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Многие проблемы в вычислительной генетике и биоинформатике состоят в мо-
делировании и прогнозировании характера экспрессии генов. С помощью конечной
серии экспериментов и примеров и с использованием аппроксимации по методу наи-
меньших квадратов мы получаем нелинейную систему обыкновенных дифференци-
альных уравнений, которая представляет непрерывную по времени динамику генети-
ческого процесса, до того как мы преобразуем ее в дискретную по времени систему.
В данной работе мы частично усложняем новаторскую работу [11, 12, 30], исполь-
зуя дискретизацию Рунге — Кутты вместо дискретизации Эйлера, особенно правило
трапеций. Таким образом мы модифицируем дискретизацию Эйлера, основываясь на
дискретной по времени динамике и анализе устойчивости так, что она становится
более подходящей для лежащего в основе генетического или медицинского процесса.

Introduction

In this contribution, we focus on the organization of cell-metabolism, i. e., on the concerted
action of biochemical reactions [27], being an important expression of organization and adapta-
tion capability of life [20, 28]. Let us for a better understanding recall some genetical foundations
(cf. [12]).

Background from Biology. Information in living cells is considered to flow from DNA
(genome) via RNA (transcriptome) to protein (proteome). DNA can be viewed as a linear
macro-molecule composed of nucleotides, carrying one of four different organic bases: A, C, G
and T. The linear sequence of the four different nucleotides carries the information. Defined
sections on the DNA string, the genes, encode for proteins. During transcription the gene
sequences on the DNA are transcribed to linear mRNA macro-molecules. RNA widely resembles
DNA chemically. Three nucleotides, comprising a codon, encode for one of the twenty amino
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acids, the building blocks of proteins. The transformation of the nucleic acid code into an
amino acid sequence is called translation. Most of the resulting proteins (the group of enzymes)
catalyze chemical reactions within the cell. The sum of all these reactions is defined as cell-
metabolism. By metabolites we understand the educts and products of enzymatic catalysis, by
metabolome the entity of all metabolites.

Cell Metabolism Traced. A general scientific opinion says that the proteome forms
a tight network which lays the functional basis for a living organism. Unfortunately, the
proteome is still not satisfactorily accessible by experiments. Due to recent advances, however,
in whole genome DNA-sequencing and DNA-microarray technology, both the genome and
transcriptome can be readily analyzed. Mining the genome sequence for all known enzymes
allows to predict the metabolic potential of a cell. The current metabolic state of a cell is
reflected in its metabolome (according to biological dogma). Both the entire metabolome and
the entire proteome are not readily accessible for investigation with current methodology. Our
approach to learn more about how cell-metabolism is based on the transcriptome. Since all
proteins are encoded by mRNAs, the knowledge of all expressed genes (the transcriptome) well
approximates the knowledge of all synthesized proteins and enzymes.

“Biochips”. Molecular biological methods for analyzing the transcriptome traditionally
focus on one gene per experiment. This implies that the throughput is very slow. However,
DNA-microarray technology allows the presence of thousands of genes to become monitored
in one experiment [25]. Herewith, we obtain a detailled and simultaneous picture of the co-
expression of thousands of genes. An array is an ordered arrangement of samples. In the case
of DNA-microarrays, the sample is DNA, usually attached to a glass support [25]. The sample
spot diameter is less than 200 µm. On a glass support of the size of a microscope-slide up
to 25,000 DNA-samples can be spotted. Herewith, the expression of 25,000 genes could be
traced in one experiment (unique probes assumed). There are two major applications for the
DNA-microarray technology: (a) identification of sequences (genes / gene mutations), and (b)
determination of the gene-expression level, i. e., abundance of transcripts. In any of both cases,
the underlying principle is matching known to unknown DNA-samples. The physicochemical
matching process hybridization is based on complementary DNA base-pairing rules (i. e., A-
T and G-C). The basis for a genome wide gene-expression analysis is a completely annotated
genome sequence. Based on this information gene specific DNA-probes can be generated (dozens
to several thousand nucleotides long). These probes are then spotted onto the glass support.
To analyze the abundance of gene transcripts (mRNA or ncRNA), they are isolated and
reverse transcribed into cDNA. During the latter step, in general, the cDNA is labelled with
a fluorescent dye. The labelled cDNA-population is then hybridized to the DNA-probes on
the microchip. Then, the DNA-microchip becomes laser scanned. Thus, depending on the
fluorescence intensity of individual spots (usually, a 32 bit message), conclusions about the
abundance of the corresponding transcript can be drawn. Finally, all expression data from a
single DNA-microarray experiment are represented in a vector, containing as many elements
as genes were analyzed.

