the constant $K_n(\alpha)$ is given by the formula

$$K_n(\alpha) = \frac{\pi^{\frac{n-1}{2}}\Gamma\left(\frac{2+\alpha-n}{2}\right)\Gamma\left(\frac{1-\alpha}{2}\right)\Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right)\Gamma\left(\frac{p-\alpha}{2}\right)}.$$

The function R_{α}^{H} is called the ultra-hyperbolic Kernel of Marcel Riesz and was introduced by Y. Nozaki [5, p. 72].

It is well known that R^H_{α} is an ordinary function if $Re(\alpha) \ge n$ and is a distribution of α if $Re(\alpha) < n$. Let supp $R^H_{\alpha}(u)$ denote the support of $R^H_{\alpha}(u)$ and suppose supp $R^H_{\alpha}(u) \subset \overline{\Gamma_+}$, that is supp $R^H_{\alpha}(u)$ is compact.

Definition 2.2. Let $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ and write

$$v = x_1^2 + x_2^2 + \dots + x_n^2.$$
(2.3)

For any complex number β , define

$$R^{\ell}_{\beta}(v) = 2^{-\beta} \pi^{\frac{-n}{2}} \Gamma\left(\frac{n-\beta}{2}\right) \frac{v^{\frac{\beta-n}{2}}}{\Gamma\left(\frac{\beta}{2}\right)}.$$
(2.4)

The function $R^{\ell}_{\beta}(v)$ is called the elliptic Kernel of Marcel Riesz and is ordinary function for $Re(\beta) \ge n$ and is a distribution of β for $Re(\beta) < n$.

Definition 2.3. Let $x = (x_1, x_2, ..., x_n)$ be a point of the space \mathbb{C}^n of the n-dimensional complex space and write

$$w = x_1^2 + x_2^2 + \dots + x_p^2 - i\left(x_{p+1}^2 + x_{p+2}^2 + \dots + x_{p+q}^2\right), \qquad (2.5)$$

where p + q = n is the dimension of \mathbb{C}^n and $i = \sqrt{-1}$.

For any complex number γ , define the function

$$S_{\gamma}(w) = 2^{-\gamma} \pi^{\frac{-n}{2}} \Gamma\left(\frac{n-\gamma}{2}\right) \frac{w^{\frac{\gamma-n}{2}}}{\Gamma\left(\frac{\gamma}{2}\right)}.$$
(2.6)

The function $S_{\gamma}(w)$ is an ordinary function if $Re(\gamma) \ge n$ and is a distribution of γ for $Re(\gamma) < n$. **Definition 2.4**. For any complex number ν , define the function

$$T_{\nu}(z) = 2^{-\nu} \pi^{\frac{-n}{2}} \Gamma\left(\frac{n-\nu}{2}\right) \frac{z^{\frac{\nu-n}{2}}}{\Gamma\left(\frac{\nu}{2}\right)},\tag{2.7}$$

where

$$z = x_1^2 + x_2^2 + \dots + x_p^2 + i\left(x_{p+1}^2 + x_{p+2}^2 + \dots + x_{p+q}^2\right),$$
(2.8)

 $x = (x_1, x_2, ..., x_n) \in \mathbb{C}^n, \ p + q = n$ is the dimension of \mathbb{C}^n and $i = \sqrt{-1}$.

We have $T_{\nu}(z)$ is an ordinary function if $Re(\nu) \ge n$ and is a distribution of ν for $Re(\nu) < n$. **Definition 2.5.** Let f(x) be continuous function on \mathbb{R}^n where $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$. The Fourier transform of f(x) denoted by $\Im f$ or $\hat{f}(\xi)$ and is defined by

$$\Im f(x) = \hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i(\xi,x)} f(x) dx, \qquad (2.9)$$

where $\xi = (\xi_1, \xi_2, ..., \xi_n) \in \mathbb{R}^n$ and $(\xi, x) = \xi_1 x_1 + \xi_2 x_2 + ... + \xi_n x_n$.

