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In this paper, we propose a novel algorithm to deal with multi-objective stochastic
integer linear programming problems (MOSILP). Given a stochastic linear function
¢, we will optimize it over the full set of efficient solutions of a MOSILP. We convert
the latter into an equivalent deterministic problem using uncertain aspirations which
are inputs specified by the decision maker. For this purpose, we adopt a 2-stage
recourse approach where an augmented weighted Tchebychev program is progressively
optimized to generate an efficient solution, the value of the utility function ¢ is improved
to enumerate all efficient solutions. The approach proposed here defines and solves a
sequence of progressively more constrained integer linear programs, so that a new
efficient solution is generated at each step of the algorithm. A numerical example is
presented for illustration.
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Introduction

Let us consider the basic problem

{4

where d is a random vector of dimension n and E; is the efficient solution set of the multiple
objective stochastic Integer linear programming problem MOSILP,

min Z; =Ciy(§)z, i=1,..,p,
s.t. Axr =0, (2)
T(¢)x = h(E),

x > 0, integer,

(MOl)

where z is the decision variable vector of dimension (n x 1). C', T" and h are random matrices
of respective dimensions (p x n), (my x n) and (m; x 1) with a joint probability distribution
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(independent again of the choice of x) defined on some probability space (Z, E, prob). A and
b are deterministic matrices of dimensions (m x n) and (m x 1), respectively. Let C(£) be a
(p x n)random matrix with p rows C;(§) € R.

The main difficulty of problem (Pg) arises from the nonconvexity of the efficient set Ej,
indeed (E;) the union of several faces of the feasible set of problem (MO;). Consequently,
(Pg) is a global optimization problem.

(Pg) have been discussed extensively in the literature and a variety of methods have been
developed for its solution (or resolution); see for example Philip in [1] studied the problem and
described schematically a cutting plane procedure to solve it. Later, Isermann and Steuer [2]
proposed a similar procedure for solving the problem they optimized one criterion among
the multi-objective linear program functions. Necessary and sufficient conditions for this
problem to be unbounded were established by Benson [3]. In [4], Ecker and Song used Philip’s
approach to introduce two implementable algorithms that involve a pivoting technique on
the feasible set a reduced one of a multiple objectives integer linear program. Philip’s method
was implemented by Bolintineanu [5] for the case where the objective function of the problem
is quasiconcave. Sayin in [6] formulated problem (Pg) as a linear program with an additional
reserve convex constraint and proposed a cutting plane method to solve the latter problem.
In [7], Abbas and Chaabane optimized linear function over an integer efficient set and Jorge
developed in [8] another approach that defines a sequence of progressively more constrained
single-objective integer problems that successively eliminates undesirable points, the most
recent work on this topic was conducted by Chabaane et al. in [9).

The first interactive method for solving MOSILP problems was the STRANGE-MOMIX
developed by Teghem [10]. In [11], Abbas and Belhacen (2006) proposed an algorithm that
combines the cutting plane technique [12] and the L-shaped decomposition method described
in [13]. The authors Amrouche and Moulai (2012) developed in [14] an approach for detecting
all stochastic integer efficient solutions of problem MOSILP based on solving a deterministic
multiple objective integer linear program. When the decision variables are integers, few
methods exist in the literature and cuts or branch and bound techniques are unavoidable.

In this paper, we propose an exact algorithm for solving (Pg), it is based on Jorge’s
approach [8] with the concepts L-shaped integer method [15]. We will use the Augmented
Weighted Tchebychev program [16] to generate the set of nondominated objective vectors.

The remainder of the paper is organized as follows: in Section [1| we convert the problem
MOSILP into an equivalent deterministic one; also, definitions and some results concerning
the L-shaped decomposition method are given. Section [2| introduces the concepts of the
utopian vector and the Augmented Weighted Tchebychev program. We describe our algo-
rithm for optimizing a linear function over the efficient set of MOSILP in section [3] Every
step of the method will be illustrated in Section {4] by a numerical example and Section 6
ends the paper with concluding remarks.

