ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ДАЛЬНЕГО БЕЗЫМПУЛЬСНОГО ОСЕСИММЕТРИЧНОГО ТУРБУЛЕНТНОГО СЛЕДА*

Ο. Φ. ΒΟΡΟΠΑΕΒΑ

Институт вычислительных технологий СО РАН, Новосибирск, Россия e-mail: vorop@lchd.ict.nsc.ru

The numerical simulation of the far momentumless axisymmetric turbulent wake behind a body of revolution with application of second order semi-empirical turbulence models is carried out. The comparison of computation data to known results of the analysis of self-similar decay of the far turbulent wakes and experimental data is conducted.

Гидродинамические характеристики безымпульсного турбулентного следа за телами вращения в однородной жидкости изучены достаточно хорошо [1–29] (в этих работах можно найти более подробную библиографию). В [1–7] выполнено экспериментальное исследование следов за осесимметричными телами. Проведены измерения характерного размера, дефекта осредненной скорости, энергии турбулентности, скорости диссипации и касательного рейнольдсова напряжения на оси следа и в поперечном сечении для расстояний вниз по потоку, не превышающих 150 диаметров тела. В этих работах указывается, что уже на небольших расстояниях от тела экспериментаторы наблюдают признаки автомодельности течения.

Экспериментальные данные [1] послужили основой для теоретического анализа [2, 9– 15], в результате которого были получены, в частности, асимптотические законы расширения следа и вырождения энергии турбулентности, скорости диссипации и напряжений Рейнольдса.

Численное моделирование дальних безымпульсных турбулентных следов за телами вращения выполнено в [16–29]. В [16, 18] основное внимание уделялось воспроизведению опытных данных [1], в [4, 20–26, 29] — экспериментальных данных [3–5]. В целом ряде работ задача о динамике турбулентного следа в однородной жидкости рассматривалась как тестовая при расчетах спутных течений в линейно стратифицированной среде (см., например, [17, 19, 24, 27, 28]). При этом в [19, 24, 27, 28] проводилось сопоставление с опытными данными Линя и Пао, опубликованными в [9, 19]. Систематическое исследование следов за телами вращения выполнено в [23–26]. Достигнуто согласие с известными экспериментальными данными [3–5], проведено исследование применимости ряда полуэмпирических моделей турбулентности к расчету дальних следов, консервативности разработанных численных алгоритмов.

^{*}Работа выполнена при частичной финансовой поддержке Российского фонда фундаментальных исследований, грант 01-01-00783.

[©] О.Ф. Воропаева, 2003.

Для описания течения в упомянутых работах привлекались различные модели турбулентного движения. В работе [17] использовалась простейшая е-модель. В [4, 9] согласование с экспериментом, в том числе по асимптотическому вырождению характеристик следа, достигалось путем существенного варьирования эмпирических постоянных в $(e - \varepsilon)$ -модели турбулентного движения. В работах [20–26] отдавалось предпочтение модифицированным $(e - \varepsilon)$ -моделям с применением неравновесных алгебраических аппроксимаций [30]. Получено согласие с опытными данными [3–5]. При этом значения эмпирических констант оставались общепринятыми. Исследование на основе модели с дифференциальными уравнениями для напряжений Рейнольдса проведено в [16]. В модели использован ряд масштабов пульсационного движения, для определения которых привлекаются полуэмпирические соображения. В этой работе дефект продольной компоненты осредненной скорости вырождается существенно медленнее, чем в эксперименте [1]. Модель работы [18] помимо уравнений для энергии турбулентности и диссипации включает в себя уравнения для касательного и вертикального нормального напряжений и учитывает зависимость течения от турбулентного числа Рейнольдса. Результаты расчетов достаточно хорошо описывают экспериментальные данные [1] в ближнем следе, хотя продольная компонента осредненной скорости вырождается медленнее, чем в опытах. Имеются также трудности с описанием затухания энергии турбулентности в периферической (в поперечном сечении) области следа. В [23, 25, 26] хорошее соответствие опытам [3] получено при использовании упрощенной (по аналогии с [30]) модели работы [18]. В [29] на примере расчета следов за сферой [3] сравниваются модифицированная $(e - \varepsilon)$ -модель, модель с уравнениями для нормальных напряжений [27] и модель с неклассическими аппроксимациями обменных слагаемых в уравнениях для всех напряжений [31]. Скорость диссипации также вычисляется из дифференциального уравнения. Расчеты показали некоторые преимущества последней из упомянутых моделей при описании эволюции ближнего следа.

Что касается автомодельного вырождения дальних безымпульсных турбулентных следов, то в работах, посвященных численному моделированию, приводятся данные о степенных законах изменения геометрических размеров следа [4, 17], энергии турбулентности [4, 16, 17] и дефекта продольной компоненты осредненной скорости [4, 16, 25] на оси следа. В [9, 22–25] представлены также автомодельные профили энергии турбулентности и дефекта продольной компоненты скорости. Наиболее подробные данные о законах изменения характерных масштабов и осевых характеристик дальнего безымпульсного следа, в том числе касательного напряжения, содержатся в [18]. В этой работе основное внимание уделялось возможности описания перехода от состояния развитой турбулентности к турбулентному течению с малыми значениями турбулентного числа Рейнольдса. При этом было продемонстрировано нарушение общепринятых степенных законов вырождения основных характеристик течения в области развитой турбулентности, что, по всей видимости, предопределялось конкретным видом эмпирических зависимостей от турбулентного числа Рейнольдса, заложенных в модель.

Анализируя упомянутую выше литературу, можно отметить следующее. Применяемые к расчетам вырождения дальних безымпульсных турбулентных следов математические модели недостаточно полны. В математических моделях второго порядка, включающих дифференциальные уравнения переноса рейнольдсовых напряжений, как правило, используются либо классические [32], либо упрощенные [18] аппроксимации обменных членов. Вопрос о применимости математических моделей с более совершенными аппроксимациями обменных членов остается открытым (одной из наиболее полных является математическая модель [31], хорошо зарекомендовавшая себя при численном моделировании ближ-

него турбулентного следа за сферой как в нетурбулизованном, так и турбулизованном внешних потоках [29]). Представленный в [4, 9, 16–18, 22–25] численный анализ автомодельности вырождения дальних осесимметричных следов является недостаточно полным. Настоящая работа посвящена рассмотрению этих вопросов.

1. Постановка задачи

Основные уравнения. Для описания турбулентного течения в следе привлекается осредненное уравнение движения в приближении дальнего следа:

$$U_{\infty}\frac{\partial U_d}{\partial x} = \frac{\partial}{\partial y}\langle uv\rangle + \frac{\partial}{\partial z}\langle uw\rangle.$$
(1)

Здесь и ниже приняты следующие обозначения: $u = u_1$, $v = u_2$, $w = u_3$ — пульсационные составляющие компонент скорости в направлении осей $x = x_1$, $y = x_2$, $z = x_3$; $U = U_1$, $V = U_2$, $W = U_3$ — соответствующие компоненты скорости осредненного движения. Система координат связана с движущимся телом так, что скорость его движения равна $-U_{\infty}$, ось z направлена вертикально вверх; $U_d = U_{\infty} - U$ — дефект продольной компоненты скорости. Скобки $\langle \rangle$ обозначают осреднение. В правой части (1) слагаемые с сомножителями в виде коэффициентов ламинарной вязкости и производные по x опущены как малые.

