МЕТОДИКА ОЦЕНИВАНИЯ НЕКОТОРЫХ ПАРАМЕТРОВ ИМПУЛЬСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ЗЕМЛИ

Г. М. ВОДИНЧАР

Камчатский государственный педагогический университет Петропавловск-Камчатский, Россия e-mail: g_vodin@kgpu.kamchatka.ru

The article analyses the strategy of point and interval estimation of mathematical expectation signal parameters, which characterize electromagnetic pulsed terrestrial emission. A non-stationary Poisson process is used as the signal model. The results of testing of the strategy are given.

Введение

В последнее время оформилось перспективное направление работ по прогнозированию землетрясений выделением из различных геофизических полей сигналов, в спектре которых проявляются частоты волн приливного воздействия. К таким сигналам относятся, например, высокочастотный сейсмический шум [1–3], импульсное электромагнитное излучение (ИЭМИ) из литосферы [4, 5]. В этих сигналах непосредственно перед землетрясением наблюдаются стабилизации фаз гармонических компонент с частотами приливных волн O_1 и/или M_2 [6] и их высших гармоник. Поэтому важной является задача надежно определять временные промежутки, когда над фоном шумов появляется сигнал с частотами волн O_1 и/или M_2 и определенными значениями начальных фаз. Эту задачу естественно решать в скользящем вдоль ряда данных временном окне. При этом речь идет о построении не только точечных, но и интервальных оценок, позволяющих определять допускаемые погрешности.

В настоящей работе рассматривается решение данной задачи для ИЭМИ Земли. В качестве характеристики ИЭМИ используется интенсивность — число превышающих шумовой порог импульсов в минуту. Частотный состав переменного во времени математического ожидания числа импульсов рассмотрен в [5], где установлено, что в спектре проявляются гармоники, модулированные приливными волнами суточной и полусуточной групп [6]. Построение интервальных оценок для случайных нестационарных сигналов рассмотрено, например, в [7–9], где оценивание, как правило, ведется по нескольким реализациям или предполагается, что сигнал является композицией детерминированного сигнала и стационарного шума. Для ИЭМИ оценки на основе подобной модели построены в [10]. В настоящей работе используется другая модель сигнала, более точно соответствующая его структуре.

[©] Г. М. Водинчар, 2002.

1. Модель сигнала

Будем считать, что целочисленное время n изменяется от -N до N и число импульсов, превышающих шумовой порог в промежуток [-N+n; -N+n+1], равно x_n . Превышение ИЭМИ шумового порога образует пуассоновский поток событий, значит, x_n распределено по закону Пуассона, и различные элементы последовательности x_n попарно независимы. Характеризующий распределение Пуассона параметр λ_n , являющийся математическим ожиданием для x_n , меняется со временем. Так как частотный состав λ_n известен [5], считаем, что $\lambda_n = A_0 + \sum_{i=1}^p (A_i \cos \omega_i n + B_i \sin \omega_i n)$ с известными частотами ω_i . Требуется по одной реализации сигнала x_n оценить параметры A_i и B_i .

2. Построение точечных оценок

Представим x_n в виде суммы детерминированного сигнала λ_n и шума s_n :

$$x_n = A_0 + \sum_{i=1}^p \left(A_i \cos \omega_i n + B_i \sin \omega_i n \right) + s_n,$$

где $s_n = x_n - \lambda_n$.

Ясно, что $\mathbf{M}s_n = 0$ и $\mathbf{D}s_n = \lambda_n$. Для получения точечных оценок применим метод наименьших квадратов. Этот метод дает хорошие статистические оценки тогда, когда шумовые компоненты являются одинаково распределенными независимыми величинами [11]. В нашем случае шумовые компоненты по-разному распределены, поэтому свойства МНК-оценок нуждаются в изучении.