1. Construction of equivalent deterministic problem

The basic dual decomposition method for two-stage recourse problems is essentially an ap-
plication of Benders decomposition [15], due to Van Slyke and Wets [13], and is usually
called the L-shaped method in the literature. Assume that we have a joint finite discrete
probability distribution (£7,prob”), r =1, ..., R, of the random data.
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1. In the first stage, for each realization " of £, we associate a criterion Z;,. = C;(£")x, a
matrix 7'(£") and a vector h(£") to take into account the different scenarios affecting
the p objectives and the stochastic constraints.

2. The second stage is to come back to the same idea of recourse used in single-criterion
stochastic programming |17, |1§]. Of course, we assume that the Decision Maker (DM) is
able to specify the penalties ¢" = ¢(£") of the constraint violations y", r = 1, ..., R, and
the size of the associated deterministic problem remains reasonable. Then, unlike the
Strange method where a supplementary criterion is created to penalize the constraint
violations, a recourse function Q(x,£") is added to each criterion Z;.. This penalty
(called the recourse function) is given by:

Q(r,&") = myin{(qr)Ty!W(fT)y = h(€") =T(" )z, y = 0}. (3)
Then the (DM) has to minimize the expected value of the total costs:
Z;=EsplZi+ Q(x,9)], i=1,....p,
with Fsp meaning expected value. It results in the following deterministic MOSILP problem

min  Z; = Z/ + Q(x)
(MO2) S st. Ax =0, (4)
x > 0, integer,

where

R R

Q(x) = EsplQ(z, )] =Y prob’ (Q(z,£")) =Y _(prob’'q")"y",

r=1 r=1

P
Z! = EsplZ] = ZprobTC’i(ﬁ’”)x = EsplCy(&)x], note Cuz = Esp[Ci(&)]
i=1

are respectively the recourse-function Q(z, &) and the expected values of Z

We expect the second-stage program to be feasible for all the realizations ", r =
1,..., R, of & Depending on the (m; X np)-recourse matrix W (£"), this needs not to be true
for all the first-stage decisions = € {x|Az = b, > 0}. Then, the first-stage decisions are
restricted to x € {x|Azx =b, x > 0} NK # () where, K = {z|T(§")z+ W ({")y" = h(&"), y" >
0, »=1,..., R}, is the induced first-stage feasibility set.

In the second-stage programs , the recourse-matrices W (£"), could be replaced by a
fixed recourse-matrix W without any changes in the presentation of the proposed algorithm.
Even if W is being fixed or not, the problem we face is that {z|Az = b, = > 0} NK
can be empty. To avoid this problem, complete fixed recourse-matrices that satisfy {t|t =
Wy,t > 0} are recommended. This implies that, whatever the first-stage decisions x and
the realizations " of ¢ turn out to be, the second-stage programs are always feasible. A
special case of complete fixed recourse matrix is simple recourse with the identity matrix I

of order my, W = (I, —-1).
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1.1. Associated relaxed problem and basic definitions

Associated to (Pg), the deterministic relaxed problem is defined by:

min $(z) = Esp(d(¢)z) + Q(a)
(Pr)}{ s.t. Ax=0b, (5)
x > 0, integer.

1.2. Feasibility

The recourse-matrix W is being fixed. The question is then: how can we state that a given
decision vector z° will yield feasible second-stage problems for all possible realisations of &.
Therefore, it is a lot advantageous to work with the dual [17]

max{7" (h(§) = T(§)2")| 7W < q(€), 7 € R} (6)

on the other hand, the Farkas lemma states that {y|Wy = h(§) —T(£)z°, y > 0} # 0 if and
only if eTW < 0 implies that oZ[h(§) — T(€)2°] < 0.

We conclude that Q(x°, ¢") is infeasible if and only if P = {7 : #W < ¢(£)} has an
extreme ray o such that o [h(¢) — T(£)2°] > 0.

