О ПРОБЛЕМАХ ИСПОЛЬЗОВАНИЯ МЕТОДА ЦЕНТРА НЕОПРЕДЕЛЕННОСТИ ДЛЯ ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

А. И. ХЛЕБНИКОВ

Алтайский государственный технический университет им. И. И. Ползунова, Барнаул, Россия e-mail kai@agtu.altai.su

Scientific discussion is presented about inconsistencies that emerge in using the socalled uncertainty center method for experimental errors calculation. In particular, problems of chemical kinetics are considered.

В работе [1] был рассмотрен вопрос использования метода центра неопределенности (МЦН) для решения задач химической кинетики. Ее авторы рассматривают кинетическое уравнение (1) реакции первого порядка:

$$k = (\ln([A]_0/[A]_i))/(t_i - t_0), \tag{1}$$

где k — константа скорости; $[A]_0$, $[A]_i$ — концентрации исходного вещества в начальный t_0 и в более поздний t_i моменты времени. Затем для уравнения (1) строится интервальная модель обработки измерений в виде

$$\frac{\ln([A]_0/([A]_i + \varepsilon_2))}{t_i - t_0 + \varepsilon_1} \le k \le \frac{\ln([A]_0/([A]_i - \varepsilon_2))}{t_i - t_0 - \varepsilon_1},$$

или

$$k_i^- \le k \le k_i^+, \quad i = \overline{1, N},$$
 (2)

где ε_1 и ε_2 — соответственно погрешности определения времени и концентрации. Полагают, что t_0 и $[A]_0$ измерены абсолютно точно. Каждое из условий (2) соблюдается, если выполнимо двойное неравенство (3), задающее "множество неопределенности" константы скорости:

$$k^- \le k \le k^+,\tag{3}$$

где $k^- = \max k_i^-$, $k^+ = \min k_i^+$ $(i = \overline{1, N})$. Несколько иная формулировка условий (2) состоит в увеличении количества неравенств путем замены индексов 0 и i всевозможными парами индексов i и j при $1 \le i \le j \le N$ с соответствующей модификацией выражений (2) [1].

В [1] описан алгоритм, используемый для установления корректности оценок погрешностей, поскольку если $k^- > k^+$, то множество неопределенности пусто и величины ε_1 и ε_2 не

[©] А.И. Хлебников, 1999.

реальны. Хотя такой подход кажется весьма логичным, очевидно, что он позволяет найти лишь *ниженюю* оценку одной из погрешностей (ε_1 или ε_2) при заданном значении другой. Действительно, возрастание как ε_1 , так и ε_2 приведет к уменьшению k^- и к увеличению k^+ , т. е. будет достигаться выполнимость условий (3). Неравенства (2), (3) не позволяют оценить погрешности сверху, если не принимать во внимание тривиальные ограничения $\varepsilon_1 < \min_{1 \le i \le N} (t_i - t_0)$, $\varepsilon_2 < \min_{1 \le i \le N} [A]_i$, вытекающие из требования положительности времени и концентрации в (2). Однако в практике обработки экспериментальных данных представляют интерес как раз верхние оценки погрешностей, а использование нижних оценок не имеет никакого смысла.

Далее в работе [1] анализируется случай, когда ε_1 и ε_2 известны, а требуется найти множества неопределенности остальных величин, входящих в кинетическое уравнение (1), в частности, константы скорости k. Для этой цели авторы предлагают применять МЦН, считая, что приближением к неизвестному значению k служит центр отрезка $[k^-, k^+]$, а погрешность ε величины константы скорости равна половине длины этого отрезка (4):

$$\varepsilon = 0.5(k^+ - k^-). \tag{4}$$

"Нестатистический" способ оценивания погрешностей по уравнениям, аналогичным (4), обладает недопустимой детерминированностью, оперируя четкими границами доверительных интервалов. Это зачастую приводит к нелепым выводам. Например, появление экспериментального промаха, повышающего дисперсию определяемой величины, при использовании МЦН может сопровождаться снижением размера области неопределенности и, следовательно, уменьшением погрешности.

Последняя черта МЦН наряду с другими его противоречиями отмечалась ранее в публикации [2]. Остается непонятным отсутствие в работе [1] ссылки на эту статью. Очевидно, что обсуждаемый подход не позволяет получить сколько-нибудь надежные оценки погрешностей, а его использование для обработки экспериментальных данных представляется нецелесообразным.

Список литературы

- [1] БЕЛОВ В. М., СУХАНОВ В. А., ЛАГУТКИНА Е. В. Интервальный подход при решении задач кинетики простых химических реакций. Вычисл. технологии, $\mathbf{2}$, №1, 1997, 10—18.
- [2] ХЛЕБНИКОВ А. И. О методе центра неопределенности. *Журн. аналитич. химии*, **51**, №3, 1996, 347–348.

Поступила в редакцию 16 апреля 1998 г.