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Во многих реальных ситуациях мы не знаем вероятностного распределения по-
грешностей, знаем только верхние границы для этих погрешностей. В таких слу-
чаях можно лишь заключить, что реальные (неизвестные) значения принадлежат
некоторому интервалу. Базируясь на этой интервальной неопределенности, мы хо-
тим найти возможные значения искомой функции неопределенных переменных.
В общем, расчет этих значений — трудная задача, но в линейном приближении,
справедливом для малых значений ошибок, существует линейный алгоритм такого
расчета. В других ситуациях известен эллипсоид, содержащий искомые значения.
В этом случае мы тоже имеем линейный по времени алгоритм расчета линейной
функции. Иногда имеет место комбинация интервальной и эллипсоидной неопреде-
ленности, тогда искомые значения принадлежат пересечению эллипсоида и прямо-
угольника. В общем случае вычисление этого пересечения позволяет сузить поиск
искомой функции. В этой статье мы приводим два алгоритма для оценки интерва-
ла линейной функции на пересечении в линейном времени: простой и более слож-
ный линейно-временной алгоритмы. Оба алгоритма могут быть расширены на l

p

случай, когда вместо эллипсоида мы имеем набор, определяемый l
p нормой.

1. Formulation of the problem

Interval uncertainty: brief reminder. Measurements are never 100 % accurate; hence,
the measurement result x̃i is, in general, different from the actual (unknown) value xi of
the corresponding quantity. Traditional engineering approach to processing measurement
uncertainty assumes that we know the probability distribution of measurement errors ∆xi :=
x̃i − xi.

In many practical situations, however, we do not know these probability distributions. In
particular, in many real-life situations, we only know the upper bound ∆i on the (absolute
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value of the) measurement error: |∆xi| ≤ ∆i. In such situations, the only information that
we get about the actual (unknown) value xi after the measurement is that xi belongs to the
interval xi = [x̃i − ∆i, x̃i + ∆i]; see, e. g. [1].

Data processing under interval uncertainty: brief reminder. In addition to the
values of the measured quantities x1, . . . , xn, we often need to know the values of other
quantities which are related to xi by a known dependence y = f(x1, . . . , xn). When we
know xi with interval uncertainty, i. e., when we know that xi ∈ xi, then the only conclusion
about y is that y belongs to the range {f(x1, . . . , xn) |x1 ∈ x1, . . . , xn ∈ xn} of the function
f(x1, . . . , xn) over the box x1 × . . . × xn.

Data processing: linear approximation. In general, computing this range is NP-
hard — even for quadratic functions f ; see, e. g., [2]. However, in many practical situations,
the measurement errors are small, thus, the intervals xi are narrow, and so, on the box
x1 × . . .×xn, we can safely replace the original function f(x1, . . . , xn) by the first two terms

in its Taylor formula: f(x1, . . . , xn) = ỹ+
n∑

i=1

ci ∆xi, where y0 := f(x̃1, . . . , x̃n) and ci :=
∂f

∂xi

,

i = 1, . . . , n.

For such linear functions, the range is equal to [ỹ − ∆, ỹ + ∆], where ∆ =
n∑

i=1

|ci|∆i.

The maximum value ∆ of the difference f − ỹ =
n∑

i=1

ci ∆xi is attained when ∆xi = ∆i for

ci ≥ 0 and ∆xi = −∆i for ci < 0; correspondingly, the smallest value −∆ is attained when
∆xi = −∆i for ci ≥ 0 and ∆xi = ∆i for ci < 0.

Once we know the derivatives ci and the bounds ∆i, i = 1, . . . , n, the value ∆ describing
the desired range can be computed in linear time O(n).

Comment. To get a guaranteed enclosure for y, we must add to this linear range an
interval [−δ, δ] which bounds the second and higher order terms in the Taylor expansion;
this is, in effect, what is known in interval computations as centered form; see, e. g., [3 – 5].
Asymptotically, δ = O(

∑
∆2

i ), so we get an asymptotically exact enclosure for the range in
linear time.

Ellipsoid uncertainty: a brief reminder. In some cases, the information about the
values ∆x1, . . . , ∆xn comes not as a bound on the values ∆xi themselves, but rather as a
bound z ≤ z0 on some quantity z = g(∆x1, . . . , ∆xn) which depends on ∆xi.

