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Численно исследуется тепловая гравитационная конвекция в жидкостях в услови-
ях микрогравитации. В качестве математических моделей конвективных движений
используются классическая модель Обербека — Буссинеска и альтернативная модель
микроконвекции, характеризующаяся свойством несоленоидальности поля скоростей.
Стационарная гравитационно-термокапиллярная конвекция рассматривается в полу-
круге со свободной границей. Проводится сравнение численных результатов иссле-
дования. Выявляются качественные различия в топологии течений в случае, когда
граничный тепловой режим имеет локальную особенность. Численное исследование
проводится для различных значений чисел Прандтля, Марангони и Рэлея.

Introduction

We consider the mathematical models of the thermal gravitational convection of liquids assuming
smallness of the microconvection parameter. They are the classical Oberbeck — Boussinesq
model of convection [1] and the model of microconvection of isothermally incompressible liquid
known since 1991 (see [2, 3]). It was noted in [2, 3] that the approximation of Oberbeck —
Boussinesq is not valid for a description of convection, if the parameter of microconvection
is rather small. The microconvection parameter characterizes a ratio of the velocity orders
produced by liquid expansion and buoyancy factor. It is equal to η = gl3/νχ, where l is a
characteristic linear scale of a region occupied by liquid, ν, χ are the coefficients of kinematic
viscosity and thermal diffusivity, g = |g|, g is a gravity acceleration. The term “microconvection”
was introduced in [2] to characterize the fluid flows with small values of the parameter η and
therefore to describe the convective fluid flows under low gravity, in microscales or in liquids
with large product of the coefficients of viscosity and thermal diffusivity. The microconvection
parameter η is an additional criterium of similarity regarding to the Rayleigh Ra and Prandtl Pr
numbers. The next specific term as “isothermally incompressible liquid” was used to determine
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the liquid with the state equation, when its density ρ depends on temperature T only (see
[2–4]).

Deriving both models of convection we proceed from the exact laws of conservation of
mass, impulse and energy [1, 3]. The Oberbeck — Boussinesq system of the equations is a
result of simplification of the complete conservation laws due to hypotheses: the density of
liquid depends linearly on its temperature ρ = ρ0(1 − βT ); motion is similar to motion of

incompressible liquid and the velocity field ~V is considered to be solenoidal; in the equation
of impulse the density variation is taken into consideration approximately. Additionally, the
contribution of dissipation function and pressure forces are considered to be negligible and all
transfer coefficients are constant. Here β is a thermal expansion coefficient.

Then the Oberbeck — Boussinesq equations of the thermal gravitational convection can be
written in non-dimensional form as follows:

div~V = 0; (1)

~Vt + ~V · ∇~V = −∇p′ +
1

Re
∆~V −

Ra

Re2Pr
g0T ; (2)

Tt + ~V · ∇T =
1

RePr
∆T. (3)

Here p is used for pressure, p′ is modified pressure, such that p′ = p −
η

Re2Pr
g0 · x, Re is the

Reynolds number, g0 = g/g.
The model of microconvection is based on the exact laws of conservation of mass and impulse

[3]. The equation of energy is simplified due to hypothesis about neglecting of the contribution
of dissipation function and pressure forces. All transfer coefficients are considered again to be
constant. The alternative model is characterized now by a non-solenoidal velocity field ~V .
Using dependence of liquid density on its temperature of type ρ = ρ0/(1 + βT ) the system of

equations can be rewritten in form, when the modified velocity vector ~W becomes solenoidal
[2, 3]. We introduce the system of the microconvection equations in non-dimensional form as
follows:

div ~W = 0; (4)

~Wt + ~W · ∇ ~W +
ε

RePr
(∇T · ∇ ~W −∇ ~W · ∇T ) +

ε2

Re2Pr2
(∆T · ∇T −∇|∇T |2) =

= (1 + εT )

(

−∇q +
1

Re
∆ ~W

)

−
Ra

Re2Pr
g0T ; (5)

Tt + ~W · ∇T +
ε

RePr
|∇T |2 = (1 + εT )

1

RePr
∆T. (6)

Here q is modified pressure ( q = p′ −

(

1 −
ν ′

ν
−

1

Pr

)

ε

Re2Pr
∆T , ν ′ is a second viscosity) and

~W = ~V −
ε

RePr
∇T .