Definition 2.6. Let $\mu(x)$ be a tempered distribution with compact support. The Fourier transform of $\mu(x)$ is defined by

$$\hat{\mu}(\xi) = \langle \mu(x), e^{-i(\xi,x)} \rangle.$$
 (2.10)

Lemma 2.1. The functions R^H_{α} , R^ℓ_{β} , S_{γ} and T_{ν} defined by (2.2), (2.4), (2.6) and (2.7) respectively, are all tempered distributions.

Proof see [1, p. 30, 31] and [6, p. 154, 155].

Lemma 2.2. The function $(-1)^k K_{2k,2k,2k,2k}(x)$ is an elementary solution of the operator \oplus^k , that is $\oplus^k (-1)^k K_{2k,2k,2k,2k}(x) = \delta$ where \oplus^k is defined by (1.1), $K_{2k,2k,2k,2k}(x)$ is defined by (1.6) with $\alpha = \beta = \gamma = \nu = 2k$ and δ is the Dirac-delta distribution.

Proof see [4, p. 66].

Lemma 2.3. 1. The Fourier transform of the convolution $R^H_{\alpha}(u) * R^{\ell}_{\beta}(v)$ is given by the formula

$$\Im\left(R_{\alpha}^{H}(u)\ast R_{\beta}^{\ell}(v)\right) = \frac{(i)^{q}2^{\alpha+\beta}\Gamma\left(\frac{\alpha}{2}\right)\Gamma\left(\frac{\beta}{2}\right)\pi^{n}}{K_{n}(\alpha)H_{n}(\beta)\Gamma\left(\frac{n-\alpha}{2}\right)\Gamma\left(\frac{n-\beta}{2}\right)}\left(\sqrt{\sum_{r=1}^{p}\xi_{r}^{2}-\sum_{j=p+1}^{p+q}\xi_{j}^{2}}\right)^{-\alpha}\left(\sqrt{\sum_{r=1}^{n}\xi_{r}^{2}}\right)^{-\beta}, \quad (2.11)$$

where $R^{H}_{\alpha}(u)$ and $R^{\ell}_{\beta}(v)$ are defined by (2.2) and (2.4) respectively,

$$H_n(\beta) = \frac{\Gamma\left(\frac{\beta}{2}\right)2^{\beta}\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-\beta}{2}\right)} \quad and \quad i = \sqrt{-1}.$$

In particular, if $\alpha = \beta = 2k$ then (2.11) becomes

$$\Im(R_{2k}^{H}(u) * R_{2k}^{\ell}(v)) = \frac{(-1)^{k}}{\left[\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{2} - \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right]^{k}},$$
(2.12)

where k is nonnegative integer and $(-1)^k R_{2k}^H(u) * R_{2k}^\ell(v)$ is an elementary solution of the operator \Diamond^k iterated k-times defined by (1.2).

Moreover $|\Im(R_{2k}^H(u) * R_{2k}^\ell(v))| \leq M$, where M is constant, that is \Im is bounded, that implies \Im is continuous on the space S' of the tempered distribution.

2. The Fourier transform of the convolution $S_{\gamma}(w) * T_{\nu}(z)$ is given by the formula

$$\Im(S_{\gamma}(w) * T_{\nu}(z)) = \frac{1}{H_{n}(\gamma)H_{n}(\nu)} \frac{2^{\gamma+\nu}\pi^{n}\Gamma\left(\frac{\gamma}{2}\right)\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{n-\gamma}{2}\right)\Gamma\left(\frac{n-\nu}{2}\right)} \times \left(\sqrt{\sum_{r=1}^{p}\xi_{r}^{2}+i\sum_{j=p+1}^{p+q}\xi_{j}^{2}}\right)^{-\gamma} \left(\sqrt{\sum_{r=1}^{p}\xi_{r}^{2}-i\sum_{j=p+1}^{p+q}\xi_{j}^{2}}\right)^{-\nu}, \qquad (2.13)$$

where $S_{\gamma}(w)$ and $T_{\nu}(z)$ are defined by (2.6) and (2.7) respectively,

$$H_n(\gamma) = \frac{\Gamma\left(\frac{\gamma}{2}\right)2^{\gamma}\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-\gamma}{2}\right)} \quad and \quad H_n(\nu) = \frac{\Gamma\left(\frac{\nu}{2}\right)2^{\nu}\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-\nu}{2}\right)}.$$