When the measurement errors are small, we can expand the function g into a Taylor series
and keep only the lowest terms in this expansion. In particular, if we keep quadratic terms,
we get a quadratic zone g(∆x1, . . . , ∆xn) ≤ z0. If this zone is a bounded set, then it describes
an ellipsoid. In this case, the only information about the tuple ∆x = (∆x1, . . . , ∆xn) is that
it belongs to this ellipsoid.

Another situation when we get such an ellipsoid uncertainty is when measurement errors
are independent normally distributed random variables, with 0 mean and standard deviations
σi. In this case, the probability density is described by the known formula ρ(∆x) = const×
exp

(
−

n∑
i=1

∆x2
i

2σ2
i

)
. This probability density ρ(∆x) is everywhere positive; thus, in principle,

an arbitrary tuple ∆x is possible. In practical statistics, however, tuples with very low
probability density ρ(∆x) are considered impossible.

For example, in 1-dimensional case, we have a “three sigma” rule: values for which
|∆x1| > 3σ1 are considered to be almost impossible. In multi-dimensional case, it is natural
to choose some threshold t > 0, and consider only tuples for which ρ(∆x) ≥ t as possible
ones. This formula is equivalent to ln(ρ(∆x)) ≥ ln(t). For Gaussian distribution, this
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equality takes the form
n∑

i=1

∆x2
i

σ2
i

≤ r2 for some appropriate value r — i. e., the form of an

ellipsoid. The sum is χ2(n) distributed, with expectation n and standard deviation
√

n, so
here, r2 = n + O(

√
n) is a natural choice. In this paper, we will consider ellipsoids of this

type.

Comment. If the measurement errors are small but not independent, then we also have
an ellipsoid, but with a general positive definite quadratic form in the left-hand side of the
inequality.

Ellipsoids are also known to be the optimal approximation sets for different problems
with respect to several reasonable optimality criteria; see, e. g., [6, 7].

Ellipsoid error estimates are actively used in different applications; see, e. g., [8 – 15].

Data processing under ellipsoid uncertainty: linear approximation. The range

of a linear function
n∑

i=1

ci ∆xi over an ellipsoid can be easily computed by using, e. g., the

Lagrange multiplier method. First, one can easily check that the maximum of a linear

function is attained at the border of the ellipsoid, i. e., when
n∑

i=1

∆x2
i

σ2
i

= r2. Maximizing the

linear function
n∑

i=1

ci ∆xi under the above constraint is equivalent to solving the unconstrained

optimization problem
n∑

i=1

ci ∆xi + λ
n∑

i=1

∆x2
i

σ2
i

, where λ is the Lagrange multiplier. For every

i = 1, . . . , n, differentiating with respect to ∆xi and equating the derivative to 0, we conclude

that the maximum value ∆ of the linear function is attained when ∆xi = α ciσ
2
i for α = − 1

2λ
.

Here, the parameter α is determined by the condition that
n∑

i=1

∆x2
i

σ2
i

= r2 — i. e., that

α2
n∑

i=1

c2
i σ2

i = r2 and α = r/
√∑

c2
i σ

2
i . The smallest possible value −∆ of this function is

attained when ∆xi = −α ciσ
2
i for all i = 1, . . . , n.

The corresponding value ∆ is equal to ∆ = r
√∑

c2
i σ

2
i . This value can also be computed

in linear time.

Need for combining interval and ellipsoid uncertainty. In some practical cases,
we have a combination of interval and ellipsoid uncertainty. For example, in the statistical
case, we may have an ellipsoid bound and also the 3 sigma bound |∆xi| ≤ 3σi for each
measurement error.

In this case, the actual values (∆x1, . . . , ∆xn) belong to the intersection of the box
x1 × . . . × xn and the ellipsoid.

In general, the smaller the set over which we estimate the range of a given function, the
narrower the resulting range. It is therefore desirable to be able to estimate the range of a

linear function
n∑

i=1

ci ∆xi over such an intersection.

What we do in this paper: main result. In this paper, we provide two algorithms
for estimating the range of a linear function over an intersection in linear time: a simpler
O(n log(n)) algorithm and a (somewhat more complex) linear time algorithm.