The property of solenoidality of the modified velocity makes it possible to introduce an
analog of stream function for two-dimensional and axis-symmetrical problems and to carry out
the calculations of the convective flows in the variables “(modified) stream function — (physical)
vorticity”.

From physical point of view both above mentioned dependences of density on temperature
are practically equivalent. In real convective flows the maximum values of β|T | do not exceed
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10−2 [1, 3]. The interest to the alternative models of convection has grown recently. These
models are to play their role, for example, in the detection of so-called non-Boussinesq effects.
The explanation of some experiments made on the orbital stations find no confirmation in the
calculations using classical mathematical modelling.

At first the model of microconvection was proposed and used for the analytical and numerical
research of non-stationary convection in the closed domains under low gravity [2, 5, 6]. Quantitative
and qualitative differences in the characteristics of the non-stationary flows computed with
classical and alternative models are confirmed. Taking into account the non-solenoidality for
the stationary problems in the closed domains leads to the corrections of the order of Boussinesq
number [7]. We continue the investigations of the microconvection problems in the domains
with free boundaries in case, when the boundary thermal regimes have local singularity, and
model additionally fast changing boundary regime (see [8, 9]). The calculations are carried out
for the different Prandtl, Marangoni and Rayleigh numbers. The topology of convective flows
is investigated and those situations, when the topology of flow can differ, are presented.

We will consider the stationary gravitational-thermocapillary convection in a semicircular
domain with free flat boundary. Under conditions of low gravity and in case, when the parameter
responsible for deformation of free surface by thermo-capillary forces (the capillary number) is
rather small, a non-deformed free boundary is considered. It can be approximately defined as a
boundary of capillary balance. The correction to the free boundary can be found from dynamic
condition on free boundary.

Remark 1. In this paper the following usual notations are used: r for a radial coordinate,
ϕ for an angular coordinate, ω for a vorticity, ψ for a stream function or for modified stream

function. Then v =
1

r

∂ψ

∂ϕ
is the radial component of velocity, u = −

∂ψ

∂r
is the circumferential

component of velocity. We introduce the definitions of the non-dimensional parameters: Ra =
εη, ε = βT∗, Re = v∗l/ν, Pr = ν/χ, where ε is called the Boussinesq number and “star” is
used to notice the characteristic values of functions. A choice of the characteristic values can
be done according to [10].

1. Formulation of problems

Stationary gravitational-thermocapillary convection is investigated in the semicircle of type

0 ≤ r ≤ R < +∞, π ≤ ϕ ≤ 2π.

The diameter of semicircle (ϕ = π, ϕ = 2π, 0 ≤ r ≤ R) is free boundary and the semi-
circumference (r = R, π ≤ ϕ ≤ 2π) is rigid boundary with given heat flux through this
boundary. The equations of convection for both mathematical models (1)–(3) and (4)–(6) can
be rewritten in the variables ψ − ω.

1.1. Classical Oberbeck — Boussinesq model in terms ψ − ω

The equations (1)–(3) considered in stationary case are written in the polar coordinates:

∆ω − Re

(

v
∂ω

∂r
+

u

r

∂ω

∂ϕ

)

+
Ra

Ma

(

∂T

∂r
cos ϕ −

1

r

∂T

∂ϕ
sin ϕ

)

= 0, (7)

∆ψ + ω = 0, (8)
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∆T − Ma

(

v
∂T

∂r
+

u

r

∂T

∂ϕ

)

= 0, (9)

where Ma = RePr is the Marangoni number.
To realize the fast changing temperature regimes the local singularity of thermal flux

through free boundary is created. In this connection two types of boundary conditions for
both models are studied. Let us indicate them symbolically: Variant I or the basic variant
with no “splashes” on free boundary and Variant II or the variant with “splash” on free
boundary. “Splash” means an action of local singularity for the boundary regimes. Additionally
the different changes of the temperature regimes on rigid boundary are considered.