In particular, if $\gamma = \nu = 2k$ then (2.13) becomes

$$\Im(S_{\gamma}(w) * T_{\nu}(z)) = \frac{1}{\left[\left(\xi_{1}^{2} + \xi_{2}^{2} + \dots + \xi_{p}^{2}\right)^{2} + \left(\xi_{p+1}^{2} + \xi_{p+2}^{2} + \dots + \xi_{p+q}^{2}\right)^{2}\right]^{k}},$$
(2.14)

where k is a nonnegative integer and $(-1)^k (-i)^{\frac{q}{2}} S_{2k}(w)$ and $(-1)^k (-i)^{\frac{q}{2}} T_{2k}(z)$ are elementary solutions of the operators L_1 and L_2 defined by (1.3) and (1.4) respectively.

Proof: 1. To prove (2.11) and (2.12) see [2] and to show that \Im is bounded, now

$$\left|\Im(R_{2k}^{H}(u) * R_{2k}^{\ell}(v))\right| = \left|\frac{(-1)^{k}}{\left[\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{2} - \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right]^{k}}\right| \le \frac{1}{\left|\left(\sum_{r=1}^{p} \xi_{r}^{2}\right)^{2} + \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right|^{k}} \le M,$$

where p + q = n for large $\xi_r \in \mathbb{R}$ (r = 1, 2, ..., n).

That implies that \Im is continuous on the space S' of tempered distribution. For the case $(-1)^k R_{2k}^H(u) * R_{2k}^\ell(v)$ is an elementary solution of the operator \diamondsuit^k , see [1].

2. We have

$$S_{\gamma}(w) = \frac{w^{\frac{\gamma-n}{2}}}{H_n(\gamma)}, \quad \text{where} \quad H_n(\gamma) = \frac{\Gamma\left(\frac{\gamma}{2}\right)2^{\gamma}\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n-\gamma}{2}\right)}$$

and $w = x_1^2 + x_2^2 + \ldots + x_p^2 - i(x_{p+1}^2 + x_{p+2}^2 + \ldots + x_{p+q}^2)$. Now, changing the variable $x_1 = y_1, x_2 = y_2, \ldots, x_p = y_p$,

$$x_{p+1} = \frac{y_{p+1}}{\sqrt{-i}}, \quad x_{p+2} = \frac{y_{p+2}}{\sqrt{-i}}, \quad \dots, \quad x_{p+q} = \frac{y_{p+q}}{\sqrt{-i}}$$

Then we obtain $w = y_1^2 + y_2^2 + \ldots + y_p^2 + y_{p+1}^2 + y_{p+2}^2 + \ldots + y_{p+q}^2$. Let $\rho^2 = y_1^2 + y_2^2 + \ldots + y_{p+q}^2$, p + q = n. Then