All mRNA species of the test material (bacteria, tissue, etc.) are isolated, reverse transcribed
into cDNA, and labelled with a fluorescent dye. This sample is hybridized with the DNA-
microarray (also called DNA-chip). The probes on the DNA-microarray are derived from gene
sequence data of the test material. Each individual spot on the DNA-microarray carries millions
of copies of one specific probe. Only the cDNA with the same sequence as the corresponding
probe can hybridize. Since the samples are labelled with a fluorescent dye, hybridization
becomes visualized by laser scanning. Computer assisted image processing, including data
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mining, finally reveals the quantity of each individual mRNA species in the test material.

1. Biological Gene-Expression Data Analysis

and Genomic Stability

Stability in its mathematical meaning from dynamical systems’ theory refers to stationary
points (equilibria). Here, it means that being in some sufficiently small neighborhood of the
equilibrium, the states never escape [2, 18]. Asymptotic stability is stronger by implying attraction
by the equilibrium. In our research, the difference between stability and asymptotic stability
is represented by the largest absolute value of a matrix eigenvalues being ≤ 1 or even < 1.
In these matrix terms, the step-wise multiplicative form of our time-discrete system will be
evaluated by the dynamics’ boundedness.

In population biology, stability is well defined [17]. In molecular biology, stability usually
refers to the resistance of chemical compounds towards conformational changes and is associated
with thermodynamics. Genomic stability is defined as the capability of an organism to repair
physical and chemical damages and changes of the genome. Cancer is usually initiated by
genome instability, ranging from elevated mutation rates to gross chromosomal rearrangements
and alterations in chromosome number. Generally, healthy cells have access to a sophisticated
molecular toolbox to fight against instability [16]. For our model we consider gene-expression
to be stable, if no strongly emerging changes in time can be observed by DNA-microarray
experiments. We, however, allow for changes during the transition from one stable state to
another. Those transitions are typically observed when cells are shifted from one metabolic
state to another; e.g., the change from feeding on glucose to feeding on glutamate. In contrast,
for example, tumor or apoptotic (dying) cells usually show a constant change in gene-expression.
These changes are, from a biological point of view, unstable.

2. Time-Continuous and Discrete Models of

Gene-Expression Data by Euler Discretization

Euler Discretization. In [12], by Euler’s discretization applied on the time-continuous diffe-
rential equations

(CE) Ė = M(E)E, (2.1)

which will be the outcome of our mathematical modeling and describing the metabolic process
(cf. Paragraph 2), we get the vectors Ek (k ∈ IN0) of length n. By these Ek coming from
time-discretization, we approximate the values E(tk) of the solution trajectories E(·) at times
tk. These times may, but need not, be chosen as the discrete times t̂k (k ∈ {0, 1, . . . , `}) of
biological measurements (see Paragraph 2). Our discrete dynamics can also directly be obtained
by inference (statistical learning [1, 14]).

Let E = E(t) be gene-expression patterns at different times t and (CE) our model describing
the continuous process of the metabolism of a healthy cell. By using the following algorithm
we obtain parameters, for which our system behaves in a stable way. By Euler discretization,
for all k ∈ IN0 we get:

Ek+1 − Ek

hk

= M(Ek)Ek, (2.2)
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delivering the sequence

Ek+1 = (I + hkM(Ek))Ek, (2.3)

where hk = tk+1 − tk, and tk means the k-th time. Let us define

Mk := I + hkM(Ek) (2.4)

so that we obtain the following time-discrete equation and dynamics:

(DE) Ek+1 = MkEk (k ∈ IN0). (2.5)

We will analyze whether a (large approximate) set M = {M0,M1, ...,Mm−1} of m matrices
is stable or not. Our system’s dynamics is strongly related to both the structure of the polytopes
and the relevant matrices. We present a significant link between the geometry of polytopes and
the theory of dynamical systems. We employ a slightly corrected version of the algorithm of
R.K. Brayton and C.H. Tong [5]. A first application of this was given by S.W. Pickl [22] on
environmental protection. For related attempts cf. [1, 7–10, 19, 24].

Underlying Mathematical Modeling. In [12], we justified our mathematical model

(CE) Ė = M(E)E. Our data at times t̂j do not only consist of the measurements Êk,

but also of the tendencies of increase or decrease given, e.g., by the difference quotients

˙̂
Ek :=






Êk+1 − Êk

t̂k+1 − t̂k
, if k ∈ {0, . . . , ` − 1},

Ê` − Ê`−1

t̂` − t̂`−1

, if k = `.