Построим МНК-оценки. Ясно, что $\sum_{n=-N}^{N} \sin \omega_i n = 0$. Легко установить непосредственным суммированием, что $\sum_{n=-N}^{N} \cos \omega_i n = \frac{\sin (N+0.5) \omega_i}{\sin 0.5 \omega_i}$. Для упрощения вычислений введем обозначения: $\alpha_{in} = \cos \omega_i n - \frac{\sin (N+0.5) \omega_i}{(2N+1) \sin 0.5 \omega_i}$, $\beta_{in} = \sin \omega_i n$. Тогда $\sum_{n=-N}^{N} \alpha_{in} = 0$ и $\sum_{n=-N}^{N} \beta_{in} = 0$. В новых обозначениях $\lambda_n = + \sum_{i=1}^{p} (A_i \alpha_{in} + B_i \beta_{in})$, где $= A_0 + \sum_{i=1}^{p} \frac{A_i \sin (N+0.5) \omega_i}{(2N+1) \sin \omega_i}$. Обозначения для (α_i, α_j) и (β_i, β_j) :

$$(\alpha_i, \alpha_i) = N + \frac{1}{2} + \frac{\sin(2N+1)\,\omega_i}{2\sin\omega_i} - \frac{\sin^2(N+0.5)\,\omega_i}{(2N+1)\sin^20.5\omega_i};$$

$$(\alpha_i, \alpha_j) = \frac{\sin(N+0.5)(\omega_i - \omega_j)}{2\sin 0.5(\omega_i - \omega_j)} + \frac{\sin(N+0.5)(\omega_i + \omega_j)}{2\sin 0.5(\omega_i + \omega_j)} - \frac{\sin(N+0.5)\omega_i\sin(N+0.5)\omega_j}{(2N+1)\sin 0.5\omega_i\sin 0.5\omega_j}$$

при $i \neq j$;

$$(\beta_i, \beta_i) = N + \frac{1}{2} - \frac{\sin(2N+1)\omega_i}{2\sin\omega_i};$$
$$(\beta_i, \beta_j) = \frac{\sin(N+0.5)(\omega_i - \omega_j)}{2\sin 0.5(\omega_i - \omega_j)} - \frac{\sin(N+0.5)(\omega_i + \omega_j)}{2\sin 0.5(\omega_i + \omega_j)} \quad \text{при} \quad i \neq j.$$

Видно, что (α_i, α_j) и (β_i, β_j) бесконечно велики при $N \to \infty$, когда i = j, и ограничены, когда $i \neq j$.

Точечные МНК-оценки C^* , A_i^* , B_i^* параметров C, A_i , B_i соответственно являются решениями трех независимых систем уравнений:

$$(2N+1)C^* = \sum_{n=-N}^{N} x_n,$$
(1)

$$\sum_{j=1}^{p} (\alpha_i, \alpha_j) A_j^* = (\alpha_i, x) \quad i = 1, 2, \dots, p,$$
(2)

$$\sum_{j=1}^{p} (\beta_i, \beta_j) B_j^* = (\beta_i, x) \quad i = 1, 2, \dots, p.$$
(3)

Из доказываемого ниже предложения 1 следует обратимость основных матриц систем (2) и (3) при достаточной длительности сигнала x_n . Пусть матрицы $U = \|u_{ij}\|_{p \times p}$ и $V = \|v_{ij}\|_{p \times p}$ являются обратными для матриц $\|(\alpha_i, \alpha_j)\|_{p \times p}$ и $\|(\beta_i, \beta_j)\|_{p \times p}$ соответственно. Тогда $A_i^* = \sum_{j=1}^p u_{ij}(\alpha_j, x)$ и $B_i^* = \sum_{j=1}^p v_{ij}(\beta_j, x)$. Определим также отклонения полученных оценок от истинных значений. Умножив почленно равенство $x_n = + \sum_{i=1}^p (A_j \alpha_{jn} + B_j \beta_{jn}) + s_n$ на

 α_{in} и просуммировав по n от -N до N, получим $(\alpha_i, x) = \sum_{j=1}^{p} (\alpha_i, \alpha_j) A_j + (\alpha_i, s)$. С учетом выражения для (α_i, x) из системы (2) величины $A_i - A_i^*$ являются решениями системы

$$\sum_{j=1}^{p} (\alpha_i, \alpha_j) (A_j - A_j^*) = -(\alpha_i, s), \quad i = 1, 2, ..., p.$$

Тогда $A_i - A_i^* = -\sum_{j=1}^p u_{ij} (\alpha_j, s)$. Аналогично можно установить, что $B_i - B_i^* = -\sum_{j=1}^p v_{ij} (\beta_j, s)$. Ясно также, что $C - C^* = -\frac{1}{2N+1} \sum_{n=-N}^N s_n$.