$$\Im S_{\gamma}(w) = \frac{1}{H_{n}(\gamma)} \int_{\mathbb{R}^{n}} e^{-i(\xi,x)} w^{\frac{\gamma-n}{2}} dx = \frac{1}{H_{n}(\gamma)} \int_{\mathbb{R}^{n}} e^{-i(\xi,x)} \rho^{\gamma-n} \frac{\partial(x_{1}, x_{2}, ..., x_{n})}{\partial(y_{1}, y_{2}, ..., y_{n})} dy_{1} dy_{2} ... dy_{n} = = \frac{1}{H_{n}(\gamma)(-i)^{\frac{q}{2}}} \int_{\mathbb{R}^{n}} \rho^{\gamma-n} e^{-i(\xi_{1}y_{1}+\xi_{2}y_{2}+...+\xi_{p}y_{p}+\frac{\xi_{p+1}}{\sqrt{-1}}y_{p+1}+...+\frac{\xi_{p+q}}{\sqrt{-1}}y_{p+q})} dy = = \frac{1}{H_{n}(\gamma)(-i)^{\frac{q}{2}}} 2^{\gamma} \pi^{\frac{n}{2}} \frac{\Gamma\left(\frac{\gamma}{2}\right)}{\Gamma\left(\frac{n-\gamma}{2}\right)} \left(\sqrt{\xi_{1}^{2}+\xi_{2}^{2}+...+\xi_{p}^{2}+i(\xi_{p+1}^{2}+\xi_{p+2}^{2}+...+\xi_{p+q}^{2})}\right)^{-\gamma} (2.15)$$

by [5, p. 194]

Similarly, for $T_{\nu}(z) = \frac{z^{\frac{\nu-n}{2}}}{H_n(\nu)}$ we have $z = x_1^2 + x_2^2 + \ldots + x_p^2 + i(x_{p+1}^2 + x_{p+2}^2 + \ldots + x_{p+q}^2)$. Putting $x_1 = y_1, x_2 = y_2, \ldots, x_p = y_p, x_{p+1} = \frac{y_{p+1}}{\sqrt{i}}, \ldots, x_{p+q} = \frac{y_{p+q}}{\sqrt{i}}$. Thus $z = y_1^2 + y_2^2 + \ldots + y_{p+q}^2$, p + q = n. Let $\rho^2 = y_1^2 + y_2^2 + \ldots + y_{p+q}^2$, p + q = n. Then

$$\Im T_{\nu}(z) = \frac{1}{H_n(\nu)} \int_{\mathbb{R}^n} e^{-i(\xi,x)} z^{\frac{\nu-n}{2}} dx =$$

$$=\frac{1}{H_n(\nu)(i)^{\frac{q}{2}}}\int_{\mathbb{R}^n}\rho^{\nu-n}e^{-i(\xi_1y_1+\xi_2y_2+\ldots+\xi_py_p+\frac{\xi_{p+1}}{\sqrt{i}}y_{p+1}+\ldots+\frac{\xi_{p+q}}{\sqrt{i}}y_{p+q})}dy=$$

$$= \frac{2^{\nu} \pi^{\frac{n}{2}}}{H_n(\nu)(i)^{\frac{q}{2}}} \frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{n-\nu}{2}\right)} \left(\sqrt{\xi_1^2 + \xi_2^2 + \dots + \xi_p^2 - i(\xi_{p+1}^2 + \xi_{p+2}^2 + \dots + \xi_{p+q}^2)}\right)^{-\nu}.$$
 (2.16)

Since $S_{\gamma}(w)$ and $T_{\nu}(z)$ are tempered distributions, then $S_{\gamma}(w) * T_{\nu}(z)$ exists and $\Im(S_{\gamma}(w) * T_{\nu}(z)) = \Im(S_{\gamma}(w))\Im(T_{\nu}(z)).$

Thus

$$\Im(S_{\gamma}(w) * T_{\nu}(z)) = \Im(S_{\gamma}(w))\Im(T_{\nu}(z)) =$$

$$= \frac{2^{\gamma+\nu}\pi^{n}}{H_{n}(\gamma)H_{n}(\nu)} \frac{\Gamma\left(\frac{\gamma}{2}\right)}{\Gamma\left(\frac{n-\gamma}{2}\right)} \frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{n-\nu}{2}\right)} \left(\sqrt{\sum_{r=1}^{p}\xi_{r}^{2} + i\sum_{j=p+1}^{p+q}\xi_{j}^{2}}\right)^{-\gamma} \left(\sqrt{\sum_{r=1}^{p}\xi_{r}^{2} - i\sum_{j=p+1}^{p+q}\xi_{j}^{2}}\right)^{-\nu} \quad (2.17)$$

by (2.15) and (2.16).