Использование в данной работе декартовой системы координат связано с тем обстоятельством, что в дальнейшем предполагается рассмотрение изучаемых математических моделей с учетом стратификации среды, когда такая система координат является естественной. Этим же объясняется интерес к поведению напряжений Рейнольдса в декартовой системе координат, хотя при исследовании автомодельности принято рассматривать их аналоги в цилиндрической системе координат.

Модели турбулентного движения. Для получения замкнутых математических моделей воспользуемся следующими полуэмпирическими моделями турбулентности.

Модель 1. В качестве модели 1 рассмотрим представленную в работе [31] модель, которая базируется на дифференциальных уравнениях переноса компонент тензора рейнольдсовых напряжений $\langle u_i u_j \rangle$:

$$U_{\infty} \frac{\partial \langle u_i u_j \rangle}{\partial x} = P_{ij} + d_{ij} + \phi_{ij} - \varepsilon_{ij}.$$
 (2)

Слагаемые P_{ij} , d_{ij} , ϕ_{ij} , ε_{ij} отвечают за порождение энергии турбулентности осредненным движением, турбулентную диффузию, обменные и диссипативные процессы соответственно (i, j = 1, 2, 3).

Диффузионные и диссипативные слагаемые аппроксимируются следующим образом (здесь и ниже по повторяющимся индексам производится суммирование):

$$d_{ij} = \frac{\partial}{\partial x_k} \left\{ c_s \frac{e}{\varepsilon} \langle u_k u_l \rangle \frac{\partial \langle u_i u_j \rangle}{\partial x_l} \right\}, \quad \varepsilon_{ij} = 2/3 \delta_{ij} \varepsilon,$$

где $e = \langle u_i u_i \rangle / 2$ — энергия турбулентности; ε — скорость диссипации энергии турбулентности в тепло; δ_{ij} — символ Кронекера; $c_s = 0.22$ — эмпирическая постоянная. Представление P_{ij} имеет стандартный вид:

$$P_{ij} = -\left\{ \langle u_i u_k \rangle \frac{\partial U_j}{\partial x_k} + \langle u_j u_k \rangle \frac{\partial U_i}{\partial x_k} \right\}.$$

Для данного течения производными величин по переменной x в правой части уравнения (2) можно пренебречь (k, l = 2, 3) и $U_2 = U_3 = 0$. В результате выражения для d_{ij} и P_{ij} упрощаются:

$$d_{ij} = \frac{\partial}{\partial y} \left\{ c_s \frac{e}{\varepsilon} \langle v^2 \rangle \frac{\partial \langle u_i u_j \rangle}{\partial y} \right\} + \frac{\partial}{\partial y} \left\{ c_s \frac{e}{\varepsilon} \langle vw \rangle \frac{\partial \langle u_i u_j \rangle}{\partial z} \right\} + \frac{\partial}{\partial z} \left\{ c_s \frac{e}{\varepsilon} \langle vw \rangle \frac{\partial \langle u_i u_j \rangle}{\partial y} \right\} + \frac{\partial}{\partial z} \left\{ c_s \frac{e}{\varepsilon} \langle w^2 \rangle \frac{\partial \langle u_i u_j \rangle}{\partial z} \right\},$$
(3)
$$P_{11} = 2 \left\{ \langle uv \rangle \frac{\partial U_d}{\partial y} + \langle uw \rangle \frac{\partial U_d}{\partial z} \right\}, \quad P_{22} = 0, \quad P_{33} = 0,$$
$$P_{12} = \langle v^2 \rangle \frac{\partial U_d}{\partial y} + \langle vw \rangle \frac{\partial U_d}{\partial z}, \quad P_{13} = \langle vw \rangle \frac{\partial U_d}{\partial y} + \langle w^2 \rangle \frac{\partial U_d}{\partial z}, \quad P_{23} = 0,$$
$$P = P_{ii}/2 = \langle uv \rangle \frac{\partial U_d}{\partial y} + \langle uw \rangle \frac{\partial U_d}{\partial z}.$$

Обменные члены в (2) аппроксимируются, согласно [31], следующим образом:

$$\begin{split} \phi_{ij1} &= -c_1 \varepsilon (a_{ij} + c_3 (a_{ik} a_{jk} - 1/3A_2 \delta_{ij})), \\ \phi_{ij2} &= -0.6(P_{ij} - 2/3\delta_{ij}P) + 0.6a_{ij}P - 0.2B_{ij1} - c_2[A_2(P_{ij} - D_{ij}) + 3a_{mi}a_{nj}(P_{mn} - D_{mn})] + \\ &+ c_4 \{ (\frac{7}{15} - \frac{A_2}{4})(P_{ij} - 2/3\delta_{ij}P) + 0.2[a_{ij} - 0.5(a_{ik} a_{kj} - 1/3\delta_{ij}A_2)]P - 0.05a_{ij}a_{lk}P_{kl} + \\ &+ \frac{0.1}{e} [(\langle u_i u_m \rangle P_{mj} + \langle u_j u_m \rangle P_{mi}) - 2/3\delta_{ij}\langle u_l u_m \rangle P_{ml}] + 0.1B_{ij2} + 0.2\frac{\langle u_l u_i \rangle \langle u_k u_j \rangle}{e^2}(D_{lk} - P_{lk}) \}, \\ &B_{ij1} = \frac{\langle u_k u_j \rangle \langle u_l u_i \rangle}{e} \left(\frac{\partial U_k}{\partial x_l} + \frac{\partial U_l}{\partial x_k} \right) - \frac{\langle u_l u_k \rangle}{e} \left(\langle u_i u_k \rangle \frac{\partial U_j}{\partial x_l} + \langle u_j u_k \rangle \frac{\partial U_i}{\partial x_l} \right), \\ &B_{ij2} = \left[\frac{\langle u_l u_i \rangle \langle u_k u_j \rangle}{e^2} - 1/3\delta_{ij} \frac{\langle u_l u_m \rangle \langle u_k u_m \rangle}{e^2} \right] \left[6D_{lk} + 13e \left(\frac{\partial U_l}{\partial x_k} + \frac{\partial U_k}{\partial x_l} \right) \right], \\ &D_{ij} = - \left(\langle u_i u_k \rangle \frac{\partial U_k}{\partial x_j} + \langle u_j u_k \rangle \frac{\partial U_k}{\partial x_i} \right). \end{split}$$

 $\phi_{ij} = \phi_{ij1} + \phi_{ij2},$

Здесь

$$c_{1} = (3.75A_{2}^{1/2} + 1)A, \quad c_{2} = 0.55, \quad c_{3} = 0.7, \quad c_{4} = 0.6;$$

$$a_{ij} = (\langle u_{i}u_{j} \rangle - 2/3\delta_{ij}e)/e \quad (a_{ij} = a_{ji});$$

$$A_{2} = a_{ij}a_{ji}, \quad A_{3} = a_{ij}a_{jk}a_{ki}, \quad A = 1 - 9/8(A_{2} - A_{3}).$$

Для вычисления скорости диссипации ε привлекается дифференциальное уравнение переноса:

$$U_{\infty}\frac{\partial\varepsilon}{\partial x} = \frac{\partial}{\partial x_k}c_{\varepsilon}\frac{e}{\varepsilon}\langle u_k u_l\rangle\frac{\partial\varepsilon}{\partial x_l} + c_{\varepsilon 1}\frac{\varepsilon}{e}P - c_{\varepsilon 2}\frac{\varepsilon^2}{e},$$

где $c_{\varepsilon} = 0.18$, $c_{\varepsilon 1} = 1.0$, $c_{\varepsilon 2} = 1.92/(1 + 0.7A_2^{1/2}A_{25})$; $A_{25} = \max(A, 0.25)$; k, l = 2, 3.