Then to check for feasibility of the second stage-problems, we have to find a direction
vector o by solving the dual problems:

max{c” (h(¢) — T(€)2") "W <0, |lof1 <1, o € R}, (7)

where the constraint ||o||; < 1 is added to bound . In case where for some r, r = 1,..., R
with r is the optimal solution of dual problem; we have o [h(£) —T(£)2°] > 0. Then we add
the feasibility cut:

ST h(E) — T(E)"] < 0. )

1.3. Optimality

Assuming that all the feasibility cuts are there, we can reformulate the problem by
introducing a new variable 6:

min  ®(z) = Esp(d(€)z) + 0
st. zeD=Dn N,

T integer,

(9)

where D = {z € R*|Az = b, oT(T(€") —h(€")) >0, r = 1,..,R } = {z € R"|Az = b}.
Throughout this paper, D is assumed to be a non-empty, compact polyhedron in R”.
The constraint
0 > Q(x), (10)
is in the optimality cut |17].
We define the notion of optimality for (M O,) according to the Pareto concept.

Definition. A point z* € D is said to be eﬂiczent for (4) if and only if there does not exist
another point z* € D such that Zi(z*) > Zi(z'), i € 1,...,p, andZ( *) > Zi(x') for at
least one i € 1,...,p and for all the realisations, & r = 1,..., R. Otherwise, x* is not
efficient and the corresponding vector (Zy(x), Zs(x), . Zp(a:)) is said to be dominated.
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2. The utopian criterion vector and the Augmented Weighted
Tchebychev program

Bowman [19] used a weighted Tchebychev norm for scalarization of multiple objective opti-
mization problems. Based on this approach, Steuer and Choo [20] introduced the augmented
weighted Tchebychev program and the lexicographic weighted Tchebychev program.

Let Zieal ¢ RP be the ideal criterion vector such that Zideal — mm{Z (v)lz € D}. A
vector strictly better than Z* is called an utopian point Zuep, Zuter < zideal or_ Zutop —
Zideal _ 9 where 9 > 0 and small. The augmented weighted Tchebychev norm of Z consist
of measuring the distance between any criteria vector Z and the utopian vector Z“t"p, is
defined as follows [19):

1247 = Z% = max {M|Z}" — 20+ 0 Y02 - 2,

=1

where p is a sufficiently small positive scalar and A is weight vector.

Steuer (1986) has shown that if the p is small enough, the augmented weighted Tcheby-
chev program not only guarantees to return a nondominated objective vector but generates
any particular nondominated objective vector for an appropriate A € A. \; is the weight of

p

the design objective ¢, and satisfies Z Ai=land \; >0,2=1,2,...,p. The set
i=1

p
A:{)\ERP\Z/\izl and \; >0, w}cRp

i=1

is the weighting vector space and any A € A is called a weighting vector.
The idea of this approach is to find a vector Z in the criteria space which minimizes the
distance to the utopian vector:

~utop A
min || 27 — Z||%,.

where Z is a feasible region in criteria space.

Theorem. [9] Let A € A, for a small enough fized p > 0, any optimal solution to (P,(\))

problem
)

p
min o+ pZ(thop - 7;)

i=1
(LA st a> N(ZHP — 7, (11)
reD,
a>0

\

is a nondominated objective vector to problem (MO,). Here

1 & 1 -
- Zvutop Z* |: Zutop Zz*:|

V1<i<p,

with Z* = C'z*, where x* is a prefized vector in D.
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3. Description of the method

Initially, the procedure determines the utopian objective vector Zutor  And the relaxed
problem (Pg) associated to problem (Ppg) is being solved, its feasible set is defined by deter-
ministic constraints of problem (M) without any feasibility or optimality cut. If for some
realisations £, r € 1,..., R, the second-stage problems yielded by the integer solution x
found are not feasible, feasibility cuts are introduced, we then get the integer optimal so-
lution x, compute the recours function Q(x). For a sufficiently small value p, the augmented
weighted Tchebychev program p,(\) is solved in order to find the nondominated vector Z
that is the closest to the utopian objective vector Zutor in the direction determined by Zutop
and Z. We then get the integer optimal solution Z of p,()), feasibility cuts may be added
if infeasibility of second-stage problems appears, and the corresponding value of 6.

Given that, in the decision space it may happen that the obtained solution is not better
than an equivalent efficient solution on the main objective function , therefore, the following
problem has to be solved to find an equivalent efficient solution which improves the main
objective before reducing the current admissible region.