Now consider

$$\frac{2^{\gamma+\nu}\pi^n}{H_n(\gamma)H_n(\nu)} \frac{\Gamma\left(\frac{\gamma}{2}\right)\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{n-\gamma}{2}\right)\Gamma\left(\frac{n-\nu}{2}\right)}.$$
(2.18)

Putting $\gamma = \nu = 2k$, thus (2.18) becomes

$$\frac{2^{4k}\pi^n}{H_n(2k)H_n(2k)} \frac{\Gamma\left(\frac{2k}{2}\right)\Gamma\left(\frac{2k}{2}\right)}{\Gamma\left(\frac{n-2k}{2}\right)\Gamma\left(\frac{n-2k}{2}\right)} = \frac{2^{4k}\pi^n}{2^{4k}\pi^n} \frac{\Gamma\left(\frac{n-2k}{2}\right)\Gamma\left(\frac{n-2k}{2}\right)}{\Gamma(k)\Gamma(k)} \times \frac{\Gamma(k)\Gamma(k)}{\Gamma\left(\frac{n-2k}{2}\right)\Gamma\left(\frac{n-2k}{2}\right)} = 1.$$

Thus, from (2.17)

$$\Im(S_{2k}(w) * T_{2k}(z)) = \frac{1}{\left[\left(\sum_{i=1}^{p} \xi_i^2\right)^2 + \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^2\right]^k}.$$
(2.19)

3. Main results

Theorem 3.1. The Fourier transform of the distributional kernel $K_{\alpha,\beta,\gamma,\nu}(x)$ is given by the formula

$$\Im K_{\alpha,\beta,\gamma,\nu}(x) = \left(\frac{(\pi)^{2n}(i)^q 2^{\alpha+\beta+\gamma+\nu} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\beta}{2}\right) \Gamma\left(\frac{\gamma}{2}\right) \Gamma\left(\frac{\nu}{2}\right) \left(\sqrt{\sum_{r=1}^p \xi_r^2 - \sum_{j=p+1}^{p+q} \xi_j^2}\right)^{-\alpha}}{K_n(\alpha) H_n(\beta) H_n(\gamma) H_n(\nu)}\right) \times$$

$$\times \left(\frac{\left(\sqrt{\sum_{r=1}^{n} \xi_r^2}\right)^{-\beta} \left(\sqrt{\sum_{r=1}^{p} \xi_r^2 + i \sum_{j=p+1}^{p+q} \xi_j^2}\right)^{-\gamma} \left(\sqrt{\sum_{r=1}^{p} \xi_r^2 - i \sum_{j=p+1}^{p+q} \xi_j^2}\right)^{-\nu}}{\Gamma\left(\frac{n-\alpha}{2}\right) \Gamma\left(\frac{n-\beta}{2}\right) \Gamma\left(\frac{n-\gamma}{2}\right) \Gamma\left(\frac{n-\nu}{2}\right)} \right).$$
(3.1)

In particular, if $\alpha = \beta = \gamma = \nu = 2k$ then (3.1) becomes

$$\Im K_{\alpha,\beta,\gamma,\nu}(x) = \frac{(-1)^k}{\left[\left(\xi_1^2 + \xi_2^2 + \dots + \xi_p^2\right)^4 - \left(\xi_{p+1}^2 + \xi_{p+2}^2 + \dots + \xi_{p+q}^2\right)^4\right]^k}.$$
(3.2)

Moreover $(-1)^k K_{2k,2k,2k,2k}(x)$ is an elementary solution of the operator \oplus^k defined by (1.1).