3. Статистические свойства и распределения точечных оценок

Из выражений для $A_i - A_i^*$, $B_i - B_i^*$, $C - C^*$ очевидно, что полученные МНК-оценки являются несмещенными. Покажем их состоятельность, предварительно доказав вспомогательное

Предложение 1. Если у симметрической матрицы $T(N) = \|t_{ij}(N)\|_{p \times p}$ внедиагональные элементы ограничены и $\lim_{N \to \infty} t_{ii}(N) = \infty$, то при достаточно больших N матрица обратима и все элементы обратной матрицы бесконечно малы при $N \to \infty$.

Доказательство. Все собственные значения $\mu_i(N)$ матрицы T(N) в комплексной плоскости лежат в области Гершгорина [12], являющейся объединением кругов

$$|z - t_{ii}(N)| \le \sum_{\substack{j=1\\j \neq i}}^{p} |t_{ij}(N)|, \quad i = 1, 2, \dots, p$$

При $N \to \infty$ центры этих кругов также стремятся к бесконечности, а их радиусы ограничены. Тогда расстояние от области Гершгорина до начала координат неограниченно возрастает и $\lim_{N\to\infty} \mu_i(N) = \infty$. Это гарантирует, что все собственные значения отличны от 0 при достаточно больших N и матрица обратима. Матрица T(N) — симметрическая, значит, обладает ортонормированной системой собственных вектор-столбцов \mathbf{u}_i . Тогда обратная матрица представима в виде

$$T^{-1}(N) = \left[\frac{1}{\mu_1(N)} \mathbf{u}_1 \cdots \frac{1}{\mu_p(N)} \mathbf{u}_p \right] \left[\mathbf{u}_1 \cdots \mathbf{u}_p \right]^T.$$

Все координаты векторов \mathbf{u}_i не превосходят по модулю 1, а $\lim_{N\to\infty}\frac{1}{\mu_i(N)}=0$. Тогда все элементы $T^{-1}(N)$ при $N\to\infty$ бесконечно малы.

Предложение 2. Оценки A_i^*, B_i^*, C^* являются состоятельными.

Доказательство. Найдем дисперсию A_i^* , учитывая, что полигармоническая последовательность λ_n ограничена. Значит, существует положительное число λ такое, что $\lambda \geq \lambda_n$

для всех *n*. Тогда
$$\mathbf{D}A_i^* = \mathbf{D}\left(\sum_{j=1}^p u_{ij}\sum_{n=-N}^N \alpha_{jn}x_n\right) = \sum_{n=-N}^N \left(\sum_{j=1}^p u_{ij}\alpha_{jn}\right)^2 \lambda_n \le \lambda \sum_{n=-N}^N \left(\sum_{j=1}^p u_{ij}\alpha_{jn}\right)^2 = \lambda \sum_{n=-N}^N \sum_{j,k=1}^p u_{ij}u_{ik}\alpha_{jn}\alpha_{kn} = \lambda \sum_{j,k=1}^p u_{ij}u_{ik}(\alpha_j,\alpha_k) = \lambda u_{ii}.$$

По предложению 1 $u_{ii} \to 0$ при $N \to \infty$, тогда $\lim_{N\to\infty} \mathbf{D}A_i^* = 0$ и A_i^* — состоятельная оценка. Аналогично доказывается и состоятельность оценки B_i^* . Из системы (1) получаем, что $\mathbf{D}C^* = C/(2N+1)$, значит, оценка C^* также состоятельна.

Итак, установлено, что МНК-оценки являются несмещенными и состоятельными, это дает возможность дальнейшего построения на их основе интервальных оценок амплитуд и начальных фаз. С этой целью выясним характер распределения A_i^* и B_i^* при $N \to \infty$. Знание распределения C^* не понадобится. A_i^* и B_i^* являются линейными комбинациями случайных величин (α_j, x) и (β_j, x) соответственно, для которых справедливо

Предложение 3. Распределения величин (α_j, x) и (β_j, x) при $N \to \infty$ асимптотически нормальны.