From ellipsoids to generalized ellipsoids. We have mentioned that ellipsoids corre-
spond to normal distributions. In many practical cases, the distribution of the measurement
errors is different from normal; see, e. g., [1, 16, 17]. In many such cases, we have a distribu-
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tion of the type

ρ(∆x) = const exp

(
−

n∑

i=1

|∆xi|p
kσp

i

)

for some value p 6= 2 [16]. For this distribution, the condition ρ(∆x) ≥ t takes the form
n∑

i=1

|∆xi|p
σp

i

≤ rp for some value r.

The corresponding lp-methods have been successfully used in data processing; see, e. g.,
[18, 19].

It is therefore reasonable to consider such generalized ellipsoids as well. For a generalized

ellipsoid, the Lagrange approach to maximizing a linear function
n∑

i=1

ci ∆xi leads to

n∑

i=1

ci ∆xi + λ
n∑

i=1

|∆xi|p
σp

i

→ max,

ci + λp · sign(∆xi)
|∆xi|p−1

σp
i

= 0, i = 1, . . . , n,

and hence, for p > 1, to

∆xi = α · sign(ci)|ci|1/(p−1)σ
p/(p−1)
i , i = 1, . . . , n,

for some constant α. Here, the parameter α is determined by the condition that
n∑

i=1

|∆xi|p
σp

i

=

rp — i. e., that αp
n∑

i=1

|ci|p/(p−1)σ
p/(p−1)
i = rp and

α = r/ p

√∑
|ci|p/(p−1)σ

p/(p−1)
i .

The smallest possible value −∆ of this function is attained when

∆xi = −α · sign(ci)|ci|1/(p−1)σ
p/(p−1)
i .

The corresponding value ∆ is equal to

∆ = r

(
n∑

i=1

|ci|p/(p−1)σ
p/(p−1)
i

)(p−1)/p

.

This value can also be computed in linear time.

Need for combining interval and generalized ellipsoid uncertainty. Similarly to

the case p = 2, it is desirable to estimate the range of a linear function
n∑

i=1

ci ∆xi over an

intersection of a box and a generalized ellipsoid. In this paper, we will consider this problem
for p > 1.
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2. Analysis of the problem: general form of the optimal tuple

In the general case, we want to find the maximum and the minimum of a linear function
n∑

i=1

ci ∆xi over an intersection of generalized ellipsoid and a box. In order to describe an algo-

rithm for computing the maximum and minimum, let us first describe the general properties
of the tuples ∆x for which these maximum and minimum are attained.

Definition 1. By a generalized ellipsoid E, we mean a set of all the tuples ∆x =

(∆x1, . . . , ∆xn) which satisfy the inequality
n∑

i=1

|∆xi|p
σp

i

≤ rp, where p, r, and σi are posi-

tive real numbers.

We want to find the maximum and the minimum of a linear function on the intersection
I = E ∩ B of a generalized ellipsoid and a box

B = [−∆1, ∆1] × . . . × [−∆n, ∆n].

Without losing generality, we can assume that all the coefficients ci, i = 1, . . . , n, of a
linear function are non-negative. Indeed, if ci < 0 for some i, then we can simply replace
the original variable ∆xi with a new variable ∆x′

i = −∆xi. After this replacement, the
expressions for the ellipsoid E and for the box B remain the same, but the corresponding
coefficient ci becomes positive.

Under this assumption, one can easily see that the maximum of a linear function
n∑

i=1

ci ∆xi

with ci ≥ 0 is attained when ∆xi ≥ 0 for all i. We then get the following result.

Proposition 1. The maximum of a linear function
n∑

i=1

ci ∆xi with ci ≥ 0 over the in-

tersection E ∩ B of a box B = [−∆1, ∆1] × . . . × [−∆n, ∆n] and a generalized ellipsoid

E =

{
∆x :

n∑
i=1

|∆xi|p
σp

i

≤ rp

}
is attained, for a certain value α, at a tuple

∆xi = min(∆i, α c
1/(p−1)
i σ

p/(p−1)
i ), i = 1, . . . , n.