We introduce the boundary conditions for temperature on the rigid boundary as follows:

∂T

∂r
= TG cos γϕ, γ = {1, 2, 4}. (10)

Variant I. The boundary conditions on the free boundary 0 ≤ r ≤ R, ϕ = π, ϕ = 2π
are considered for stream function and vorticity

ψ = 0, ω =











∂T
∂r

, ϕ = 2π,

−∂T
∂r

, ϕ = π

(11)

and for temperature
∂T

∂ϕ
= 0. (12)

On the rigid boundary r = R we obtain from the no-slip conditions as usually that

ψ = 0,
∂ψ

∂r
= 0. (13)

Variant II. For the second variant we consider (11) and write the boundary conditions for
temperature on the free boundary 0 ≤ r ≤ R, ϕ = π, ϕ = 2π as follows:

∂T

∂ϕ
=







0, ϕ = π, ϕ = 2π (r 6= R∗),

R∗TB, ϕ = 2π (r = R∗).
(14)

On the rigid boundary r = R we keep the conditions (10), (13).
Remark 2. For the Variant I we have the problem statement consisting of the equations

(7)–(9) and boundary conditions (10)–(13). For the Variant II we consider the equations
(7)–(9) and the boundary conditions (10), (11), (13), (14).

1.2. Model of microconvection in terms ψ − ω

The non-dimensional equations (4)–(6) for stationary problem in the polar coordinates can be
written as follows:

[1 + εT ] ∆ω − Re

(

v
∂ω

∂r
+

u

r

∂ω

∂ϕ

)

+

+ε

{

1

r

∂T

∂ϕ

∂q̄

∂r
−

1

r

∂T

∂r

∂q̄

∂ϕ
+

[

∂T

∂r

(

∆u −
u

r2

)

−
1

r

∂T

∂ϕ

(

∆v −
v

r2

)

]}

+
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+
Ra

Ma

(

∂T

∂r
cos ϕ −

1

r

∂T

∂ϕ
sin ϕ

)

−
ε

Pr

(

ω∆T +
∂T

∂r

∂ω

∂r
+

1

r2

∂T

∂ϕ

∂ω

∂ϕ

)

−

−
ε2

MaPr

[

−
1

r

∂T

∂r

∂∆T

∂ϕ
+

1

r

∂T

∂ϕ

∂∆T

∂r

]

= 0; (15)

∆ψ + ω = 0; (16)

[1 + εT ] ∆T − Ma

(

v
∂T

∂r
+

u

r

∂T

∂ϕ

)

− ε
∣

∣ 5 T
∣

∣

2
= 0. (17)

Here q̄ = Re q. In the equations (7)–(9) and (15)–(17) we use following notations for the
differential operators in the polar coordinates

∆ =
1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂ϕ2
, ∇ =

(

∂

∂r
,

1

r

∂

∂ϕ

)

.

We introduce again the boundary conditions (10) on the rigid boundary.
Variant I. For the first variant we obtain the similar to (11), (12) boundary conditions on

the free boundary 0 ≤ r ≤ R, ϕ = π, ϕ = 2π for the modified stream function, vorticity and
for temperature. On the rigid boundary r = R we have now for the modified stream function
that

ψ = −R
ε

Ma
TG

1

γ
sin γϕ,

∂ψ

∂r
=

1

R

ε

Ma

∂T

∂ϕ
. (18)

Variant II. For the second variant on the free boundary 0 ≤ r ≤ R, ϕ = π, ϕ = 2π we
consider the conditions (11) for the modified stream function and vorticity and the condition
(14) for temperature. On the rigid boundary r = R we consider the conditions of type (10), (18).

Remark 3. The problem statement for the Variant I consists of the equations (15)–(17)
and boundary conditions (10), (11), (12), (18). For the Variant II we consider the equations
(15)–(17) and the boundary conditions (10), (11), (14), (18).

2. Numerical procedure

The mathematical models of convection described in Section 2 are investigated numerically.
Numerical procedure for their solution is carried out with help of the finite difference scheme
based on the alternating direction method. This method formally has second approximation
order [11]. The convective terms taken from the proceeding iteration layers are approximated
against flow. Actually, the scheme of first order is obtained. The method offered for investigations
was approved on the test problems and calculations of non-stationary convection in the circular
domains [12] (see also [8, 9]).