(T") : min{dz|z € D, Cx + 60 = Z}.

The optimal solution z*! of this problem is considered as a first efficient solution.

Afterwards, at an iteration [, using Sylva and Crema’s idea, see [21], we add to (P%)
new constraints that eliminate all the solutions dominated by z*!. There by, the admissible
domain is reduced. This task is performed by the resolution of the following problem P. It

is worthnothing that all coefficients of C are supposed to be integers:
Pl = min{dz|z € D — U._,D,}, (12)

where D, = {z € Z"|Cz > Cz*} and {Cz*}._, is a subset of nondominated criteria vectors
for problem (Pg). {z°;s =1,...,1—1} are solutions of (Pg) obtained at iterations 1,2, ...,1—1
respectively

H=D-U_D,=¢ > yr>1s=12..1 ,
=1
yi € {0,1},i=1,2,..p,s = 1,2, ..., 1,
zeD

\ /

where M; is an upper bound for any feasible value of the i** objective function. The asso-
ciated variables y; ¢ = 1,2,...p, of 2*° and additional constraints are added to impose an
improvement on at least one objective function. Note that when y; = 0, the constraint is
not restrictive, and when y; = 1 a strict improvement is forced in the i objective function
evaluated at x**.

3.1. Algorithm

The technical description of the method provides a new algorithm with an exponential
complexity.
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Algorithm: Stochastic optimizing over the Pareto optimal front

input

A(mxn): matrix of deterministic constraints

bimx1y: RHS vector;

Clpxny: matrix criterion of stochastic coefficients;

h(my x 1): vector of stochastic constraints ;

Wimixny): matrix of stochastic constraints;

T'(my x n): matrix of stochastic constraints;

output _

Zopt: Optimal solution of the problem (Pg), ®,,: optimal value of the main criterion
®

initialization:

for i < 1 to p do
L Solve Zieal— min{C'z,xz € D} is called the ideal point.

and set the upper bounds M; = max{éi:zt,x € D}.

where ) = 1 therefore Zutop — Zideal _ 1 .
Dot :=+inf, =1, By := 0,
Terminate := False,, H:= D, 0 := —oc;
while Terminate:=False do
Solve Pr = min{dz|z € H}. Let 2! be an optimal solution of Pp;
feasibility and optimality test
for r:=1 to R do
feasibility:=False;
while feasibility:=False do
6T an optimal solution of the problem:
maa{o? (h(€) — T(€)a!) | "W <0, ol < 1,0 > 0}
coup:= 67 (h(&) — T(€)zh)
if coup > 0 then
H = HU{6"[h(E) - T(©)r) < 0}
Let 2! be an optimal solution of R},

else
| Fallibility:= true

recours function Q:=0;
for r:=1 to R do
solve problem: max{77(h(¢) — T(€)a!) | 7W < q(€)}
| Qle) = Q(x) + prob x Qa!,¢")
0= Q(x),
(2!,6): optimal solution for Py (after feasibility and optimality tests)
if Terminate:=false or ®(z') > ®,,, then
| @op an optimal solution of Pp, Terminate:=True.
else

efficiency test of Z! = C~*rlT7
compute the weighted vector of P,(\!) ;
Let (z!, Z') be an optimal solution of P,(\!)
feasibility and optimality for z!
if dzt = ®,,: then
‘ Topt = T, (i)pt = E)(:Zl), Terminated:=True
else
solve T(z') = min{dx + 6|z € D, Cx + 0 = Z'};
let x* be an optimal solution of T'(z');
feasibility and optimality test if i,pt < (f(x*l) then
| Zop: an optimal solution of Pp, Terminate:=True
else
Zopt 1= %L, @y = B(2*); let ELFY = EL U 2
l:=1+1and H:= D\UD|;

s=1

Proposition. The algorithm terminates in a finite number of iterations.
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Proof. Since there are finitely many feasible bases coming from the recourse-matrix W, there
are only finitely many feasibility and optimality cuts. On other hand, at each iteration of the
algorithm, a new improved efficient solution is generated and the admissible region is being
reduced there until infeasibility. All these additional cuts exclude the points or the edges
once scanned, leading to the convergence of the procedure in a finite number of steps. [