Observation. This expression has an interesting relation to the corresponding expressions
for the box and for the generalized ellipsoid. Indeed, let us recall that for the box B,
the maximum is attained for ∆xi = ∆i, i = 1, . . . , n. For the generalized ellipsoid E,
the maximum is attained when for a certain value αE, we have ∆xi = αE c

1/(p−1)
i σ

p/(p−1)
i ,

i = 1, . . . , n. According to Proposition 1, the optimizing tuple for the intersection E ∩ B is
a component-wise minimum of the two tuples:

— the tuple with components ∆i, i = 1, . . . , n, which maximizes the linear function on
the box B, and

— the tuple with components α c
1/(p−1)
i σ

p/(p−1)
i , i = 1, . . . , n, which is similar to the tuple

that maximizes the linear function on the generalized ellipsoid E.
It should be mentioned that the second tuple is not exactly the one that maximizes the

linear function over E, since, in general, the value α (corresponding to the maximum over
the intersection E∩B) is different from the value αE corresponding to the maximum over E.
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Comment. For general (not necessarily non-negative) coefficients ci, we get

∆xi = sign(ci) min(∆i, α |ci|1/(p−1)σ
p/(p−1)
i ), i = 1, . . . , n.

Proof. Let ∆x = (∆x1, . . . , ∆xn) be an optimal (maximizing) tuple.
If there are indices i and j for which 1 ≤ i, j ≤ n, ∆xi < ∆i and ∆xj < ∆j, then,

for sufficiently small real numbers εi and εj, we can replace ∆xi with ∆xi + εi, ∆xj with
∆xj + εj, and still stay within the intervals [0, ∆i] and [0, ∆j] — i. e., within the box B. Let

us select the changes εi and εj in such a way that the sum s :=
|∆xi|p

σp
i

+
|∆xj|p

σp
j

remain

unchanged — then we will stay within the generalized ellipsoid as well.
For small εi and εj, we have

(∆xi + εi)
p

σp
i

+
(∆xj + εj)

p

σp
i

=

(∆xi)
p

σp
i

+
(∆xj)

p

σp
i

+
p εi ∆xp−1

i

σp
i

+
p εj ∆xp−1

j

σp
j

+ o(εi).

Thus, to make sure that s does not change, we must select εj for which

εi ∆xp−1
i

σp
i

+
εj ∆xp−1

j

σp
j

= o(εi),

i. e.,

εj = −εi
∆xp−1

i

∆xp−1
j

σp
j

σp
i

+ o(εi).

The resulting change in the maximized linear function is equal to ciεi + cjεj. Substituting
the expression for εj in terms of εi, we conclude that this change is equal to

εi

(
ci − cj

∆xp−1
i

∆xp−1
j

σp
j

σp
i

)
+ o(εi).

If the coefficient at εi was positive, then we could take a small positive εi and further increase
the value of the linear function — which contradicts our selection of the tuple ∆xi for which
the maximum is attained. Similar, if the coefficient at εi was negative, then we could take a
small negative εi and further increase the value of the linear function. Thus, this coefficient
cannot be positive and cannot be negative — hence it must be equal to 0. So,

ci − cj
∆xp−1

i

∆xp−1
j

σp
j

σp
i

= 0,

or, equivalently,

∆xp−1
i

ciσ
p
i

=
∆xp−1

j

cjσ
p
j

.

This equality holds for every two indices i and j for which 1 ≤ i, j ≤ n, ∆xi < ∆i, and
∆xj < ∆j. Thus, for all the indices i = 1, . . . , n for which ∆xi < ∆i, the above ratio has
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the same value. Let us denote this common ratio by r0; then, we conclude that for all such

indices i, we have
∆xp−1

i

ciσ
p
i

= r0 and hence, that

∆xi = α c
1/(p−1)
i σ

p/(p−1)
i ,

where we denoted α := r
1/(p−1)
0 .

If ∆xi < ∆i and ∆xj = ∆j, then we can similarly change ∆xi and ∆xj, but only the
changes for which εj < 0 will keep us inside the box. Since the sign of εj is opposite to the
sign of εi, we thus conclude that we can only take εi > 0. Thus, the coefficient at εi in the
expression for the change in the (linear) objective function cannot be positive — because
then, we would be able to further increase this objective function. So, this coefficient must
be non-positive, i. e.,

ci − cj
∆xp−1

i

∆xp−1
j

σp
j

σp
i

≤ 0,

or, equivalently,

∆xp−1
i

ciσ
p
i

≤
∆xp−1

j

cjσ
p
j

.