Proof. Now $K_{\alpha,\beta,\gamma,\nu}(x) = R^H_{\alpha}(u) * R^\ell_{\beta}(v) * S_{\gamma}(w) * T_{\nu}(z)$ by (1.6). Since $R^H_{\alpha}, R^\ell_{\beta}, S_{\gamma}(w)$ and $T_{\nu}(z)$ are all tempered distributions by Lemma 2.1, thus $\Im K_{\alpha,\beta,\gamma,\nu}(x) = \Im (R^H_{\alpha}(u) * R^\ell_{\beta}(v))\Im (S_{\gamma}(w) * T_{\nu}(z))$. By (2.11) and (2.17), we obtained (3.1) as required. For the case $\alpha = \beta = \gamma = \nu = 2k$, by (2.12) and (2.19) we obtain (3.2) as required.

For $(-1)^k K_{2k,2k,2k,2k}(x)$ is an elementary solution of the operator \oplus^k see [4, p. 66].

Theorem 3.2. The Fourier transform of the convolution $K_{\alpha,\beta,\gamma,\nu}(x) * K_{\alpha',\beta',\gamma',\nu'}(x)$ is given by the formula

$$\Im \left(K_{\alpha,\beta,\gamma,\nu}(x) * K_{\alpha',\beta',\gamma',\nu'}(x) \right) = \Im K_{\alpha,\beta,\gamma,\nu}(x) \Im K_{\alpha',\beta',\gamma',\nu'}(x), \tag{3.3}$$

where $K_{\alpha,\beta,\gamma,\nu}(x)$ is defined by (1.6), α , β , γ , ν , α' , β' , γ' and ν' are complex numbers.

Proof. Now $K_{\alpha,\beta,\gamma,\nu}(x) = R^H_{\alpha}(u) * R^{\ell}_{\beta}(v) * S_{\gamma}(w) * T_{\nu}(z)$ by (1.6). Since $K_{\alpha,\beta,\gamma,\nu}(x)$ is the convolutions of all tempered distributions, thus $K_{\alpha,\beta,\gamma,\nu}(x)$ is also a tempered distribution and the convolution $K_{\alpha,\beta,\gamma,\nu}(x) * K_{\alpha',\beta',\gamma',\nu'}(x)$ exists.

Since $K_{\alpha,\beta,\gamma,\nu}(x)$ is a tempered distribution, then the Fourier transform

$$\Im \left(K_{\alpha,\beta,\gamma,\nu}(x) * K_{\alpha',\beta',\gamma',\nu'}(x) \right) = \left(\Im K_{\alpha,\beta,\gamma,\nu}(x) \right) \left(\Im K_{\alpha',\beta',\gamma',\nu'}(x) \right),$$

where $\Im(K_{\alpha,\beta,\gamma,\nu}(x))$ is given by (3.1).

Corollary 3.1. (The alternative proof of Theorem 3.1). The Fourier transform

$$\Im K_{2k,2k,2k}(x) = \frac{(-1)^k}{\left[\left(\sum_{i=1}^p \xi_i^2\right)^4 - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^4\right]^k},$$

where k is a nonnegative integer and $K_{\alpha,\beta,\gamma,\nu}(x)$ is defined by (1.6).

Proof. From Theorem 3.1 with the particular case $\alpha = \beta = \gamma = \nu = 2k$, we can find $\Im K_{2k,2k,2k,2k}(x)$ directly from the elementary solution of the operator \oplus^k defined by (1.1). Since $(-1)^k K_{2k,2k,2k,2k}(x)$ is an elementary solution of the operator \oplus^k .