4. An illustrative example

The problem of optimization over the efficient set of the MOSILP.
Two scenarios (R = 2).
e The principal problem:

d(él) = (47 _1())7 d(£2> = (_67 12)7

we calculate the expected value d

I= Esplan,)) =o€ (20) + 50 () =

o) o)

1 T 1 T
=—(4,-1 —(—6,12 =
a0 () 5o (1)

= —I1 + T2

and then we obtain a linear function optimization problem over an efficient set

e { N T, (13)

o Multiobjective stochastic problem: let us consider the following example with a struc-
ture similar to problem (MO;),p=2,n1 =4, m; =m=n=2.
e Matrix C:
Cl(gl) = (47 _9)7 CI(§2> = (—6,3),

02(51) = (875)7 02(52) = (_27 _3>'

e Matrix T and vector h:
re)=( 4 1) m@-(5 1)
h<§1>=(§)7 h<£2>=(f).
e The penalties:

g€)y=(106 2), ¢=(5321),

1 1
prob(§') = 5, prob(&) = 3.

¢ Recourse-matrix:

W(Q_W_<_32 _21 —25 —16>
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we calculate the expected value Z;

Zy = Esp(Z(z.§)) =

and Zy:

Deterministic constraints

Stochastic constraints

First scenario &!

—21’1 + 51’2 S 23,
8x1 + wg < HI,
Ty — 19 < 4,
—r] — x93 < —06.

T+ 2.7}2 = 3,
—21’1 + Ty = 5.

Second scenario £ x; + 0xy = 6,

333'1 + 41’2 =1.

We obtain the following deterministic multiple objective integer linear programming

problem:

MO,

\

( min Zl = —x1 — 315 + Q(x),

min Zs = 3z1 + x5 + Q(x)
—2I1 + 51‘2 S 237
81 + x9 < 59,

Ty — 19 < 4,

—11 — 29 < —0,
x1, T2 > 0, integer,

st. D=

1 1
wit r) ==, + =Q(z,&7), and the second stage problem assoclated with the
ith @ 2@ £t 2@ £2 d th d bl iated with th

two scenarios Q(x, &) and Q(x, £?) respectively:

min  y; + 6y3 + 2y

1y ) st =2y =y 2ys +ys = 3 — 21— 2,
Q(xag ) 3y1+2y2—5y3—6y4 =5+ 2x; — 29, (15)
y =0,
min  5y; + 3y2 + 2ys + ys
Qr.e)d St T2t 2ty =6 -, (16)

3y1 + 2y2 — dys — 6y = 1 + 3wy — 4o,
y = 0.
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(: Efficient solution

o: Integer feasible solution
for the first stage

1 2 3 4 5 6

L T
7 1

Fig. 1. Admissibility domain D' with efficient set

We can use one of the algorithms developed in [11] to find the efficient set, it can be

shown that five of them are efficient. Particularly,

the efficient set E; is given by

Es - {(1’ 5); (27 5); (37 5); (47 6); (67 6)}7

as shown in Fig.

For this example, the parameter p has been fixed at 0.001.

Initial iteration
[ ]

D' =D, 0 = —o0;

We calculate the upper bound of each objective function M; = —7.25 | My = 36.9855,

o Zided = _15.765, Zife! = 14, Z}' = —16.765, Z3'” = 13.
e Step 1. With § = —oo and without feasibility and optimality cuts, solve the main de-

terministic relaxed problem Pg under the deterministic constraints P}

{ min ®(z)

—x1 + 2ol € D}, an optimal solution is ' = (5,1). To test the feasibility of the
second-stage problems and , we solve the program with:

3 1 2 5 —4
1y _ pely,l _ —

h(§) =T )x (5) <_2 1)(1) (14)’
o pren1_ (6 (10 o\ 1
mer-r@e = (1) - (59)(7)=( s )

max —d4doi + 1407
st —201 + 307 <0, maximum is at
—lol + 202 <0, 9 1
oot —30t <0, || of = (ohot) = (5.3)

lof — 607 <0,
lo} +10f <1

max loy + —1803
s.t. —205 + 303 <0,
—1lol + 203 <0,
205 — 5oy <0,
los — 602 <0,

loy+ 103 <1

maximum is at

2,03) = (0,0)

