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Principal component analysis (PCA) is one of the most widely used methods for
reducing the data size. In practice, data is known with uncertainty, so we need to
apply PCA to this uncertain data. Several authors developed algorithms for PCA
under interval uncertainty. It is known that in general, the problem of PCA under
interval uncertainty is NP-hard.

The usual NP-hardness proof uses situations in which all measurement results come
with interval uncertainty. In practice, often, most measurements are reasonably accu-
rate, and only a few (or even one) variables are measured with significant uncertainty.
When we consider such situations, will the PCA still be NP-hard?

In this paper, we prove that even in the simplest case when for each object, at most
one data points comes with interval uncertainty, the PCA problem is still NP-hard.
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1. Data reduction, PCA, and interval uncertainty: a brief reminder

Need to reduce the data size. In many real-life situations, for each object and/or
situation k, we measure a large number d of variables. As a result of these measurements,
we get the values xk,1, . . . , xk,d corresponding to different objects k = 1, . . . , n. When the
number of variables d is large, processing all this data requires a lot of computation time.

Example. Such a large amount of data occurs in 3-D medical imaging. For example,
in functional magnetic resonance imaging (fMRI), for each of many patients, we measure
the intensity values at dozens of thousands of voxels at dozens of moments of time; see, e. g.
[3, 4, 15, 17]. As a result, processing all this data requires a large amount of time-consuming
computations.

Possibility to reduce the data size. Often, the measured values are strongly depen-
dent on each other. In such situations, it is possible to use this dependence to reduce the
data size.

Principal component analysis (PCA): a brief reminder. For the case of linear
dependence, the technique for correspondingly reducing the size of the data is called principal

component analysis (PCA, for short; see, e. g., [18]). This technique was first invented by
the famous statistician K. Pearson in the early 20 century [28].

The use of the original data means, in effect, that we represent each data vector xk =
(xk,1, xk,2, . . . , xk,i, . . . , xk,d) as a linear combination of the basis vectors u1 = (1, 0, . . . , 0),
u2 = (0, 1, 0, . . . , 0), . . . , ui = (0, . . . , 0, 1, 0, . . . , 0), . . . , ud = (0, . . . , 0, 1):

xk = xk,1 · u1 + xk,2 · u2 + . . .+ xk,i · ui + . . .+ xk,d · ud. (1)
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The basis vectors ui are orthonomal in the sense that different vectors are orthogonal, i. e.,
〈ui, uj〉 = 0 for i 6= j, where

〈a, b〉
def
= a1 · b1 + a2 · b2 + . . .+ ai · bi + . . .+ ad · bd, (2)

and each of these vectors has a unit Euclidean norm ‖ui‖2 = 1, where for every vector
a = (a1, . . . , ad), its Euclidean norm ‖a‖2 is defined by the formula

‖a‖22
def
= 〈a, a〉 = a21 + a22 + . . .+ a2i + . . .+ a2d. (3)

The main idea behind PCA is that instead of using the standard orthonormal basis, we
find a different orthonormal basis ei = (ei,1, . . . , ei,d) for which 〈ei, ej〉 = 0 for i 6= j and
e2i = 〈ei, ei〉 = 1. With respect to this basis, each data vector xk can be represented as

xk = yk,1 · e1 + yk,2 · e2 + . . .+ yk,i · ei + . . .+ yk,d · ed, (4)

where, due to orthonormality, we have, for every i,

〈ei, xk〉 = yk,1 · 〈ei, e1〉+ yk,2 · 〈ei, e2〉+ . . .+ yk,i−1 · 〈ei, ei−1〉+ yk,i · 〈ei, ei〉+

+yk,i+1 · 〈ei, ei+1〉+ . . .+ yk,d · 〈ei, ed〉 =

= yk,1 · 0 + yk,2 · 0 + . . .+ yk,i−1 · 0 + yk,i · 1 + yk,i+1 · 0 + . . .+ yk,d · 0 = yk,i, (5)

hence
yk,i = 〈ei, xk〉 = ei,1 · xk,1 + ei,2 · xk,2 + . . .+ ei,j · xk,j + . . .+ ei,d · xk,d. (6)

Then, for each data point xk, we only use the first p < d values yk,1, . . . , yk,p.
As a result, instead of the original vector (4), we use an approximate value

Xk = yk,1 · e1 + yk,2 · e2 + . . .+ yk,i · ei + . . .+ yk,p · ep. (7)

We want to select the vectors e1, . . . , ep for which Xk ≈ xk for all objects k = 1, . . . , n, i. e.,
for which Xki ≈ xki for all objects k and for all variables i.