For the equations (7), (9) or (15), (17) the scheme of computation is written in the following
form:

Uk+1/2 − Uk

0.5τ
= λ̃U

[

Λ1U
k + Λ2U

k+1/2
]

+ λUF k,

Uk+1 − Uk+1/2

0.5τ
= λ̃U

[

Λ1U
k+1 + Λ2U

k+1/2
]

+ λUF k, (19)

where U =

(

ω

T

)

, Uk = U(tk), Λ1 and Λ2 are the difference operators, which approximate the

differential operators in ∆ , λ̃U = λU for the Oberbeck — Boussinesq model, λ̃U = λU(1+εT k)
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for the model of microconvection. Here λU in an iteration parameter, and F k includes all terms
in the left-hand sides of the equations (7), (9), (15), (17) beginning from the second one and
calculated on the previous layer.

Numerical solution of the equations (8) or (16) at each step tk = kτ, k = 1, 2, ..., is obtained
by similar iteration scheme

ψs+1/2 − ψs

0.5τ
= λψ

(

Λ1ψ
s+1/2 + Λ2ψ

s + ωk+1
)

,

ψs+1 − ψs+1/2

0.5τ
= λψ

(

Λ1ψ
s+1/2 + Λ2ψ

s+1 + ωk+1
)

(20)

with another iteration parameter λψ.
To realize the stated above calculation scheme a difference grid is introduced:

rn = (n − 1)h (n = 1, ..., N + 1), h = R/N,

ϕm = (m − 1)α (m = m̄, ...,M + 1), α = 2π/M (m̄α = π).

Here we use the notations f(rn, ϕm) = fn,m and Λ1f , Λ2f are the difference operators:

Λ1f =
1

rn

[

rn+1/2 ·
fn+1,m − fn,m

h2
− rn−1/2 ·

fn,m − fn−1,m

h2

]

,

Λ2f =
fn,m+1 − 2fn,m + fn,m−1

r2
nα

2
.

The idea of approximation against flow is used for the approximation of the convective terms:

−

[

v
∂f

∂r
+

u

r

∂f

∂ϕ

]

∼ −

[

vn,m
fn+1,m − fn−1,m

2h
+

un,m

rn

fn,m+1 − fn,m−1

2α

]

+

+|vn,m|
fn+1,m − 2fn,m + fn−1,m

2h
+

|un,m|

rn

fn,m+1 − 2fn,m + fn,m−1

2α
.

The first derivatives on boundary are approximated by one-side differences.
In order to determine the boundary conditions for vortex on the rigid boundary the conditions

of Thom type [13, 14] are introduced with help of the Taylor expansions and Poisson equations
(8), (16) considered on the boundary:

ωN+1,m = −
2

h2
ψN,m,

ωN+1,m = −
2

h2
ψN,m −

ε

Ma

∂T

∂ϕ

(

1

R2
+

2

hR

)

−
ε

Ma
TG sin γϕm

(

1

R
γ +

2R

h2

1

γ

)

.

These conditions are written for classical model and for the model of microconvection respectively.
We present a general scheme for solution of the problems consisting in the realization of

the following stages:
1. External iteration process consists in successive calculations of the functions T k+1, ωk+1

from the equations (7), (9), (15), (17). Moreover the Thomas algorithm in the direction ϕ
is realized on every intermediate (k + 1/2) layer. On the basic (k + 1) layer the Thomas
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algorithm is realized in the direction r. The initial data are determined by the rest state of type
T := T0 = const, ω := 0, ψ := 0.

2. Internal iteration process of calculation of ψs+1 from the equations (8), (16) is introduced
on every (k + 1) iteration layer with the alternated sequence of the Thomas algorithms. After
an end of the iterations s = S it is considered that with a given precision εψ the values of ψ
are determined on the (k + 1) layer, such that ψk+1 = ψS.