Доказательство. Непосредственным вычислением с учетом того, что третий центральный момент распределения Пуассона совпадает с математическим ожиданием [11], можно установить следующее:

$$\sum_{n=-N}^{N} \mathbf{M} \left(\alpha_{jn} x_n - \mathbf{M} \left(\alpha_{jn} x_n \right) \right)^3 \underset{N \to \infty}{\sim} \frac{3}{4} A_j N,$$
$$\sum_{n=-N}^{N} \mathbf{M} \left(\beta_{jn} x_n - \mathbf{M} \left(\beta_{jn} x_n \right) \right)^3 \underset{N \to \infty}{\sim} B_j N,$$
$$\sum_{n=-N}^{N} \mathbf{D} \left(\alpha_{jn} x_n \right) \underset{N \to \infty}{\sim} A_0 N, \quad \sum_{n=-N}^{N} \mathbf{D} \left(\beta_{jn} x_n \right) \underset{N \to \infty}{\sim} A_0 N.$$

Тогда последовательности $\{\alpha_{jn}x_n\}$ и $\{\beta_{jn}x_n\}$ удовлетворяют условиям Ляпунова [7] и по центральной предельной теореме при $N \to \infty$ случайные величины $(\alpha_j, x) = \sum_{n=-N}^{N} \alpha_{jn}x_n$ и

$$(\beta_j, x) = \sum_{n=-N}^{N} \beta_{jn} x_n$$
 распределены асимптотически нормально.

При построении оценок используются сигналы длительностью 40 000 отсчетов и более [4, 5], поэтому можно считать величины (α_j, x) и (β_j, x) распределенными нормально. Будем считать также нормально распределенными их линейные комбинации A_i^* и B_i^* .

4. Построение доверительных интервалов для амплитуд и начальных фаз

С вероятностью γ нормально распределенные случайные величины A_i^* и B_i^* лежат соответственно в интервалах $[A_i^* - z_{\gamma}\sqrt{\mathbf{D}A_i^*}; A_i^* + z_{\gamma}\sqrt{\mathbf{D}A_i^*}]$ и $[B_i^* - z_{\gamma}\sqrt{\mathbf{D}B_i^*}; B_i^* + z_{\gamma}\sqrt{\mathbf{D}B_i^*}]$, где z_{γ} определяется с помощью функции Лапласа $\Phi(z)$ из условия $2\Phi(z_{\gamma}) = \gamma$ [11]. Большое число используемых отсчетов позволяет приближенно использовать эти интервалы в качестве доверительных для A_i и B_i , заменив дисперсии A_i^* и B_i^* их несмещенными и состоятельными оценками.

Дисперсия A_i^* имеет вид $\sum_{n=-N}^{N} \left(\sum_{j=1}^{p} u_{ij} \alpha_{jn} \right)^2 \lambda_n$. Заменив в этом выражении множитель

$$\lambda_n$$
 на $\lambda_n^* = C^* + \sum_{j=1}^p \left(A_j^* \alpha_{jn} + B_j^* \beta_{jn} \right)$, получим для нее оценку $S_{A_i}^2 = \sum_{n=-N}^N \left(\sum_{j=1}^p u_{ij} \alpha_{jn} \right)^2 \lambda_n^*$.

Аналогично в качестве оценки для $\mathbf{D}B_i^*$ возьмем $S_{B_i}^2 = \sum_{n=-N}^N \left(\sum_{j=1}^p v_{ij}\beta_{jn}\right) \lambda_n^*$. Покажем, что данные оценки обладают нужными свойствами.

Предложение 4. λ_n^* является несмещенной и состоятельной оценкой λ_n .