Модель 2. Модель 2 [27] основана, как и модель 1, на уравнении (2) для определения нормальных компонент тензора рейнольдсовых напряжений $\langle u_i u_i \rangle$, i = 1, 2, 3. Однако в

этих уравнениях использовалось упрощенное представление диффузионных и стандартное [32] обменных слагаемых:

$$d_{ij} = \frac{\partial}{\partial x_k} \left\{ c_s \frac{e}{\varepsilon} \langle u_k u_k \rangle \frac{\partial \langle u_i u_j \rangle}{\partial x_k} \right\},$$

$$\phi_{ij} = -c_1 \varepsilon a_{ij} - c_2 (P_{ij} - 2/3\delta_{ij}P), \quad i = j = 1, 2, 3,$$

где $c_s = 0.25, c_1 = 2.2, c_2 = 0.55.$

Для аппроксимации касательных рейнольдсовых напряжений $\langle u_i u_j \rangle$ $(i \neq j)$ привлекаются алгебраические соотношения [33]:

$$\frac{\langle u_i u_j \rangle}{e} = \frac{2}{3} \delta_{ij} + \frac{1 - c_2}{c_1} \left(\frac{P_{ij}}{\varepsilon} - \frac{2}{3} \delta_{ij} \frac{P}{\varepsilon} \right). \tag{4}$$

При этом уравнение (1) преобразуется к диффузионному виду

$$U_{\infty}\frac{\partial U_d}{\partial x} = \frac{\partial}{\partial y}K_y\frac{\partial U_d}{\partial y} + \frac{\partial}{\partial z}K_z\frac{\partial U_d}{\partial z}$$
(5)

с коэффициентами турбулентной вязкости

$$K_y = \frac{1 - c_2}{c_1} \frac{e\langle v^2 \rangle}{\varepsilon}, \quad K_z = \frac{1 - c_2}{c_1} \frac{e\langle w^2 \rangle}{\varepsilon}.$$

Скорость диссипации в этой модели вычисляется из уравнения [32]:

$$U_{\infty}\frac{\partial\varepsilon}{\partial x} = \frac{\partial}{\partial x_k} \left[c_{\varepsilon} \frac{e}{\varepsilon} \langle u_k u_k \rangle \right] \frac{\partial\varepsilon}{\partial x_k} + c_{\varepsilon 1} \frac{\varepsilon}{e} P - c_{\varepsilon 2} \frac{\varepsilon^2}{e}, \quad k = 2, 3$$

со значениями эмпирических констант: $c_{\varepsilon} = c_s/\sigma$, $\sigma = 1.3$, $c_{\varepsilon 1} = 1.44$, $c_{\varepsilon 2} = 1.92$.

Модель 3. Модель 1, по-видимому, впервые используется для расчетов дальних безымпульсных турбулентных следов. При исследовании следов за сферой в однородной жидкости [29] на основе этой модели были получены результаты, достаточно хорошо согласующиеся с экспериментальными данными [3]. По ряду характеристик она оказалась лучшей среди других моделей второго порядка. Однако расчеты дальних следов показали, что эта модель неудовлетворительно описывает вырождение дефекта продольной компоненты осредненной скорости. В связи с этим в качестве модели 3 рассматривается модель, являющаяся упрощением модели 1.

Для начала воспользуемся советом авторов модели [31], полагающих для свободных турбулентных течений $c_4 = 0$, если $c_2 = 0.6$. При этом существенно упрощаются обменные слагаемые ϕ_{ij2} в уравнении (2). Расчеты показали, что и для рассматриваемого течения отклонение решения по упрощенной модели с $c_4 = 0$ от решения по полной модели 1 составляет не более 2% в норме пространства непрерывных функций. В связи с этим далее в модели 1 будем полагать $c_4 = 0$, $c_2 = 0.6$.

Следующим шагом является приведение уравнения (1) в диффузионному виду (5) путем привлечения для величин $\langle uv \rangle$ и $\langle uw \rangle$ подходящих алгебраических аппроксимаций. Используем стандартный подход [34] — в уравнении (2) пренебрежем в предположении малости конвективными и диффузионными слагаемыми:

$$P_{ij} + \phi_{ij} - \varepsilon_{ij} = 0.$$

Если дополнительно пренебречь в обменных слагаемых ϕ_{ij} квадратичными членами, то получим

$$P_{ij} - c_1 \varepsilon a_{ij} - 0.6(P_{ij} - \frac{2}{3}\delta_{ij}P) - \frac{2}{3}\delta_{ij}\varepsilon = 0.$$

Тогда алгебраические представления для $\langle u_i u_j \rangle$ имеют вид

$$\frac{\langle u_i u_j \rangle}{e} = \frac{2}{3} \delta_{ij} (1 + \Phi_e) - \Phi_e \frac{P_{ij}}{\varepsilon} + 0.6 \Phi_e (\frac{P_{ij}}{\varepsilon} - \frac{2}{3} \delta_{ij} \frac{P}{\varepsilon}), \ \Phi_e = -1/c_1.$$

Отсюда следует

$$\langle uv \rangle = -0.4 \Phi_e \frac{e \langle v^2 \rangle}{\varepsilon} \frac{\partial U_d}{\partial y}, \ \langle uw \rangle = -0.4 \Phi_e \frac{e \langle w^2 \rangle}{\varepsilon} \frac{\partial U_d}{\partial z}.$$
(6)

Аппроксимации (6) аналогичны часто применяемым представлениям касательных напряжений (4) с той разницей, что в (6) c_1 является функцией, а не константой, как в (4).

Модель 3, таким образом, базируется на уравнении движения (5) с учетом (6). Для определения нормальных и касательного $\langle vw \rangle$ напряжений используются, как и в модели 1, уравнения (2) с недиагональной аппроксимацией диффузионных слагаемых (3). Основное отличие модели 3 от модели 1 состоит в привлечении алгебраических соотношений (6) для $\langle uv \rangle$ и $\langle uw \rangle$. Значения эмпирических постоянных (функций) остаются теми же, что и в модели 1 (в данном случае полагалось $c_4 = 0$, $c_2 = 0.6$).

Начальные и граничные условия. В качестве начальных распределений искомых величин U_d , e, ε , $\langle u^2 \rangle$, $\langle v^2 \rangle$, $\langle w^2 \rangle$ на расстоянии $x = x_0$ от тела используются данные, согласующиеся с данными лабораторных экспериментов; кроме того, полагаем

$$\langle vw \rangle = 0, \ \langle uv \rangle = K_y \frac{\partial U_d}{\partial y}, \ \langle uw \rangle = K_z \frac{\partial U_d}{\partial z}.$$

На бесконечности задаются условия невозмущенного потока, которые при численной реализации из бесконечности переносятся на границы достаточно большой прямоугольной области $-Y \le y \le Y, -Z \le z \le Z$.

С учетом свойств симметрии переменных задачи относительно начала координат численные расчеты выполнялись лишь в первом квадранте плоскости (y, z) с постановкой на осях соответствующих условий симметрии (антисимметрии). Исключение составляет величина U_d , для которой решение уравнения проводилось также и при y = 0 и z = 0с учетом соображений симметрии [27]. Это связано с тем, что в данной задаче особое значение имеет выполнение закона сохранения импульса

$$I = \iint_{-\infty}^{\infty} U_d dy dz = \iint_{-\infty}^{\infty} U_d(x_0, y, z) dy dz = 0$$

Обезразмеривание. Переменные задачи обезразмериваются с применением масштаба длины D — диаметра тела и масштаба скорости U_{∞} — скорости набегающего потока. Обезразмеренные переменные представляются в следующем виде: $x'_i = x_i/D$, $U'_i = U_i/U_{\infty}$, $\langle u_i u_j \rangle' = \langle u_i u_j \rangle/U_{\infty}^2$, $e' = e/U_{\infty}^2$, $\varepsilon' = \varepsilon D/U_{\infty}^3$, i, j = 1, 2, 3.