The iteration processes are considered to be convergent, if the criteria of convergence are
fulfilled:

max
n,m

|f i+1

n,m − f i
n,m| < εf max

n,m
|f i+1

n,m|,

where i is an iteration number, εf is a precision of the calculations of f i+1 (see [13, 14]). We
use an additional examination for the fulfillment of the boundary conditions [14] with help of

ε̄ = max
m

|ωN+1,m(ψk+1

N,m) − ωN+1,m(ψk
N,m)|

and a condition that the stationary flow is considered to be achieved, if no less than K of
the external iterations are fulfilled. An achievement of stationary solution is rather delicate
question. Therefore an examination of an exit on the stationary regime with help of a perturbation
of “an initial” approximation was used. Returning to the earlier achieved “stationary” state was
observed for all presented cases.

Remark 4. The questions connected with a correction of the free boundary and with a
stability of the flows can be solved according to [10, 15]. If H(x) is a deviation of free boundary
from the position y = 0, −R ≤ x ≤ R, an equation for this correction can be written as follows:

δP −
2

Re

∂v2

∂y
= −

σ

CaRe
H ′′, H(±R) = 0,

R
∫

−R

Hdx = 0.

Here “prime” denotes a derivative on x, v2 is expressed by radial and tangential velocity
components v, u, δP is a deviation of the pressure from the balanced level, σ is a surface
tension and Ca is the capillary number.

It should be noted that the stability of convection flows in domains with free boundaries
is of great interest (e.g. [15]). Computational results presented here show that the instability
phenomena will occur at higher values of Re and Ma that were reached in this paper.

3. Numerical results

The calculations are performed for the physical liquids similar to glycerin and melts of silicon
and called symbolically Glyc1, Glyc3, Sil. The main parameters of the substances can be found
in the Table. The solutions are computed on the grids with 41 × 41, 81 × 81 and 161 × 161
mesh points. The results of calculations are shown in Fig. 1–3. The value of radius is R = 1
(cm). The values of the parameters in the boundary conditions are: TB = 70 and TB = 150,
TG = 35, T0 = 35, R∗ = 0.45.

We describe now the results of numerics.
Variant 1 (Basic variant). Case γ = 1. In this case the computations for two alternative

models show only some quantitative differences and practically the same qualitative pictures.
The stationary solution has the one-vortex structure for the liquids Glyc3, Sil and the two-
vortex flow of type “two small vortices in one” for the liquid Glyc1.
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Parameters of the problems

Pr Ma Re Ra η ε

Glyc1 10
4

3 · 10
2

3 · 10
−2

1.5 · 10
−3

10
−1

1.2 · 10
−2

Glyc3 10
4

1 10
−4

1.5 · 10
−3

10
−1

1.5 · 10
−2

Sil 4 · 10
−3

1 2.5 · 10
2

2 · 10
−4

1 2 · 10
−4

In the basic case with γ = 1 a stability and an experimental order of convergence r of solution
of the difference problem was tested due to the Runge rule (see [16, 17]). To estimate the error of
the numerical results we can consider some measurement r1, r2, r3 on subsequently refined grids,
here (i = 1) : 41×41, (i = 2) : 81×81, (i = 3) : 161×161. We determine the quantities ri, which
characterize so-called motion intensity max

n,m
|ψn,m|. These motion characteristics are calculated

for the liquid Glyc1: r1 = 0.0345, r2 = 0.0303, r3 = 0.0291. We obtain the experimental order
of convergence r ≈ 1.8 calculated as follows: r = ln(|r2 − r1|/|r3 − r2|)/ ln 2. The estimated
relative error of the motion intensity is about 5%. (For its calculation we have used [1/(1 −
(1/2)r)] · [|r3 − r2|/r3].)

In the Case with γ = 2 the calculations made for the liquids Glyc1, Glyc3, Sil show the
two-vortex structures of flow. The same pictures of topology of flow and of temperature field
are observed in results due to both mathematical models.