Доказательство. Несмещенность следует из линейных свойств математического ожи-

дания. Рассмотрим
$$|\mathbf{D}\lambda_n^*| = \left|\mathbf{D}\left(C^* + \sum_{j=1}^p A_j^*\alpha_{jn} + \sum_{j=1}^p B_j^*\beta_{jn}\right)\right| = \left|\sum_{j=1}^p \left(\alpha_{jn}\operatorname{cov}\left(C^*, A_j^*\right) + \beta_{jn}\operatorname{cov}\left(C^*, B_j^*\right)\right) + \sum_{j,k=1}^p \alpha_{jn}\beta_{kn}\operatorname{cov}\left(A_j^*, B_k^*\right)\right| \leq \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}B_j^*}\right) + \sum_{j=1}^p \left|\alpha_{jn}\beta_{kn}\operatorname{cov}\left(A_j^*, B_k^*\right)\right| \leq \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}B_j^*}\right) + \sum_{j=1}^p \left|\alpha_{jn}\beta_{kn}\operatorname{cov}\left(A_j^*, B_k^*\right)\right| \leq \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}B_j^*}\right) + \sum_{j=1}^p \left|\alpha_{jn}\beta_{kn}\operatorname{cov}\left(A_j^*, B_k^*\right)\right| \leq \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}B_j^*}\right) + \sum_{j=1}^p \left|\alpha_{jn}\beta_{kn}\operatorname{cov}\left(A_j^*, B_k^*\right)\right| \leq \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}B_j^*}\right) + \sum_{j=1}^p \left|\alpha_{jn}\beta_{kn}\operatorname{cov}\left(A_j^*, B_k^*\right)\right| \leq \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}B_j^*}\right) + \sum_{j=1}^p \left|\alpha_{jn}\beta_{kn}\operatorname{cov}\left(A_j^*, B_k^*\right)\right| \leq \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}B_j^*}\right) + \sum_{j=1}^p \left|\alpha_{jn}\beta_{kn}\operatorname{cov}\left(A_j^*, B_k^*\right)\right| \leq \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}B_j^*}\right) + \sum_{j=1}^p \left|\alpha_{jn}\beta_{kn}\otimes \beta_{kn}\operatorname{cov}\left(A_j^*, B_k^*\right)\right| \leq \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}B_j^*}\right) + \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*}\right) + \sum_{j=1}^p \left(|\alpha_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} + |\beta_{jn}|\sqrt{\mathbf{D}C^*\mathbf{D}A_j^*} +$$

 $\sum_{j,k=1} |\alpha_{jn}\beta_{kn}| \sqrt{\mathbf{D}A_j^* \mathbf{D}B_k^*}.$ Так как α_{jn} и β_{jn} ограничены при $N \to \infty$, а дисперсии оценок C^*, A_{1i}^*, B_i^* бесконечно малы, то $\mathbf{D}\lambda_n^* \to 0.$

Предложение 5. $S^2_{A_i}$ является несмещенной и состоятельной оценкой $\mathbf{D}A^*_i$.

Доказательство. Несмещенность непосредственно следует из предложения 4. Анало-

гично предыдущему доказательству
$$|\mathbf{D}S_{A_i}^2| \leq \sum_{n,m=-N}^N \left(\sum_{j=1}^p u_{ij}\alpha_{jn}\right)^2 \left(\sum_{j=1}^p u_{ij}\alpha_{jm}\right)^2 \sqrt{\mathbf{D}\lambda_n^*\mathbf{D}\lambda_m^*}$$
.
Так как $\mathbf{D}\lambda_n^* \to 0$ при $N \to \infty$, то она ограничена сверху некоторым числом D . Тогда
 $|\mathbf{D}S_{A_i}^2| \leq D \sum_{n,m=-N}^N \left(\sum_{j=1}^p u_{ij}\alpha_{jn}\right)^2 \left(\sum_{j=1}^p u_{ij}\alpha_{jm}\right)^2 = D \sum_{n=-N}^N \left(\sum_{j=1}^p u_{ij}\alpha_{jn}\right)^2 \sum_{m=-N}^N \left(\sum_{j=1}^p u_{ij}\alpha_{jm}\right)^2$.
Аналогично доказательству предложения 2 последнее выражение равно Du_{ii}^2 .

Аналогично доказательству предложения 2 последнее выражение равно Du_{ii}^2 . Значит, дисперсия $S_{A_i}^2$ бесконечно мала, и оценка состоятельна.

Аналогично предложению 5 можно показать несмещенность и состоятельность оценки $S_{B_i}^2$.

После интервального оценивания A_i и B_i можно найти доверительные интервалы для амплитуд M_i и начальных фаз φ_i с помощью геометрического построения, изображенного

на рисунке. В плоскости переменных A и -B выстраивается доверительный прямоугольник для точки $(A_i; B_i)$. Тогда угол, под которым этот прямоугольник виден из начала координат, будет доверительным интервалом для φ_i . Наименьшее и наибольшее расстояния от точек прямоугольника до начала координат будут соответственно нижней и верхней границами доверительного интервала для M_i . Следует отметить, что при покрытии истинной точки $(A_i; B_i)$ доверительным прямоугольником получаются верные интервальные оценки и для амплитуд, и для фаз. Но если доверительный прямоугольник не покрывает точку, возможно, что интервальная оценка амплитуды или фазы окажется верной.