Since ∆xi < ∆i for the index i, we have
∆xp−1

i

ciσ
p
i

= r0. Thus, we conclude that
∆xp−1

j

cjσ
p
j

≤ r0,

i. e., ∆xj = ∆j ≤ α c
1/(p−1)
j σ

p/(p−1)
j .

Hence,
— when ∆xi < ∆i, we get ∆xi = α c

1/(p−1)
i σ

p/(p−1)
i ;

— when ∆xj = ∆i, we get ∆xj = ∆j ≤ α c
1/(p−1)
j σ

p/(p−1)
j .

To complete the proof of our proposition, let us consider two cases.
If ∆i ≤ α c

1/(p−1)
i σ

p/(p−1)
i , then we cannot have ∆xi < ∆i — because then we

would have ∆xi = α c
1/(p−1)
i σ

p/(p−1)
i and thus, ∆i > ∆xi = α c

1/(p−1)
i σ

p/(p−1)
i and ∆i >

α c
1/(p−1)
i σ

p/(p−1)
i — which contradicts our assumption. Thus, the only remaining case here

is ∆xi = ∆i.
On the other hand, if ∆j > α c

1/(p−1)
j σ

p/(p−1)
j , then we cannot have ∆xj = ∆j — because

otherwise, we would have ∆j ≤ α c
1/(p−1)
j σ

p/(p−1)
j , which also contradicts our assumption.

Thus, in this case, we must have ∆xj < ∆j, and we already know that in this case, ∆xj =

α c
1/(p−1)
j σ

p/(p−1)
i . So:

— if ∆i ≤ α c
1/(p−1)
i σ

p/(p−1)
i then ∆xi = ∆i;

— if ∆j > α c
1/(p−1)
j σ

p/(p−1)
j then ∆xj = α c

1/(p−1)
j σ

p/(p−1)
i .

In both cases, we have

∆xi = min(∆i, α c
1/(p−1)
i σ

p/(p−1)
i ), i = 1, . . . , n.

The proposition is proven. ¤

3. Analysis of the problem: how to find α

According to our result, once we know the value of the parameter α, we will be able to find
all the values ∆xi, i = 1, . . . , n, from the optimal tuple, and thus, find the largest possible

value ∆ of the desired linear function
n∑

i=1

ci ∆xi.
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For each i = 1, . . . , n, writing zi :=
∆i

|ci|1/(p−1)σ
p/(p−1)
i

, the dependence of |∆xi| on α can

be described as follows:
— If α |ci|1/(p−1)σ

p/(p−1)
i < ∆i, i. e., if α < zi, then we take |∆xi| = α |ci|1/(p−1)σ

p/(p−1)
i .

— On the other hand, if α |ci|1/(p−1)σ
p/(p−1)
i ≥ ∆i, i. e., if α ≥ zi, then we take |∆xi| = ∆i.

So, if we sort the indices by the value zi, into a sequence z1 ≤ z2 . . . ≤ zn, then the
maximizing tuple has the form

∆x =
(
sign(c1)∆1, . . . , sign(ct)∆t,

α sign(ct+1)|ct+1|1/(p−1)σ
p/(p−1)
t+1 , . . . , α sign(cn)|cn|1/(p−1)σp/(p−1)

n

)

for some threshold value t for which zt ≤ α < zt+1.
How do we find this threshold value t? In principle, it is possible that the optimal solution

is attained when ∆xi = ±∆i for all i. In this case, the generalized ellipsoid contains the
whole box. In all other cases, the value α must be determined by the condition that the
optimal tuple is on the surface of the generalized ellipsoid, i. e., that

t∑

i=1

∆p
i

σp
i

+ αp

n∑

j=t+1

|ci|p/(p−1)σ
p/(p−1)
j = rp,

or, equivalently,
n∑

i=1

(min(∆i, α |ci|1/(p−1)σ
p/(p−1)
i ))p

σp
i

= rp.

The left-hand side of this equality is an increasing function of α. Thus, to find the proper
value of t, it is sufficient to check all the values α = z1, . . . , zn.

If for some k = 1, . . . , n, we get

k∑

i=1

∆p
i

σp
i

+ zp
k

n∑

j=k+1

|cj|p/(p−1)σ
p/(p−1)
j > rp,

this means that we need to decrease α, i. e., that we should have fewer values ∆xi = ±∆i —
in other words, this means that t < k.