Алгоритм решения задачи. Конечно-разностный алгоритм основан на применении методов расщепления по пространственным переменным [35]. Решение уравнения движения (1) (и его аналога (5)) проводится по схеме расщепления с использованием центральноразностных аппроксимаций. Для численного интегрирования уравнений с недиагональными аппроксимациями диффузионных слагаемых, входящих в модели 1 и 3, привлекается схема стабилизирующей поправки. Уравнения модели 2, в которых из-за упрощения диффузионных слагаемых отсутствуют смешанные производные, решаются по схеме расщепления.

Вводится простое преобразование координат, при котором осуществляется переход от неравномерной ортогональной расчетной сетки со сгущающимися в окрестности турбулентного следа узлами к равномерной.

Подробное описание численного алгоритма и результаты его тестирования содержатся в [27].

2. Тестирование

След за сферой в однородной жидкости. Для проверки работоспособности математических моделей выполнено сопоставление численных и экспериментальных [3] данных о развитии безымпульсного турбулентного следа за сферой.

Начальные распределения $e, \varepsilon, U_d, \langle u^2 \rangle, \langle v^2 \rangle$, $\langle w^2 \rangle$ задавались на расстоянии x = 10D от тела из экспериментальных данных [3].

В табл. 1 представлено изменение в зависимости от расстояния от тела обезразмеренных осевых значений энергии турбулентности $e_0 = e(x, 0, 0)$, дефекта продольной компоненты скорости $U_{d0} = U_d(x, 0, 0)$, скорости диссипации $\varepsilon_0 = \varepsilon(x, 0, 0)$, нормальных рейнольдсовых напряжений $u_0 = \langle u^2(x,0,0) \rangle^{0.5}, v_0 = \langle v^2(x,0,0) \rangle^{0.5}, w_0 = \langle w^2(x,0,0) \rangle^{0.5}$, а также характерного размера турбулентного следа $l: \langle u^2(x,l,0) \rangle^{0.5} = 0.5 \langle u_i^2(x,0,0) \rangle^{0.5}$. Расчеты показали достаточно хорошее согласие данных, полученных на основе моделей 1 и 3, с экспериментальными данными для расстояний от тела $x \leq 100D$. Исключение составляет величина U_d , для которой имеется существенный разброс расчетных данных, а лабораторные измерения ограничиваются расстоянием $x \leq 15D$. Рассчитанное с применением модели 1 поведение дефекта продольной компоненты скорости при $x \ge 30D$ представляется физически неправдоподобным. Однако вклад этой величины в суммарную энергию уже при x = 10D составляет менее 1 %. Поэтому проблемы с описанием U_d не оказывают существенного влияния на поведение пульсационных характеристик следа (см. также [27]). Модель 2 при $x \ge 70D$ дает весьма существенные расхождения с экспериментальными данными практически по всем измеренным характеристикам. Общим недостатком моделей является запаздывание в расширении следа в сравнении с данными эксперимента. Подробно результаты численного моделирования следов за сферой на основе моделей 1 и 2, в том числе выполненных на последовательности сеток, представлены в [29].

След за удлиненным телом вращения. Результаты численных экспериментов сопоставлялись с экспериментальными данными Линя и Пао (см. [9, 19]) о вырождении безымпульсного турбулентного следа в однородной жидкости. Начальные условия при $x = x_0 = 6D$ задавались в виде функций [19], согласованных с данными лабораторных экспериментов:

$$e(x_0, y, z) = E_0 \cdot \exp(-4r^2/D^2), \ \varepsilon(x_0, y, z) = \sqrt{12}E_0^{3/2} \cdot \exp(-6r^2/D^2),$$
$$U_d(x_0, y, z) = U_{d0}(1 - 8r^2/D^2)\exp(-8r^2/D^2), \ r^2 = y^2 + z^2.$$
(7)

Расчеты проводились в прямоугольнике $6D \times 6D$ на сетке с шагом $h = h_y = h_z = 0.1D$ (первые 30 узлов в каждом направлении), а далее шаг h увеличивался в геометрической прогрессии. Шаг по переменной x изменялся от 0.005D до 0.5D по формуле $h_x = h_x + 0.005D$.

	Т	\mathbf{a}	б	Л	И	Ц	a	1
--	---	--------------	---	---	---	---	---	---

	x'	e_0'	U'_{d0}	ε_0'	u'_0	v_0'	w'_0	l'
Эксперимент	15	—	0.0144	—	0.0469	-	—	0.89
Модель 1		0.0026	0.0100	$2.58\cdot 10^{-4}$	0.0463	0.0402	0.0383	0.86
Модель 2		0.0027	0.0064	$2.33\cdot 10^{-4}$	0.0472	0.0411	0.0396	0.85
Модель 3		0.0025	0.0080	$2.48\cdot 10^{-4}$	0.0451	0.0393	0.0371	0.88
Эксперимент	20	0.00172	—	$1.07 \cdot 10^{-4}$	0.0359	0.0329	0.0329	1.01
Модель 1		0.0015	0.0051	$1.15 \cdot 10^{-4}$	0.0347	0.0314	0.0298	0.99
Модель 2		0.0017	0.0027	$1.06 \cdot 10^{-4}$	0.0364	0.0333	0.0323	0.96
Модель 3		0.0014	0.0036	$1.06\cdot 10^{-4}$	0.0333	0.0303	0.0286	1.01
Эксперимент	70	$1.5 \cdot 10^{-4}$	_	$2.89 \cdot 10^{-6}$	0.0105	0.0097	0.0098	1.78
Модель 1		$1.9\cdot10^{-4}$	0.0017	$3.55\cdot 10^{-6}$	0.0115	0.0112	0.0106	1.45
Модель 2		$2.7\cdot 10^{-4}$	0.0002	$4.23 \cdot 10^{-6}$	0.0135	0.0133	0.0131	1.45
Модель 3		$1.7\cdot 10^{-4}$	0.0003	$3.20 \cdot 10^{-6}$	0.0109	0.0106	0.0100	1.51
Эксперимент	100	$8.2 \cdot 10^{-5}$	_	_	0.0077	0.007	0.0075	2.00
Модель 1		$1.1 \cdot 10^{-4}$	$1.68 \cdot 10^{-3}$	$1.40 \cdot 10^{-6}$	0.0087	0.0085	0.0081	1.60
Модель 2		$1.6\cdot 10^{-4}$	$9.5\cdot10^{-5}$	$1.75 \cdot 10^{-6}$	0.0104	0.0103	0.0102	1.60
Модель 3		$9.6\cdot10^{-5}$	$1.74\cdot 10^{-4}$	$1.27\cdot 10^{-6}$	0.0083	0.008	0.0077	1.61

Рис. 1. Энергия турбулентности e_0 и дефект продольной компоненты осредненной скорости U_{d0} на оси следа.

На рис. 1 приведено изменение в зависимости от расстояния от тела обезразмеренных осевых значений энергии турбулентности e_0 и дефекта продольной компоненты скорости U_{d0} . Здесь маркерами помечены данные лабораторных измерений, линиями 1-3 — расчеты по соответствующим моделям. Видно, что результаты расчетов достаточно близки к экспериментальным данным.