(2.6)

To point out the basic idea, we refer to the easiest but roughest case given by polynomial
regression. Let E be a vector of the type E = (E1, E2)

T . Now, based on a diagonal form of
M(E) = Ma1,...,a6

b1,...,b6

(E), our ansatz looks, e.g.,

(
a1E

2
1 + a2E1E2 + a3E

2
2 + a4E1 + a5E2 + a6 0

0 b1E
2
1 + b2E1E2 + b3E

2
2 + b4E1 + b5E2 + b6

)
. (2.7)

Now, let us look at some values aj = a∗

j , bj = b∗j , j ∈ {4, 5, 6} as parameters reserved for
stability analysis. Then, the discrete approximation problem takes the form [11, 12]:

(P)
minimize

a1, a2, a3, b1, b2, b3

∑̀

k=0

‖(Ma1,a2,a3,a∗
4

,a∗
5

,a∗
6

b1,b2,b3,b∗
4

,b∗
5

,b∗
6

(Êk)Êk −
˙̂
Ek)‖

2 , (2.8)

with || · || being Euclidean norm. The solutions generically are locally defined functions
( aj(a

∗

4, a
∗

5, a
∗

6, b
∗

4, b
∗

5, b
∗

6) (j ∈ {1, 2, 3}), bj(a
∗

4, a
∗

5, a
∗

6, b
∗

4, b
∗

5, b
∗

6) (j ∈ {1, 2, 3}) ). Inserting them into
Ma1,a2,a3,a∗

4
,a∗

5
,a∗

6

b1,b2,b3,b∗
4

,b∗
5

,b∗
6

(E) gives M(E), still parametrically depending on a∗

j , b∗j , j ∈ {4, 5, 6}. Herewith,

we interpret our entire problem as a two-stage problem [15]. Both classes of parameters can be
interpreted in terms of statistical learning [14] as training set and testing set, respectively.
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Stability of Matrices in Terms of Polytopes

Definition 2.1. [5] A given (n × n)-matrix M is called stable, if there exists a K ∈ IR+

such that for all j ∈ IN, ‖M j‖ ≤ K (‖ · ‖ being some natural matrix norm).
Thus, the matrix M is stable if and only if |λ(M)| ≤ 1 and in the case of |λ(M)| = 1 the

algebraic multiplicity is equal to the geometric multiplicity.
A set M of (n×n)-matrices is stable, if for every neighborhood of the origin U ⊆ C

n there
exists another neighborhood of the origin Ũ such that, for each M ∈ M′ it holds MŨ ⊆ U (M′

denoting the semi-group generated by all finite products of element of M).

In the pioneering work [12], this stability condition was versified or falsified, respectively,
with the help of the algorithm of Brayton and Tong [5], modified and implemented by Pickl [22].
In fact, this algorithm became applied on a finite set M of approximative matrices. A central
idea of the underlying construction princle consists in applying any finite number of these
matrices on a polyhedral neighbourhood of the origin 0 ∈ IRn or, equivalently, by observing a
sequence of stepwise defined polyhedra. The boundedness or unboundedness of the sequence
of the latter ones just characterizes the stability or instability of the set M and, herewith,
(in)stability of our time-discrete dynamical system (DE).

For numerical calculations based on all the preceding explanations we refer to [11, 12, 30].
In case of Euler discretization, both the mathematical modeling and the stability investigation
have turned out to be very elegant and implementable by means of our contruction principle and
algorithm. A structural frontier, however, consists in the fact that under Euler’s discretization
principle, stability of the time-continuous system (CE) and of the time-discrete system (DE) are
not always equivalent [18]. We overcome this problem by obtaining (DE) directly by statistical
learning from the experimental data, herewith avoiding a model by (DE) [30], or, alternatively,
by turning to another discretization principle. This will be initiated and discussed by us in the
following.

3. Time-Continuous and Discrete Models of

Gene-Expression Data by Trapezoidal Rule

In [12], the mathematical model of metabolic process is described by the continuous differential
equation

(CE) Ė = M(E)E , (3.1)

where E is vector of length n and M(E) is an (n×n)-matrix. This matrix M(E) is constructed
by firstly discretizing the right-hand side of (CE) according to Euler:

Ek+1 − Ek

hk

= M(Ek)Ek (3.2)

and, then, the regarded parameters in M(E) are estimated using least squares approximation

so that this discrete model best fits the data Êk (k ∈ {0, 1, . . . , `}). Lateron, it becomes
requested that the time-disrete system behaves stable with respect to the remaining so-called
em (expression-metabolism) parameters. Indeed, stability is requested for the discrete equation