Case γ = 4. In figures (Fig. 1, a — c) the topology of flows and the temperature fields are
presented. By the calculations made for the liquid of type Glyc1 the four-vortex structure of
flow is observed (see Fig. 1, a). In Fig. 1, c the two-vortex structure of flow for the liquid of
type Sil is presented. The typical group of the isotherms is given in Fig. 1, b. The orders of
non-dimensional velocities are ∼ 10−2 − 10−1 inside of region and ∼ 10−1 at the free boundary

a b

c

Fig. 1. Variant 1, γ = 4: a — topology of flow for Glyc1; b — temperature field for Glyc1; c — topology
of flow for Sil.
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for Glyc1, ∼ 10−1 − 100 inside of region and ∼ 100 at the free boundary for Sil.

So, for basic Variant I the qualitative differences in topology of flows computed by different
mathematical models are not observed.

Variant 2. (Additional modelling of fast changing temperature field by creating local
singularity of the thermal flux on free boundary.)

Case γ = 1. We consider rather weak singularity of Gauss type with TB = 70. The
differences in the computations appear in the investigations of flows for the different liquids.
For Sil we obtain the two-vortex flow structure of type “two vortices in one”, where an inner
small vortex is located by the singularity point (see Fig. 2, a). For Glyc3 both mathematical
models give the one-vortex structure of flow (Fig. 2, b) The temperature field computed for
Glyc3 is presented in Fig. 2, c. The similar temperature picture is also obtained for Sil. The
temperature variation of Glyc3 is in range from 21 to 50 for the Oberbeck — Boussinesq model
and in range from 18.5 to 55 for the microconvection model. The temperature variation of Sil is
in the interval [25; 45] for the Oberbeck — Boussinesq model and in the interval [21; 50] for the
microconvection model. The orders of the non-dimensional velocities are ∼ 10−1 − 101 inside
of region and ∼ 101 at the free boundary for Glyc3. The orders of velocities are ∼ 10−1 − 100

inside of region and ∼ 100 at the free boundary for Sil.

Case γ = 4. The more distinct differences in the calculations using the alternative models
are appeared for the liquid of type Sil for the singularity with TB = 150. In Fig. 3, a the
topology of flow calculated according to the model of microconvection is shown. The rather
complicated two-vortex flow structure can be shown. The right big vortex is the vortex of type
“two vortices in one”. In Fig. 3, c the topology of flow computed by the Oberbeck — Boussinesq
model is shown. In this case the flow is characterized by two vortices. They are of different
sizes and have approximately equal intensity. The isotherms field is presented in Fig. 3, b. One
can speak about similar pictures for the temperature fields. The temperature variation is in
range from 26 to 45 for the Oberbeck — Boussinesq model and in range from 26 to 49 for the

a b

c

Fig. 2. Variant 2, γ = 1: a — topology of flow for Sil; b — topology of flow for Glyc3; c — temperature
field for Glyc3.
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a b

c

Fig. 3. Variant 2, γ = 4: a — model of microconvection (topology of flow for Sil); b — temperature
field for Sil; c — Oberbeck — Boussinesq model (topology of flow for Sil).

microconvection model. The orders of non-dimensional velocities are ∼ 10−2 − 100 inside of
region and ∼ 100 at the free boundary.

The quantitative results obtained by both models are quite close to each other. The values
of velocities differ approximately on 15%.

Conclusions

Our mathematical modelling of the convection can be called alternative approach in the convection
theory. The most bright qualitative and quantitative differences from the classical results or the
non-Boussinesq flow effects are obtained by the simulations for the non-stationary problems of
microconvection [2, 3, 5, 6]. According to analytical results of V.V. Pukhnachov [7] the non-
solenoidality for the stationary problems of microconvection in the closed domains leads to the
corrections of the orders of Boussinesq number.

The purpose of the paper is not only to demonstrate the topology of flows for different liquids
in domain with free boundary. We want to show numerically the possibilities for creating
differences from the classical theory in stationary case. The qualitative differences in flow
characteristics for stationary problems with free boundary in a semicircular domain can be
observed, when boundary thermal regimes have local singularity. Modelling of local singularity
should be combined with fast changing heat flux through fixed boundary (for instance, by
condition of type (10) with γ > 1). The differences in the quantitative flow characteristics
obtained by different mathematical models will not be so essential as in the non-stationary
problems.
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