On the other hand, if for some k = 1, . . . , n, we get

k∑

i=1

∆p
i

σp
i

+ zp
k

n∑

j=k+1

|cj|p/(p−1)σ
p/(p−1)
i ≤ rp,

this means that t ≥ k.
So, we can find the desired threshold t as the largest index k for which for α = zk, the

left-hand side of the above equality is still less than or equal to rp; due to monotonicity with
respect to α, this value t can be found by bisection.

Once we find this threshold value t, we can then find α from the equation

t∑

i=1

∆p
i

σp
i

+ αp

n∑

j=t+1

|cj|p/(p−1)σ
p/(p−1)
j = rp,
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i. e., αp =
rp − E−

E+
, where E− :=

t∑
i=1

∆p
i

σp
i

and E+ :=
n∑

j=t+1

|cj|p/(p−1)σ
p/(p−1)
j . After that,

we can uniquely determine the optimal tuple ∆x = (∆x1, . . . , ∆xn) and thus the desired

maximal value ∆ =
k∑

i=1

|ci|∆i + α
n∑

j=t+1

|cj|p/(p−1)σ
p/(p−1)
j .

So, we arrive at the following algorithms for computing ∆.

4. A simpler O(n log(n)) algorithm

Algorithm. First, we check whether the generalized ellipsoid contains the box, i. e., whether
n∑

i=1

∆p
i

σp
i

≤ rp. If this is the case, then the desired maximum is equal to
n∑

i=1

|ci|∆i. If this is

not the case, then we apply our algorithm.
In this algorithm, we first sort the indices i = 1, . . . , n in the increasing order by the

value of zi.
After this sorting, we apply the following iterative algorithm. At each iteration of this

algorithm, we have two numbers:
— the number i− such that for all indices i ≤ i−, we already know that for the optimal

tuple ∆x, we have |∆xi| = ∆i;
— the number i+ of all the indices j ≥ i+ for which we already know that for the optimal

tuple ∆x, we have |∆xj| < ∆j.
In the beginning, i− = 0 and i+ = n + 1. At each iteration, we also update the value of

two auxiliary quantities E− :=
i−∑
i=1

∆p
i

σp
i

and E+ :=
n∑

j=i+
|cj|p/(p−1)σ

p/(p−1)
j .

In principle, on each iteration, we could compute these sums “from scratch”; however,
to speed up computations, on each iteration, we update these auxiliary values in a way that
is faster than re-computing the corresponding sums.

Initially, since i− = 0 and i+ = n + 1, we take E− = E+ = 0.
At each iteration, we do the following:
— first, we compute the midpoint m = (i− + i+)/2;

— we compute e− :=
m∑

i=i−+1

∆p
i

σp
i

and e+ :=
i+−1∑

j=m+1

|cj|p/(p−1)σ
p/(p−1)
j ;

— if E− + e− + zp
m (E+ + e+) > rp, then we replace i+ with m+1 and E+ with E+ + e+;

— if E− + e− + zp
m (E+ + e+) ≤ rp, then we replace i− with m and E− with E− + e−.

At each iteration, the set of undecided indices is divided in half. Iterations continue until
all indices are decided, after which we compute α from the condition that E− + αpE+ = rp,

i. e., as αp :=
rp − E−

E+
. Once we know α, we compute the maximizing tuple |∆xi| =

min(∆i, α |ci|1/(p−1)σ
p/(p−1)
i ) and then, the desired maximum

n∑
i=1

|ci| |∆xi|.
Computational complexity of the above algorithm. Sorting requires time

O(n log(n)); see, e. g., [20].
After this, at each iteration, all the operations with indices from i− to i+ require time T

linear in the number of such indices: T ≤ C(i+ − i−) for some C. We start with the set of
indices of full size n; on the next iteration, we have a set of size n/2, then n/4, etc. Thus,
after sorting, the overall computation time is ≤ C(n + n/2 + n/4 + . . .) ≤ C · 2n, i. e., linear
in n. So, the overall computation time is indeed O(n log(n)) + O(n) = O(n log(n)).
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Comment. This algorithm works for an even more general case, when there exist a
function ρ0(x) for which for every i = 1, . . . , n, the probability density function ρi(∆xi)

of the i-th measurement error has the form ρi(∆xi) = ρ0

( |∆xi|
σi

)
for some σi, and the

measurement errors are independent, i. e., ρ(∆x) = ρ1(∆x1) . . . ρn(∆xn). In this case, similar

arguments lead to a generalized ellipsoid of the type
n∑

i=1

ψ

( |∆xi|
σi

)
≤ r0, where ψ(x) :=

− ln(ρ0(x)). The above algorithm can be extended to the case of strictly convex smooth
functions ψ(x) for which both this function, its derivative, and the corresponding inverse
functions can be computed in polynomial time. This class includes the lp-functions ψ(x) =
|x|p with p > 1 as particular cases.