3. Результаты расчетов

Турбулентное течение в безымпульсном следе в однородной жидкости симметрично относительно оси движения тела. В связи с этим для данной задачи естественной является цилиндрическая система координат. В этой системе координат решение задачи (включая напряжения Рейнольдса) обладает свойством осевой симметрии. Располагая решением в декартовой системе координат и соответствующими формулами перехода, нетрудно получить функции решения в цилиндрической системе координат (они будут помечены верхним индексом c).

На достаточно больших удалениях от тела решение задачи становится автомодельным [9–14]. Свойство автомодельности означает, что переменные задачи представляются в виде: $U_d^c = U_{d0}(x)f_0(\eta), \langle u_i^c u_j^c \rangle = q_{ij}(x)f_{ij}(\eta)$ $(i, j = 1, 2, 3), e^c = e_0(x)f_4(\eta), \varepsilon^c = \varepsilon_0(x)f_5(\eta), \eta = r/L(x),$ где $r^2 = y^2 + z^2, L$ — характерный размер следа в его поперечном сечении. При этом наблюдается подобие (в плоскости, ортогональной направлению движения) распределений переменных задачи, нормированных на соответствующие значения масштабных функций $U_{d0}(x), q_{ij}(x), e_0(x), \varepsilon_0(x)$. Сами масштабные функции изменяются как степенные функции маршевой переменной x и связаны между собой некоторыми соотношениями автомодельности. Ниже будет представлен анализ автомодельного решения задачи, основанный на обработке результатов численных экспериментов.

При введении автомодельных переменных в качестве основных масштабов выбираются полуширина следа L: e(x, 0, L) = 0.5e(x, 0, 0), осевое значение энергии турбулентности e_0 , а также осевое значение дефекта продольной компоненты осредненной скорости U_{d0} .

На расстоянии x = 8D от тела задавались распределения $e, \varepsilon, U_d, \langle u_i^2 \rangle$ (i = 1, 2, 3), согласованные с данными лабораторных экспериментов Линя и Пао [9, 19, 36] об эволюции турбулентного следа в однородной жидкости.

Конечно-разностные сетки содержали 51×51 (сетка 1) и 101×101 (сетка 2) ячеек. Расчетная область представляла собой квадрат размером $6D \times 6D$. Узлы сетки 1 распределялись равномерно с шагами $h_{1y} = h_{1z} = 0.1D$ в квадрате $4D \times 4D$, далее в обоих направлениях — в геометрической прогрессии. Величина шага в маршевом направлении h_x полагалась постоянной для x < 19D, а при бо́льших значениях x изменялась от 0.015Dдо 0.75D в арифметической прогрессии с разностью 0.015D. Сетка 2 была вдвое подробнее в квадрате $4D \times 4D$: $h_{2y} = h_{2z} = 0.05D$; шаги по переменной x — как в сетке 1. Сетка 3 по переменным y, z была аналогична сетке 1, а по переменной x — в четыре раза подробнее. Основные расчеты проводились на сетке 1.

Рис. 2. Энергия турбулентности $e_0(a)$ и дефект продольной компоненты осредненной скорости $U_{d0}(b)$ на оси следа.

На рис. 2 представлены данные о вырождении обезразмеренных осевых значений энер-

гии турбулентности и дефекта осредненной продольной компоненты скорости. Здесь и ниже на рисунках линии со значком \Diamond соответствуют модели 1, линии со значком \bigcirc модели 2, линии со значком \square — модели 3, штриховые линии иллюстрируют асимптотические законы вырождения, приближающие расчетные данные в дальнем следе. Для энергии турбулентности e_0 в расчетах по всем моделям получено $e_0 \sim x^{-1.5}$. Согласно данным экспериментов, энергия турбулентности вырождается по законам: $x^{-1.9}$ [1, 3, 4], $x^{-1.6}$ [6], x^{-2} [5]. В численно-теоретических работах e_0 изменяется с ростом расстояния xот тела как степенная функция с показателем степени -1.455 [10], -1.46 [9], -1.5 [11, 13], -10/7 [17], -1.6 (Ferry, Pequet, см. [6]).

Расчеты показывают, что величина U_{d0} вырождается по закону $U_{d0} \sim x^{-1.65} - для$ моделей 2 и 3. Согласно данным экспериментов, эта величина убывает как x^{-2} [1, 3, 4], $x^{-1.9}$ [5], $x^{-1.5}$ [6]. В теоретических и численных работах для дефекта продольной составляющей скорости $U_{d0} \sim x^m$ получены следующие значения m: -1.636 [10], -1.27 [9], -1.5 [11, 13, 25], -1.6 (Ferry, Pequet, см. [6]).

Более быстрое убывание U_{d0} в сравнении с $e_0^{0.5}$ указывает на существование в данной задаче двух масштабов скорости. Представляет интерес скорость вырождения возмущений продольной компоненты осредненной скорости в сравнении с турбулентными флуктуациями. В ряде теоретических работ полагается $U_{d0}/e_0 \approx \text{const} [11, 13]$. В экспериментальных работах [1, 3] получено $U_{d0}/e_0 \sim x^{-0.1}$. В теоретической работе [10] $U_{d0}/e_0 \sim x^{-0.181}$. В расчетах по моделям 2 и 3 получено $U_{d0}/e_0 \sim x^{-0.15}$. Имеются также экспериментальные данные [6], согласно которым $U_{d0}/e_0 \sim x^{0.1}$, т.е. турбулентные возмущения вырождаются несколько быстрее возмущений осредненной скорости. Нельзя не заметить, что все отклонения от соотношения $U_{d0}/e_0 \approx \text{const}$ лишь незначительно превышают возможные погрешности экспериментальных измерений и численных расчетов. В частности, в [4] указывалось, что при некотором изменении условий опытов можно добиться выполнения данного соотношения.

Обращает на себя внимание поведение дефекта продольной компоненты скорости U_{d0} , характерное для модели 1: при x > 100D прекращается убывание этой величины. Исследовалась возможная зависимость этого факта от конечно-разностных сеток, численного алгоритма и вида аппроксимации обменных слагаемых в модели 1. В численных экспериментах на сетках 2 и 3 получены данные, близкие к расчету на сетке 1. Проводился также расчет на сетке, аналогичной сетке 1, с равномерным шагом $h_x = 0.1D$. Оказалось, что выбор сетки слабо влияет на характер вырождения дефекта скорости. Ниже приводятся некоторые значения $U'_{d0}(x)$ для тех расстояний от тела, где замедляется убывание этой функции. В частности, при x/D = 96 значения U'_{d0} равны $2.4538 \cdot 10^{-3}$ и $2.2997 \cdot 10^{-3}$, при $x/D = 180 - 1.4299 \cdot 10^{-3}$ и $1.4172 \cdot 10^{-3}$ при $x/D = 300 - 1.4445 \cdot 10^{-3}$ и $1.4386 \cdot 10^{-3}$ на сетках 1 и 3 соответственно. На рис. 2, б штрихпунктирная линия соответствует расчету по полной модели 1 со значениями констант $c_4 = 0.6$, $c_2 = 0.55$. Видно, что включение полной модели 1 практически не влияет на поведение дефекта скорости. Если пренебречь смешанными производными в аппроксимациях диффузионных слагаемых в уравнении (2) модели 1, то можно воспользоваться численным алгоритмом со схемой расщепления, используемым для модели 2 [27]. Однако переход к хорошо апробированному алгоритму не исправляет ситуацию с вырождением U_d. В связи с тем, что модель 1 не дает адекватного описания U_d , неудовлетворительно описываются также и касательные напряжения, включающие пульсации этой компоненты скорости. Однако, как отмечалось ранее, вклад данной величины в суммарную энергию течения пренебрежимо мал по сравнению с энергией турбулентности. Поэтому отрицательное влияние U_d на остальные характеристики течения оказывается незначительным (см. рис. 2, а и рис. 3–5). Для устранения указанного