(DE) Ek+1 = MkEk, (3.3)
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where Mk := I + hkM(Ek). The considered set M of matrices Mk is stable if and only if for all
k it holds |λ(Mk)| ≤ 1, where in the case “= 1” additionally the algebraic and the geometric
multiplicity must be the same. Here, λ := λ(Mk) = 1 + hkµ(M(Ek)) stands for all eigenvalues
of Mk, while µ := µ(M(Ek)) represents all the eigenvalues of M(Ek). Within of our spectral
way of stability characterization, let us concentrate on the generic case “< 1”. This condition is
satisfied if hkµ lies in a unit circle of the complex plane C , centered at the point (−1, 0). Since
the order of Euler’s method is one and its stability region is restricted, we can apply Runge —

Kutta methods to construct a time-discrete mathematical model. We will illustrate the idea
using Trapezoidal rule which is a second order 2-stage Runge — Kutta method and has stronger
stability properties (for general information cf. [13]).

Discretization of equation (CE) by Trapezoidal rule yields

(T R) Ek+1 = Ek +
1

2
hk(M(Ek+1)Ek+1 + M(Ek)Ek) (k ∈ IN0). (3.4)

Therefore, the matrix M(E) which best fits the measurements Êk (k ∈ {0, 1, . . . , `}) will be
constructed by minimizing

`−1∑

k=0

‖Êk +
1

2
hk(M(Êk+1)Êk+1 + M(Êk)Êk) − Êk+1)‖

2 (3.5)

with respect to all considered parameters (|| · || denoting Euclidean norm; please cf. also (P)).
It can be easily seen that for the linear model Ė = ME, where the constant matrix M

may be the Jacobian coming from a linearization of equation (CE), our equation (T R) in a
generical sense reduces to the formula of a time-discrete system

(DE) Ek+1 = MkEk (3.6)

with the system matrices given by

Mk =

(
I −

1

2
hkM

)
−1 (

I +
1

2
hkM

)
. (3.7)

Since for these matrices the eigenvalues are

λ(Mk) =
1 +

1

2
hkµ(M)

1 −
1

2
hkµ(M)

, (3.8)

the stabilty condition |λ(Mk)| ≤ 1 is satisfied with no restriction on hkµ(M), i. e., the system
is unconditionally stable.

The stability investigation of (T R) for the nonlinear case of a nonconstant function M(E)
and more general versions of Runge — Kutta methods as well are in the future research plan
on genetical processes which we have together with our colleagues. This plan also includes
the more general structure given by an additional shift vector B on the right-hand side of
(CE) as introduced and successfully studied by F.B. Yilmaz [30], and using another methods
of statistical learning, too. We conclude with a further encouraging remark.

Remark 3.1. Runge — Kutta discretization of model equation (CE) generates a nonlinear
discrete equation for parameters, even if the model equation is linear. If we use implicit Runge —
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Kutta methods, depending on the base functions used in construction of the matrix M(E),
derivation of discrete equation may not be possible. We illustrate the nonlinearity by applying
2-stage explicit Runge — Kutta method to the linear model equation Ė = ME, where there
is a constant matrix (to be determined). Discretization gives

(RK) Ek+1 = Ek + hk(α1K1,k + α2K2,k) (k ∈ IN0), (3.9)

where α1 + α2 = 1, βα2 =
1

2
and K1,k := MEk, K2,k := M(Ek + βhkK1,k). Therefore, we

obtain

Ek+1 = Ek + hkMEk +
h2

k

2
M2Ek, (3.10)

which means
(DE)2 Ek+1 = MkEk (3.11)

with Mk := I + hkM +
h2

k

2
M2. Since the entries of M are our parameters in the mathematical

modeling problem, the term M2 represents the parametrical nonlinearity (quadratic regression).
Please note that, nevertheless, for the time-discrete dynamics (DE)2 with its system matrices
Mk the stability analysis of [12] including its algorithm can be carried over and applied!

Conclusion

This contribution introduces a new method for the dynamical analysis of the transcriptome
which plays a crucial role in orchestrating the cell+s metabolism. The analysis of gene-expression
opens new horizons, since the knowledge on regulatory non-coding RNA grows very fastly. In
contrast to related approaches, we continue analyzing the system for stability. The innovation,
however, consists in the utilization of Runge — Kutta methods. We discussed their advantages
in terms of stability, their analyical structural frontiers and numerical challenges which are
a topic of future research. Finally, we hope that our widened methodic concept will become
enriching and giving new insights into cell metabolism and its regulation.
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[1] Akhmet M.U., Gebert J., Öktem H., Pickl S.W., Weber G.-W. An improved algorithm
for analytical modeling and anticipation of gene expression patterns // J. Computational
Technologies. 2004 (in press).
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