5. Linear-time algorithm

Main idea behind the linear time algorithm. Our second algorithm is similar to the
above O(n log(n)) algorithm. In that algorithm, the only non-linear-time part was sorting.
To avoid sorting, in the second algorithm, we use the known fact that we can compute the
median of a set of n elements in linear time (see, e. g., [20]). (Our use of median is similar
to the one from [21, 22].)

Our linear time algorithm is only efficient for large n. It is worth mentioning
that while asymptotically, the linear time algorithm for computing the median is faster than
sorting, this median computing algorithm is still rather complex — so, for small n, sorting
is faster than computing the median.

This is the reason why in this paper, we present two different algorithms — both algo-
rithms are practically useful:

— for large n, the linear time algorithm is faster;
— however, for small n, the O(n log(n)) algorithm is faster.
Let us now describe the linear time algorithm.
Algorithm. First, we check whether the generalized ellipsoid contains the box, i. e.,

whether
n∑

i=1

∆p
i

σp
i

≤ rp. If this is the case, then the desired maximum is equal to
n∑

i=1

ci ∆i. If

this is not the case, then we perform the following iterations.
At each iteration, we have three sets:
— the set I− of all the indices i from 1 to n for which we already know that for the

optimal tuple ∆x, we have |∆xi| = ∆i;
— the set I+ of all the indices j from 1 to n for which we already know that for the

optimal tuple ∆x, we have |∆xj| < ∆j;
— the set I = {1, . . . , n} − I− − I+ of the indices i for which we are still undecided.
In the beginning, I− = I+ = ∅ and I = {1, . . . , n}. At each iteration, we also update the

value of two auxiliary quantities E− :=
∑

i∈I−

∆p
i

σp
i

and E+ :=
∑

j∈I+

|cj|p/(p−1)σ
p/(p−1)
j .

In principle, we could compute this value by computing this sum of squares, but to speed
up computations, on each iteration, we update this auxiliary value in a way that is faster
than re-computing the corresponding sum.

Initially, since I− = I+ = ∅, we take E− = E+ = 0.
At each iteration, we do the following:
— first, we compute the median m of the set I (median in terms of sorting by zi);
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— then, by analyzing the elements of the undecided set I one by one, we divide them
into two subsets P− = {i : zi ≤ zm} and P+ = {j : zj > zm};

— we compute e− =
∑

i∈P−

∆p
i

σp
i

and e+ :=
∑

j∈P+

|cj|p/(p−1)σ
p/(p−1)
j ;

— if E− + e− + zp
m (E+ + e+) > rp, then we replace I+ with I+ ∪ P+, I with P−, and

E+ with E+ + e+;

— if E− + e− + zp
m (E+ + e+) ≤ rp, then we replace I− with I− ∪ P−, I with P+, and

E− with E− + e−.

At each iteration, the set of undecided indices is divided in half. Iterations continue until
all indices are decided, after which we compute α from the condition that E− + αpE+ = rp,

i. e., as αp :=
rp − E−

E+
. Once we know α, we compute the maximizing tuple |∆xi| =

min(∆i, α |ci|1/(p−1)σ
p/(p−1)
i ), i = 1, . . . , n, and then, the desired maximum

n∑
i=1

|ci| |∆xi|.
Computational complexity of the above algorithm. Let us show that this algo-

rithm indeed requires linear time. Indeed, at each iteration, computing median requires
linear time, and all other operations with I require time T linear in the number of ele-
ments |I| of I: T ≤ C|I| for some C. We start with the set I of size n; on the next
iteration, we have a set of size n/2, then n/4, etc. Thus, the overall computation time is
≤ C(n + n/2 + n/4 + . . .) ≤ C · 2n, i. e., linear in n.
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