The values xki form a (n · d)-dimensional vector x. Similarly, the values Xki form a
(n · d)-dimensional vector X . We want each coordinate xk,i of the vector x to be close to
the corresponding coordinate of the vector X . In other words, we want the approximation
vector X to be as close to the original data vector x as possible. A reasonable measure of
distance between the two vectors is the Euclidean distance

‖X − x‖2
def
=

√√√√
n∑

k=1

d∑

i=1

(Xk,i − xk,i)2. (8)

Thus, we should select the vectors e1, . . . , ep for which this distance ‖X−x‖2 is the smallest
possible.

This minimization formulation can be simplified if we take into account that the square
root is a strictly increasing function and thus, minimizing the square root is equivalent to
minimizing the sum of the squares

‖X − x‖22 =
n∑

k=1

d∑

i=1

(Xk,i − xk,i)
2. (9)
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Here, by the definition of the Euclidean norm,

d∑

i=1

(Xk,i − xk,i)
2 = ‖Xk − xk‖

2
2, (10)

so we arrive at the following precise formulation.
Select the vectors e1, . . . , ep in such a way that the mean squared difference between the

original data vectors xk and the approximate vectors x̃k is the smallest possible:

minimize ‖X1 − x1‖
2
2 + ‖X2 − x2‖

2
2 + . . .+ ‖Xk − xk‖

2
2 + . . .+ ‖Xn − xn‖

2
2. (11)

Already Pearson showed that this minimum is attained if we take, as e1, . . . , ep, the eigen-
vectors of the covariance matrix

Ci,j
def
= x1,i · x1,j + x2,i · x2,j + . . .+ xk,i · xk,j + . . .+ xn,i · xn,j (12)

that correspond to the p largest eigenvalues.
Comment. It should be mentioned that the same PCA technique is also used when we

have a reasonably small data size d. In such situations, PCA is used to solve a different

practical problem: namely, to find appropriate factors, i. e., combinations of variables which
are the most relevant for a given process.

In this paper, however, we are mainly in the data-reducing applications of PCA.
Need to take interval uncertainty into account. In practice, measurements are

never absolutely exact. In general, the measured values x̃k,i are different from the actual
(unknown) values xk,i. In other words, the measurement inaccuracy is usually non-zero:

∆xk,i
def
= x̃k,i − xk,i 6= 0. (13)

In some cases, we know the probability distribution for the measurement inaccuracies
∆xk,i. However, frequently, we do not know this probability distribution. Often, the only
information that we have about the measurement inaccuracy ∆xk,i is the upper bound ∆k,i

on its absolute value:

|∆xk,i| ≤ ∆k,i. (14)

After each such measurement, the only information that we have about xk,i is that this
belongs to the interval

xk,i ∈ xk,i = [x̃k,i −∆k,i, x̃k,i +∆k,i]. (15)

In other words, we get an interval uncertainty (see, e. g., [25]). We need to take interval
uncertainty into account when we use PCA to reduce the data size.

2. Data-reducing PCA under interval uncertainty: what is known

PCA under interval uncertainty: known algorithms. The need for PCA under interval
uncertainty is well known. There exist several efficient algorithms for PCA under interval
uncertainty; see, e. g., [1, 2, 6–8, 11–14, 16, 21–26, 30, 31] and references therein.

Most of these algorithms aim at the factor applications of PCA, but they can be used in
data reduction as well.
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Data-reducing PCA under interval uncertainty: towards a precise formulation
of the problem. In data reduction, our objective is to decrease the size of the data as
much as possible. In the usual PCA, we select the basis vectors e1, . . . , ep for which the
corresponding sum of the squares (11) is the smallest possible.

Because of the interval uncertainty, we can now also select the values xk,i within the
corresponding intervals.

For example, suppose that for almost all objects k, we know the exact values of xk,i, and
these exact values satisfy the property xk,2 = xk,1. This means that the second quantity is
redundant — and we can therefore reduce the data size by keeping only the values xk,1.

This redundancy may not survive when we get more data — but as long as the assumption
xk,2 = xk,1 is confirmed by all the known data, it makes sense to use this assumption to reduce
the data.

Suppose now that we now add, to that data, a new object k0 for which the values xk0,1 and
xk0,2 are only known with interval uncertainty, i. e., for which, instead of the actual values
xk0,i we only know the intervals xk0,1 and xk0,2 of possible values. If these two intervals have
a common point, this means that the new data is still consistent with the assumption that
xk,2 = xk,1 — and thus, it still makes sense to use this assumption to reduce the data.

This example shows that it is reasonable to select both the vectors ei and the values xk,i ∈
xk,i for which the approximation is the best. Thus, we arrive at the following formulation.