5. Тестирование методики

Описанная выше методика интервального оценивания была программно реализована в системе Borland C++. Тестирование алгоритма и программы проводилось на основе последовательности из 1 млн независимых пуассоновских величин, параметр λ_n которых изменялся по известному полигармоническому закону из четырех гармоник. В качестве периодов гармоник использовались периоды приливных волн O_1, S_1, M_2, S_2 [6] в минутах. Тест-последовательность была получена на основе последовательности псевдослучайных чисел, сгенерированной стандартной библиотечной функцией srand().

Оценка проводилась в скользящем временном окне длительностью 40 000 отсчетов (минут). После каждой оценки окно сдвигалось на 180 отсчетов. Интервалы выстраивались с доверительной вероятностью $\gamma = 0.95$.

В таблице приводятся результаты тестирования. Два последних столбца содержат процент покрытия доверительными интервалами истинных значений параметров A_i и B_i .

Волна	Период, мин	Покрытие A_i , %	Покрытие B_i , %
O_1	1549.160455	98.2	98.3
S_1	1440.0	98.6	98.7
M_2	745.236078	97.9	97.6
S_2	720.0	98.2	98.2

Видно, что частоты покрытий доверительными интервалами истинных значений даже несколько превосходят допустимые уровнем γ .

Заключение

В настоящей статье описана разработанная методика точечного и интервального оценивания параметров приливного отклика в ИЭМИ Земли. Установлено, что сигнал, характеризующий ИЭМИ, является нестационарным пуассоновским процессом с параметром λ , зависящим от времени по полигармоническому закону с частотами приливных волн суточной и полусуточной групп. Методика позволяет проводить оценки по одной реализации, несмотря на нестационарность сигнала. Установлено, что получаемые точечные оценки являются несмещенными и состоятельными. Построены доверительные интервалы для амплитуд и начальных фаз. Проведено тестирование методики.

Список литературы

- ГОРДЕЕВ Е. И., САЛТЫКОВ В. А., СИНИЦИН В. И., ЧЕБРОВ В. Н. К вопросу о связи высокочастотного сейсмического шума с лунно-солнечными приливами // Докл. РАН. 1995. Т. 340, №3. С. 386–388.
- [2] САЛТЫКОВ В. А., СИНИЦИН В. И., ЧЕБРОВ В. Н. Вариации приливной компоненты высокочастотного сейсмического шума в результате изменения напряженного состояния среды // Вулканология и сейсмология. 1997. №4. С. 73–83.
- [3] САЛТЫКОВ В. А. О воздействии земных приливов на сейсмические процессы // Проблемы сейсмичности Дальнего Востока / Под ред. А.В. Викулина. Петропавловск-Камчатский, 2000. С. 12–21.
- [4] КРОЛЕВЕЦ А. Н., ПАВЛЮКОВ В. К. Инициирование приливного отклика импульсного электромагнитного излучения из литосферы процессами в очагах землетрясений. Петропавловск-Камчатский, 1999. (Препр. / Камчатский пединститут; №1(01)).
- [5] КРОЛЕВЕЦ А. Н., ПАВЛЮКОВ В. К. Приливной отклик импульсного электромагнитного излучения и краткосрочный прогноз сильных землетрясений // Проблемы сейсмичности Дальнего Востока / Под ред. А. В. Викулина. Петропавловск-Камчатский, 2000. С. 171–181.
- [6] МЕЛЬХИОР П. Земные приливы. М., 1968.
- [7] БЕНДАТ Дж., ПИРСОЛ А. Прикладной анализ случайных данных. М., 1989.
- [8] МАРПЛ-МЛ. С. Л. Цифровой спектральный анализ и его приложения. М., 1990.
- Серебренников М. Г., Первозванский А. А. Выявление скрытых периодичностей, М., 1965.
- [10] ВОДИНЧАР Г.М. Погрешности оценивания параметров приливного отклика в импульсном электромагнитном излучении Земли // Вычисл. технологии. 2001. Т. 6, №3. С. 3–6.
- [11] Справочник по теории вероятностей и математической статистике / В.С. Королюк и др. М., 1985.
- [12] ГАНТМАХЕР Ф. Р. Теория матриц. М., 1953.