Таблица 2

	x'	$e_0^{\prime \ 0.5}$	ε_0'	$L'_{0.01}$	E_k	I'
Модель 1, сетка 1	120	.00597	$.419 \cdot 10^{-6}$	1.007	$.134 \cdot 10^{-4}$	$867 \cdot 10^{-9}$
Модель 1, сетка 2	120	.00614	$.419\cdot 10^{-6}$	1.009	$.142\cdot 10^{-4}$	$519\cdot10^{-9}$
Модель 2, сетка 1	120	.00715	$.479 \cdot 10^{-6}$	1.098	$.127\cdot 10^{-4}$	$201 \cdot 10^{-9}$
Модель 3, сетка 1	120	.00580	$.379 \cdot 10^{-6}$	0.992	$.122\cdot 10^{-4}$	$232 \cdot 10^{-9}$
Модель 1, сетка 1	1200	.00098	$.999 \cdot 10^{-9}$	1.598	$.913 \cdot 10^{-6}$	$774 \cdot 10^{-9}$
Модель 1, сетка 2	1200	.00102	$1.06\cdot 10^{-9}$	1.637	$.100\cdot 10^{-5}$	$564\cdot10^{-9}$
Модель 2, сетка 1	1200	.00119	$1.35\cdot 10^{-9}$	1.890	$.189\cdot 10^{-5}$	$211\cdot10^{-9}$
Модель 3, сетка 1	1200	.00095	$.924\cdot10^{-9}$	1.588	$.822\cdot 10^{-6}$	$244\cdot10^{-9}$

недостатка осуществлена попытка привести уравнение (1) к диффузионному виду — в модели 3 рассмотрен упрощенный алгебраический аналог уравнений переноса $\langle uv \rangle$ и $\langle uw \rangle$.

Для иллюстрации точности расчета на основе модели 1 в табл. 2 приведены данные, полученные на сетках 1 и 2. Здесь же представлены результаты расчетов с использованием моделей 2 и 3 на сетке 1. Можно видеть, что полученные данные отличаются по локальным характеристикам не более чем на 10% в норме, являющейся сеточным аналогом нормы пространства непрерывных функций. Введение линейного размера $L_{0.01}$: $e(x, L_{0.01}, 0) = 0.01e(x, 0, 0)$ объясняется тем, что именно эта величина измеряется в опытах Линя и Пао.

Здесь также введено следующее обозначение: $E_k = \iint_0^\infty e' dy' dz'.$

Данные о поведении характерного размера турбулентного следа L приведены на рис. 3, *a*. Видно, что след на больших расстояниях от тела расширяется по закону $L \sim x^{0.25}$ для моделей 2 и 3 и $L \sim x^{0.2}$ — для модели 1. В [1] для экспериментальных данных об изменении характерного размера L указывается степенной закон $L \sim x^p$ со значением p = 1/4, в других экспериментах определено — p = 0.42 [3, 4] и p = 0.2 [6], в теоретических работах — p = 3/11 = 0.276 [10] и p = 0.27 [9], в численных расчетах получено значение p = 2/7 [17] и p = 0.2 ([18], независимо от значения турбулентного числа Рейнольдса).

Таким образом, три рассчитанные степенные зависимости согласуются с существующими представлениями о поведении основных характерных масштабов безымпульсного турбулентного следа за телами вращения, полученными как из экспериментальных ис-

Рис. 3. Изменение с расстоянием от тела: *a* — характерной полуширины следа в его поперечном сечении; *б* — осевых значений скорости диссипации энергии турбулентности.

		0			
x/D	ε	0	$\langle uv angle^0$		
	Модель 2	Модель 3	Модель 2	Модель 3	
12	.923	1.09	.1673	.1887	
48	.920	1.313	.2395	.2099	
108	.963	1.284	.2491	.2338	
480	1.014	1.173	.2756	.2788	
840	1.023	1.138	.2873	.2887	
1200	1.026	1.120	.2952	.2955	
1680	1.029	1.110	.3060	.2990	
2400	1.030	1.098	.3105	.3032	
3600	1.030	1.094	.3151	.3067	

Таблица 3

следований, так и из теоретического и численного анализа. Обращает на себя внимание разброс в экспериментальных данных. Это связано, по-видимому, с тем обстоятельством, что измерения проводились в ближнем следе, где влияние особенностей источника возмущений оказывается существенным.

Данные о вырождении характерного значения скорости диссипации ε представлены лишь в нескольких работах: $\varepsilon \sim x^{-2.89}$ — в опытах [3, 4], $\sim x^{-2.6}$ — в работе Ferry, Pequet (см. [6]), $\sim x^{-2.5}$ — в [13]. Поведение в зависимости от расстояния от тела обезразмеренного осевого значения скорости диссипации ε_0 иллюстрирует рис. 3, δ . Рассчитанный закон убывания этой величины $\varepsilon_0 \sim x^{-2.5}$ может быть получен также на основе масштабов e_0 и L как следствие классического колмогоровского соотношения $\varepsilon \sim e^{3/2}/L$. Изменение с расстоянием от тела величины $\varepsilon^0 = \varepsilon_0 L/e_0^{3/2}$ иллюстрирует табл. 3. Согласно расчетам по моделям 2 и 3, на большом удалении от тела справедливо соотношение $\varepsilon_0 L/e_0^{3/2} \approx \text{const.}$, что совпадает с результатами теоретического анализа [13]. В частности, в расчетах до 3600D для модели 2 это соотношение выполняется с точностью до 1.2 % на последних 3000D; для модели 3 в сравнении с моделью 2. Максимальное отклонение от постоянного значения было получено для модели $1 - \varepsilon_0 L/e_0^{3/2} \sim x^{-0.05}$, что все же представляется незначительным.

На рис. 4 изменение с ростом расстояния от тела характерного значения касательного напряжения $\langle uv \rangle_m = \max_r |\langle u^c v^c \rangle'| = \max_{y,z} |\langle uv \rangle'| = \max_{y,z} |\langle uw \rangle'|$ происходит по степенному закону $x^{-2.4}$ — для моделей 2 и 3 (равенство напряжений справедливо, поскольку в данной задаче максимальные по модулю значения $\langle uv \rangle$ и $\langle uw \rangle$ достигаются на горизонтальной y и вертикальной z осях соответственно). Рассчитанный закон близок к предсказанному теоретически [10] закону вырождения касательного напряжения $x^{-2.364}$, согласно другим теориям [11, 13] — $\langle uv \rangle_m \sim x^{-2.25}$. В лабораторных опытах эта величина также изменяется медленнее — как $x^{-2.25}$ [1, 5] и как $x^{-2.14}$ [3, 4]. Однако в обзорной работе [8] имеется ссылка на эксперимент Higuchi, Kubota, в котором касательное напряжение вырождалось по закону $x^{-2.4}$. Данные экспериментальной работы [6] стоят особняком — $x^{-1.6}$, что связано, по-видимому, с достаточно малыми расстояниями от тела, на которых производились измерения ($x \leq 20D$). Показатель степени -2.24...-2.26 получен в расчетах [18] для расстояний от тела $x \geq 560D$ независимо от значений турбулентного числа Рейнольдса.