Data-reducing PCA under interval uncertainty: a precise formulation of the
problem. We are given intervals xk,i. We need to select the vectors e1, . . . , ep and the values
xk,i ∈ xk,i in such a way that the mean square difference between the original data vectors
xk and the approximate vectors x̃k is the smallest possible:

minimize ‖X1 − x1‖
2
2 + ‖X2 − x2‖

2
2 + . . .+ ‖Xk − xk‖

2
2 + . . .+ ‖Xn − xn‖

2
2, (16)

where
Xk = 〈xk, e1〉 · e1 + . . .+ 〈xk, ei〉 · ei + . . .+ 〈xk, ep〉 · ep. (17)

PCA under interval uncertainty is NP-hard: a conjecture. While the existing
interval PCA algorithms are usually efficient, sometimes, they require a large amount of
computation time. This empirical fact prompted a conjecture that the problem of PCA
under interval uncertainty is NP-hard (see, e. g., [16, 23], also [19, 27] for formal definitions
of NP-hardness).

This conjecture was also motivated by the fact that many similar statistical problems
becomes NP-hard once we take interval uncertainty into account; even the problem of com-
puting the range of the variance under interval uncertainty is NP-hard [9, 10, 20].

PCA under interval uncertainty is NP-hard: a proof. A part of the PCA problem
is checking whether it is possible to achieve the exact data reduction, i. e., whether it is
possible to find the vectors e1, . . . , ep, p < d, and the values xk,i for which Xk = xk for all
objects k.

In mathematical terms, this means checking whether it is possible to select the “column”
vectors

zi
def
= (x1,i, . . . , xk,i, . . . , xn,i) (18)

in such a way that they are linearly dependent, i. e., that there exists a vector α =
(α1, . . . , αd) 6= 0 for which for every k, we have

α1 · xk,1 + . . .+ αi · xk,i + . . .+ αd · xk,d = 0. (19)



Data-reducing principal component analysis (PCA) is NP-hard even under... 7

For a square matrix (d = n), the existence of such αi is equivalent to the matrix being
singular. Thus, for a square interval matrix with entries xk,i, the possibility of such a
reduction is equivalent to the possibility of finding a singular matrix with entries xk,i ∈ xk,i.
It is known that checking for the existence of such a matrix — or, equivalently, checking
whether all matrices xk,i ∈ xk,i are non-singular — is NP-hard. This result — one of the
first NP-hardness results in interval computations — was proved by S. Poljak and J. Rohn
in [29] (see [19] for further similar results).

Thus, PCA under interval uncertainty is indeed NP-hard.

3. Realistic cases of interval-valued PCA and their computational

complexity: formulation of the problem and the main result

The known NP-hardness result: reminder. The above result shows that, in general,
the problem of PCA under interval uncertainty is NP-hard.

The general case is rare. The above proof is based on considering matrices in which
all the entries are non-degenerate intervals.

In practice, however, often, most measurements are reasonably accurate, and only a few
(or even one) variables are measured with significant uncertainty. In such situations, for
each object k, we can safely assume that

— we know most of the values xk,i exactly, and

— only for a few i, we know the (non-degenerate) interval xk,i.

Natural question. When we consider such situations, will the interval-valued PCA still
be NP-hard?

Simplest case. In particular, the same question about the computational complexity
can be asked about the simplest case, when for each object k, at most one data point comes
with interval uncertainty.

Our main result. Our result is that even for this simplest case, the data-reducing PCA
problem under interval uncertainty is NP-hard.

Comment. Our proof will follow the main ideas from NP-hardness proofs described in [19].

4. Proof of the main result

What is NP-hard: a brief informal reminder. Crudely speaking, the fact that a
problem P0 is NP-hard means that every problem P (from a reasonable class NP) can be
reduced to this problem P0, i. e., informally, that this problem P0 is the toughest possible.

How NP-hardness is usually proved: by reduction to NP-hardness of a known
problem. The usual way to prove NP-hardness of a problem P0 is to show that a known
NP-hard problem Pk can be reduced to a particular case of our problem P0.

Since the problem Pk is NP-hard, this means that every problem P from the class NP
can be reduced to this problem Pk. Since the problem Pk can be, in turn, reduced to P0,
this means that every problem P from the class NP can be reduced to P0. By definition of
NP-hardness, this means that our problem P0 is indeed NP-hard.