Thus $\oplus^k (-1)^k K_{2k,2k,2k}(x) = \delta$ or $(\oplus^k (-1)^k \delta) * K_{2k,2k,2k}(x) = \delta$. By taking the Fourier transform both sides, we obtain

$$\Im(\oplus^{k}(-1)^{k}\delta) * \Im K_{2k,2k,2k}(x) = \Im \delta = 1.$$
(3.4)

Now consider $\Im(\oplus^k(-1)^k\delta)$. Since δ is tempered distribution with compact support. Thus $\Im(\oplus^k(-1)^k\delta) = \langle \oplus^k(-1)^k\delta, e^{-i(\xi,x)} \rangle = \langle \diamondsuit^k L_1^k L_2^k(-1)^k\delta, e^{-i(\xi,x)} \rangle$ by (2.10) where $\oplus^k = \diamondsuit^k L_1^k L_2^k$ by (1.5). Thus

$$< \diamondsuit^{k} L_{1}^{k} L_{2}^{k} (-1)^{k} \delta, e^{-i(\xi,x)} > = < \diamondsuit^{k} L_{1} \delta, (-1)^{k} L_{2}^{k} e^{-i(\xi,x)} > =$$

$$= < \diamondsuit^{k} L_{1}\delta, (-1)^{k} (-1)^{k} \left(\sum_{r=1}^{p} \xi_{r}^{2} - i \sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{k} e^{-i(\xi,x)} > = < \diamondsuit^{k}\delta, \left(\sum_{r=1}^{p} \xi_{r}^{2} - i \sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{k} L_{1}e^{-i(\xi,x)} > = = < \diamondsuit^{k}\delta, \left(\sum_{r=1}^{p} \xi_{r}^{2} - i \sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{k} \left(\sum_{r=1}^{p} \xi_{r}^{2} + i \sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{k} (-1)^{k}e^{-i(\xi,x)} > = = < \delta, (-1)^{k} \left(\left(\sum_{r=1}^{p} \xi_{r}^{2} \right)^{2} + \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{2} \right)^{k} v \times \left(\left(\sum_{r=1}^{p} \xi_{r}^{2} \right)^{2} - \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{2} \right)^{k} e^{-i(\xi,x)} > = = < \delta, (-1)^{k} \left(\left(\sum_{r=1}^{p} \xi_{r}^{2} \right)^{2} + \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{2} \right)^{k} v \times \left(\left(\sum_{r=1}^{p} \xi_{r}^{2} \right)^{2} - \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{2} \right)^{k} e^{-i(\xi,x)} > = = < \delta, (-1)^{k} \left(\left(\sum_{r=1}^{p} \xi_{r}^{2} \right)^{4} - \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{4} \right)^{k} e^{-i(\xi,x)} > = (-1)^{k} \left(\left(\sum_{r=1}^{p} \xi_{r}^{2} \right)^{4} - \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{4} \right)^{k}.$$

Thus $\Im(\oplus^{k}(-1)^{k}\delta) = (-1)^{k} \left(\left(\sum_{r=1}^{p} \xi_{r}^{2} \right)^{4} - \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{4} - \left(\sum_{j=p+1}^{p+q} \xi_{j}^{2} \right)^{4} \right)^{k}.$
Thus by (3.4) we obtain

$$\Im K_{2k,2k,2k,2k}(x) = \frac{(-1)^k}{\left[\left(\sum_{i=1}^p \xi_i^2\right)^4 - \left(\sum_{j=p+1}^{p+q} \xi_j^2\right)^4\right]^k}.$$

References

- [1] KANANTHAI A. On the solution of the n-dimensional Diamond operator // Appl. Math. and Comput. 1997. Vol. 88. P. 27-37.
- [2] KANANTHAI A. On the spectrum of the Distributional Kernel related to the Residue // Intern. J. of Mathematics and Mathematical Sci.
- [3] NOZAKI Y. On Riemann-Liouville integral of Ultra-hyperbolic type // Kodai Mathematical Sem. Reports. 1964. Vol. 6, No. 2. P. 69-87.
- [4] KANANTHAI A., SUANTAI S. On the weak solutions of the equation related to the Diamond operator // Comput. Technologies. 2000. Vol. 5, No. 5. P. 61-67.
- [5] GELFAND I. M., SHILOV G. E. Generalized Functions. Vol. 1. N.Y.: Acad. Press, 1964.
- [6] DONOGHUE W. F. Distributions and Fourier transforms. N.Y.: Acad. Press, 1969.