Рассчитанный на основе моделей 2 и 3 закон вырождения касательных напряжений, включающих пульсации продольной компоненты скорости, может быть получен из классических градиентных гипотез, часто используемых в расчетах:

$$\langle uv \rangle \sim \frac{e^2}{\varepsilon} \frac{\partial U}{\partial y}, \quad \langle uw \rangle \sim \frac{e^2}{\varepsilon} \frac{\partial U}{\partial z}.$$

Из этих гипотез и соображений размерности следует, что для достаточно больших расстояний от тела величина $\langle uv \rangle^0 = \langle uv \rangle_m / (e_0^{0.5} U_{d0})$ принимает практически постоянные значения. Данные, представленные в табл. 3, показывают, что при проведении расчетов до 3600*D* величина $\langle uv \rangle^0$ на последних 2000 диаметрах изменяется на 3% — для модели 2, на 2.5% — для модели 3. Соотношение для касательного напряжения $\langle uv \rangle_m / (e_0^{0.5} U_{d0}) \approx \text{сonst}$ фигурирует также в работе [13] как одно из дополнительных условий автомодельности течения с большими нормальными напряжениями.

Рис. 4. Вырождение характерных значений касательных рейнольдсовых напряжений.

Что касается напряжения $\langle vw \rangle$, то при использовании модели 2 (так же как и большинства модифицированных $(e - \varepsilon)$ -моделей и других классических моделей [30, 32]) эта величина тождественна нулю, поскольку в данном течении V = W = 0 и, следовательно, отсутствует порождение $P_{23} = 0$. В моделях 1 и 3 дифференциальное уравнение переноса $\langle vw \rangle$ содержит в правой части источниковые члены, связанные с продольной компонентой осредненной скорости U. В этом случае, согласно расчетам, характерное значение $\langle vw \rangle_m = \max_{y,z} |\langle vw \rangle'|$ с ростом расстояния от тела ведет себя как $x^{-2.1}$, т.е. вырождается медленнее, чем $\langle uv \rangle_m$ (см. рис. 4). При этом оказывается затруднительным указать гипотезу, предсказывающую закон вырождения этой величины. Из расчетов видно также (см. рис. 4), что для рассмотренных расстояний от тела значения $\langle vw \rangle_m$ более чем на порядок меньше $\langle uv \rangle_m$. Это в определенной степени подтверждает справедливость гипотез, связанных с пренебрежением этой величиной.

Рассмотрим теперь нормальные рейнольдсовы напряжения. Соотношения $\langle u_i^2 \rangle_0 / e_0 = 2/3$ (i = 1, 2, 3) выполняются для моделей 2 и 3 с точностью до 1%, что согласуется с известными представлениями об изотропном характере течения в безымпульсном следе. Для модели 1 данные соотношения выполняются с точностью до 6%. В частности, для модели 1 имеем следующие значения интенсивностей турбулентных флуктуаций u'_0 , v'_0 , w'_0 : при $x = 50D - 1.126 \cdot 10^{-2}$, $1.10 \cdot 10^{-2}$, $1.10 \cdot 10^{-2}$, при $x = 300D - 2.38 \cdot 10^{-3}$, $2.321 \cdot 10^{-3}$, при $x = 1200D - 8.16 \cdot 10^{-4}$, $7.95 \cdot 10^{-4}$, $7.99 \cdot 10^{-4}$ соответственно. Эти данные

Рис. 5. Автомодельные профили энергии турбулентности (а) и скорости диссипации (б).

Рис. 6. Автомодельные профили дефекта продольной компоненты осредненной скорости (*a*) и касательного напряжения (*б*).

показывают, что осевые значения напряжений $\langle v^2 \rangle$ и $\langle w^2 \rangle$ отличаются не более чем на 1%.

Одновременно отличие $\langle u^2 \rangle$ от двух других нормальных напряжений более существенно — до 6 %.

На рис. 5 и 6 представлены автомодельные распределения основных переменных задачи в плоскости, ортогональной направлению движения тела. Видно, что автомодельные профили энергии турбулентности $f_4(\eta)$ и скорости диссипации $f_5(\eta)$, соответствующие моделям 1 — 3, близки между собой. Автомодельные распределения дефекта продольной компоненты осредненной скорости $f_0(\eta)$ (рис. 6, *a*), напротив, чувствительны к используемой модели турбулентности. Вместе с тем приведенные профили вполне согласуются с данными расчетов других авторов. В частности, профиль $f_0(\eta)$, аналогичный полученному по модели 3, представлен в [14, 22] (в первой из этих работ выполнено теоретическое исследование спутного течения с нулевым избыточным импульсом, во второй на основе "алгебраической" модели рейнольдсовых напряжений Роди [30] численно исследовался безымпульсный турбулентный след за сферой [3, 4]). Для сравнения был выполнен расчет следа за удлиненным телом вращения по модели Роди (на рис. 6 *a* линия с маркером Δ). Видно, что этот профиль дефекта скорости близок к рассчитанному по модели 3. Автомодельный профиль $f_0(\eta)$, соответствующий модели 2, согласуется с данными работы [37], в которой также использовалась модель турбулентности, основанная на дифференциальных уравнениях для напряжений Рейнольдса.

На рис. 6, б приведены автомодельные профили f_{12} касательного рейнольдсова напряжения $\langle u^c v^c \rangle$, соответствующие моделям 2 и 3. Полученные профили достаточно хорошо согласуются с аналитическим профилем из работы [14]. Как указывалось ранее, функция f_{12} получена из решения задачи в декартовой системе координат. При этом встает вопрос о том, является ли полученная в результате пересчета функция осесимметричной, что напрямую связано с точностью используемого численного алгоритма. Линия с маркером + на рис. 6, δ соответствует функции f_{12} , рассчитанной по решению задачи (модель 3) в декартовой системе координат на линии y = z; линия с маркером \Box получена по значениям касательных напряжений на осях y = 0 и z = 0. Эти данные свидетельствуют о достаточно хорошей точности проведенных расчетов.

Таким образом, основные результаты работы состоят в следующем. Выполнено численное моделирование автомодельного вырождения дальнего безымпульсного турбулентного следа за удлиненным телом вращения. Для описания течения привлекаются модели турбулентности второго порядка, в том числе и одна из наиболее полных моделей. Результаты автомодельного анализа согласуются в известными данными экспериментальных, теоретических и численных исследований.

Автор благодарит Г.Г.Черных за внимание к работе и обсуждения.

Список литературы

- NAUDASCHER E. Flow in the wake of self-propelled bodies and related sources of turbulence // J. Fluid Mech. 1965. Vol. 22, No. 4. P. 625–656.
- [2] ГИНЕВСКИЙ А.С. Теория турбулентных струй и следов. М.: Машиностроение, 1969. 400 с.
- [3] АЛЕКСЕНКО Н.В., КОСТОМАХА В.А. Экспериментальное исследование осесимметричного безымпульсного турбулентного струйного течения // ПМТФ. 1987. №1. С. 65–69.
- [4] ЛЕСНОВА Н.В. Взаимодействие изотропных турбулентных потоков в отсутствие сдвига средней скорости: Дис. ... канд. физ.-мат. наук. Новосибирск, 1988. 152 с.
- [5] HIGUCHI H., KUBOTA T. Axysymmetric wakes behind a slender body including zeromomentum configurations // Phys. Fluids. 1990. Vol. 2, No. 9. P. 1615–1623.
- [6] SIRVIENTE A.I., PATEL V.C. Wake of a self-propelled body. Pt 1: Momentumless wake // AIAA J. 2000. Vol. 38, No. 4. P. 613–619.
- [7] ШЕЦ Дж. Турбулентное течение. Процессы вдува и перемешивания. М.: Мир, 1984. 247 с.
- [8] PEQUET J. Turbulent Flows. Models and Physics. Berlin: Springer-Verl., 1999. 761p.
- [9] HASSID S. Similarity and decay laws of momentumless wakes // Phys. Fluids. 1980. Vol. 23, No. 2. P. 404, 405.