Selection of the known NP-hard problem. As the known NP-hard problem Pk, we
take the following problem:

— we are given several positive integers s1 > 0, . . . , sm > 0;
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— we need to find the signs εℓ ∈ {−1, 1} for which the corresponding signed sum of the
given integers is equal to 0:

m∑

ℓ=1

εℓ · sℓ = 0. (20)

Possible intuitive interpretation of the problem Pk. The requirement (20) can be
reformulated as ∑

ℓ: εℓ=1

sℓ −
∑

ℓ′: ε
ℓ′
=−1

sℓ′ = 0. (21)

If we move all the negative terms in the signed sum (21) into the other side, we get the
equality between the sum of all the values to which we assigned plus and the sum of all the
values to which we assigned minus:

∑

ℓ: εℓ=1

sℓ =
∑

ℓ′: ε
ℓ′
=−1

sℓ′ . (22)

The resulting problem allows the simple interpretation — e. g., as the problem of diving the
inheritance into two equal parts:

— we have m objects with known costs si;
— we must divide them into two groups of equal cost.
Reduction: a reminder. To prove the NP-hardness of our interval-valued PCA prob-

lem P0, we wan to reduce the problem Pk to our problem P0.
To reduce means that for every instance s1, . . . , sm of the problem Pk, we must form a

case of the interval PCA problem Pk from whose solution we will be able to extract the
solution to the original instance.

How we reduce. In the original problem, we have m positive integers s1, . . . , sm (and
we must find the signs εi for which the signed sum is zero).

In the reduction, we form n = 2m+1 objects with d = m+1 variables and the following
data:

— for the first m objects ℓ = 1, . . . , m, we take

xℓ,ℓ = [−1, 1], xℓ,m+1 = [1, 1], xℓ,i = [0, 0] for i 6= ℓ,m+ 1; (23)

— for the next m objects k = m+ ℓ, where ℓ = 1, . . . , m, we take

xm+ℓ,ℓ = [−1, 1], xm+ℓ,m+1 = [1, 1],

xm+ℓ,i = [0, 0] for i 6= ℓ,m+ 1; (24)

— finally, for the last object k = 2m+ 1, we take

x2m+1,ℓ = [sℓ, sℓ] for all ℓ ≤ m, x2m+1,m+1 = [0, 0]. (25)

Towards proving that this is indeed a reduction: what does it mean to have a
solution to the instance of the interval PCA problem. In the interval PCA problem,
we check whether the columns of the data matrix are linearly dependent, i. e., whether there
exist values xk,i from the corresponding intervals xk,i and values α = (α1, . . . , αm+1) not all
equal to 0 for which the corresponding linear combination is equal to 0 for all objects k:

α1 · xk,1 + . . .+ αi · xk,i + . . .+ αd · xk,d = 0. (26)
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Proving reduction: let us first consider the second group of m equations. For
each ℓ ≤ m, from the (m+ℓ)-th equation (24), we conclude that for some xm+ℓ,m+1 ∈ [−1, 1],
we get

αℓ + αm+1 · xm+ℓ,m+1 = 0, (27)

i. e.,
αℓ = −αm+1 · xm+ℓ,m+1. (28)

Thus, the absolute value of αℓ is equal to the product of absolute values of am+1 and of the
absolute value of xm+ℓ,m+1:

|αℓ| = |αm+1| · |xm+ℓ,m+1|. (29)

Since xm+ℓ,m+1 is between −1 and 1, this means that the absolute value of αℓ is smaller than
or equal to the absolute value of αm+1:

|αℓ| ≤ |αm+1|. (30)

So, if the last α coefficient αm+1 is 0, then all the alpha values are zeros. Since we
assumed that the vector α is not 0, this means that the coefficient αm+1 is not 0.

Since αm+1 6= 0, we can divide all the other alpha terms by this coefficient. For the
resulting ratios

εℓ
def
=

αℓ

αm+1

, (31)

the inequality (30) implies that
|εℓ| ≤ 1. (32)

Proving reduction: let us now consider the first group of m equations. For
each ℓ ≤ m, the ℓ-th equation implies that

xℓ,ℓ · αℓ + αm+1 = 0 (33)

for some xℓ,ℓ ∈ [−1, 1], i. e., that
xℓ,ℓ · αℓ = −αm+1. (34)

Dividing both sides of this equality by αm+1 6= 0, we get

xℓ,ℓ · εℓ = −1. (35)

So, the product of the absolute values of εℓ and of xℓ,ℓ is 1:

|xℓ,ℓ| · |εℓ| = 1, (36)

and

|εℓ| =
1

|xℓ,ℓ|
. (37)

Since xℓ,ℓ is between −1 and 1, its absolute value is bounded by 1. Hence, the absolute value
of εℓ is at least one:

|εℓ| ≥ 1. (38)

From (38) and (32), we conclude that |εℓ| = 1, i. e., that εℓ ∈ {−1, 1}.
Proving reduction: let us use the last equation. The last equation has the form

∑

ℓ

αℓ · sℓ = 0. (39)



10 M. Koshelev

Dividing both sides by αm+1, we get
∑

ℓ

εℓ · sℓ = 0, (40)

which is exactly what we wanted.
The reduction is proven. Thus, the PCA under interval uncertainty problem is indeed

NP-hard even in the simplest case when for each object, no more than one quantity is known
with interval uncertainty.
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