- [10] FINSON M.L. Similarity behaviour of momentumless turbulent wakes // J. Fluid Mech. 1975. Vol. 71. Pt. 3. P. 465–479.
- [11] САБЕЛЬНИКОВ В.А. О некоторых особенностях турбулентных течений с нулевым избыточным импульсом // Ученые записки ЦАГИ. 1975. Т. 6, №4. С. 71–74.
- [12] КОРНЕЕВ А.И. Гипотезы подобия в теории турбулентных спутных струй // Турбулентные течения. М., 1977. С. 97–101.
- [13] ГОРОДЦОВ В.А. Автомодельность и слабые замыкающие соотношения для симметричной свободной турбулентности // Изв. АН СССР. МЖГ. 1979. №1. С. 43–50.
- [14] КОЛОВАНДИН Б.А. Моделирование теплопереноса при неоднородной турбулентности. Минск: Наука и техника, 1980. 183 с.
- [15] НОВИКОВ Б.Г. Интерференционная модель развития следов за телами с движителем // Изв. АН СССР. МЖГ. 2001. №4. С. 63–71.
- [16] ЛЕВЕЛЛЕН В., ТЕСКЕ М., ДОНАЛЬДСОН К. Применение полуэмпирических уравнений пульсационного движения к расчету осесимметричных следов // РТК. 1974. Т. 12, №5. С. 53–66.
- [17] ЛЫТКИН Ю.М., ЧЕРНЫХ Г.Г. Подобие течения по плотностному числу Фруда и баланс энергии при эволюции зоны турбулентного смешения в стратифицированной среде // Математические проблемы механики сплошных сред: Сб. науч. тр. / АН СССР. Сиб. отд-ние. Ин-т гидродинамики. 1980. Вып. 47. С. 70–89.
- [18] КОЛОВАНДИН Б.А., ЛУЧКО Н.Н. Численное моделирование турбулентного поля скорости осесимметричного безымпульсного следа // Тепломассообмен-6. Минск: ИТМО АН БССР. 1980. Т. 1. Ч. 2. С. 126–135.
- [19] HASSID S. Collapse of turbulent wakes in stable stratified media // J. Hydronautics. 1980.
 Vol. 14, No. 1. P. 25–32.
- [20] CHERNYKH G.G., FEDOROVA N.N., KOSTOMAKHA V.A., LESNOVA N.V. Experimental and numerical simulation of turbulent axisymmetric momentumless wake behind sphere // Proc. of ICMAR 92, Aug. 31 — Sept.4, 1992, Novosibirsk, Inst. of Theoret. and App. Mech., 1992. Pt 1. P. 30–33.
- [21] ФЕДОРОВА Н.Н., ЧЕРНЫХ Г.Г. О численном моделировании безымпульсного турбулентного следа за сферой // Моделирование в механике: Сб. науч. тр. / РАН. Сиб. отд-ние. Вычислительный центр. Ин-т теор. и прикл. механики. 1992. Т. 6(23). С. 129–140.
- [22] CHERNYKH G.G., DEMENKOV A.G., FEDOROVA N.N. Numerical models of a plane and axisymmetric turbulent wakes in homogeneous fluid // Proc. of ICMAR 94. Novosibirsk, Inst. of Theoret. and App. Mech., 1994. Pt 2. P. 76–81.
- [23] ДЕМЕНКОВ А.Г., ЧЕРНЫХ Г.Г. О численном моделировании струйных течений вязкой несжимаемой жидкости // Вычисл. технологии. 1995. Т. 4, №12. С. 119–131.

- [24] CHERNYKH G.G., DEMENKOV A.G., MOSHKIN N.P., VOROPAYEVA O.F. Numerical models of turbulent wakes in homogeneous and stratified fluids// Proc. of the Third ECCOMAS CFD Conf., 9 — 13 Sept., 1996, Paris, J. Wiley and Sons. P. 161–166.
- [25] ДЕМЕНКОВ А.Г. Численное моделирование турбулентных следов в однородной жидкости: Дис.... канд. физ.-мат. наук. Новосибирск, 1997. 123 с.
- [26] CHERNYKH G.G., DEMENKOV A.G. Numerical models of jet flows of a viscous incompressible fluid // RJNAMM. 1997. Vol. 12, No. 2. P. 111–125.
- [27] CHERNYKH G.G., VOROPAYEVA O.F. Numerical modeling of momentumless turbulent wake dynamics in a linearly stratified medium // Computers and Fluids. 1999. Vol. 28. P. 281–306.
- [28] ВОРОПАЕВА О.Ф., МОШКИН Н.П., ЧЕРНЫХ Г.Г. Внутренние волны, генерируемые турбулентными следами за буксируемым и самодвижущимся телами в линейно стратифицированной среде // Математ. моделирование. 2000. Т. 12, №10. С. 77–94.
- [29] ВОРОПАЕВА О.Ф. Численное исследование безымпульсных турбулентных следов за сферой на основе полуэмпирических моделей турбулентности второго порядка // Вычисл. технологии. 2002. Т. 7, №2. С. 11–23.
- [30] RODI W. The Prediction of Free Turbulent Boundary Layers by Use of Two-Equation Model of Turbulence. Ph. D. Thesis: Univ. of London. 1972. 310 p.
- [31] CRAFT T.J., INCE N.Z., LAUNDER B.E. Recent developments in second-moment closure for buoyancy-affected flows // Preprints of the Fourth Intern. Symp. on Stratified Flows. Grenoble: Inst. of Mech. Grenoble. General Session, 1994. Vol. 2. P. 16.
- [32] LAUNDER B.E. On the effects of a gravitational field on the turbulent transport of heat and momentum // J. Fluid Mech. 1975. Vol. 67. Pt. 3. P. 659–581.
- [33] RODI W. Examples of calculation methods for flow and mixing in stratified fluids // J. Geophys. Res. 1987. Vol. 92. P. 5305.
- [34] ЛЕВЕЛЛЕН В. Метод инвариантного моделирования // Турбулентность. Принципы и применения. М.: Мир, 1980. С. 262–310.
- [35] Яненко Н.Н. Метод дробных шагов решения многомерных задач математической физики. Новосибирск: Наука, Сиб. отд-ние, 1967. 195 с.
- [36] LIN J.T., PAO Y.H. Wakes in stratified fluids // Annu. Rev. Fluid Mech. 1979. Vol. 11. P. 317–336.
- [37] ДМИТРЕНКО Ю.М., КОВАЛЕВ И.И., ЛУЧКО Н.Н., ЧЕРЕПАНОВ П.Я. Исследование плоского турбулентного следа с нулевым избыточным импульсом // ИФЖ. 1987. Т. 52, №5. С. 743–751.

Поступила в редакцию 6 сентября 2002 г., в переработанном виде — 14 января 2003 г.