7 (027 03

0-2:
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81 ®: Not feasible solutions for
the second stage problems
T
6 //6 . /;
5 ® @ o o
4 ] . . .
3 s s+ ®
1o = 11

2 Y/ /®
1

2 a4 67 1

Fig. 2. Admissibility domain without stochastic constraint

A -1t = (3.3) (14 ) =20

A -1 = (22) (s ) -

ol [h(€Y) — T(Y2'] > 0. It means that the second-stage is not feasible for the £!.
Then we create a feasibility cut

2 1 10 T 2 1 6
B > N <= >
(3 3>(3 4)(@)—(3 3)(1> =t
The cut is added to the first problem Pj. We get a new integer point (6, 3) (see Fig. [2).

To test the feasibility of the second-stage problems and , we solve the pro-
gram with:

mer-reen=(2)- (L 1) (5)-(1)
ier=reon = (1) =(3 1) (3)=(2),

max —907 + 1407

T.Q. —201 + 307 <0,
—1loi + 207 <0, maximum is at
201 — 501 <0, ol = (a1,0%) = (0,0)
1o} — 602 < 0,
lo} +10f <1

max Oos — 2903

T.Q. —203 + 305 <0,
—1lol + 203 <0, maximum is at
205 — bos <0, of = (03,03) = (0,0)
loy — 602 <0,
105 + 10% <1
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Al - T3] = 0.0 7 ) =o.

oAl - (63 = 0.0 Gy ) =0

o1 = 09 = 0, this implies that the solution ! = (6,3) yields feasible second-stage
problems. To test the optimality of 2! = (6,3), the dual (6] is solved for &' and &2.

max —97] + 147}

T.Q. —2m +3m} <1, maximum is at
—lmj +2mf <0, T _ (1 2\ _ 1
271_% _ 5,”% S 6, T = (7T177T1> - _17 _5
Im} —6mf < 2

max Omy — 2975

T.Q _QW% + 37T§ <5, maximum is at
—17m) + 272 < 3,

T (1 .2\ __ _
2m) — 53 < 2, my = (m3,m5) = (0,-0.17)
Imy — 672 <1

We calculate the value of the second stage problem associated with the two scenarios
Q(x!, &) and Q(x!, £2) respectively:

Qe ) =l ln(e) - el = (-1 -3) (37 ) =2

Qe €)= e lh(e?) - ('] = (0, -0a7) (G ) =195

Q(z') = %Q(ml,él) + %Q(:cl,fl) = %(2 +4.93) = 3.465.

6 = —oco < Q(z') we introduce the optimality cut of the form

0>> p'[h(&) - T(&)a],

adding this cut 6 > 2.835 + 0.255z7 + 1.593x5, and reoptimize the precedent program
P}, 0 = 15.315, then z! = (6,3) is the optimal basic feasible solution on the current
region. Let Z1(z!') = (—15,21)+3.465 = (—11.535, 24.465), ®(6,3) = —3+60 = —0.465,
$(6,3) < EIv)Opt. We compute the weighted vector AL of the Z':

1 1 1

A T (—11.535) [(—16.765) ~(“11535) | (13) - (24.465)] ’

M 1 1 1 -
> (13) — (24.465) {(—16.765) — (=11.535) * (13) — (24.465)] ’
A= (0.686,0.314).
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e Step 2. We solve the generalized Tchebychev program (P,(\')), which is defined as

follows:
min  « + 0.001(—3.7765 — 2z + 223)
1 s.t.  a>0.686(—16.765 + x1 + 3x2),
(£, (A) a > 0.313(13 — 321 — x9),
reD.

Then, ' = (2,5) is the optimal basic feasible solution of (P,(\!)). To test the feasibility
of the second-stage problems and , we solve the program with:

wermon=(3)-(4 1)(2)=(2)
wermen=(4)-(14) (1))

max —90; + 40}

T.Q. —20f + 307 <0,
—1lo] + 207 <0, maximum is at
201 — 50? <0, ol = (o1,0%) =(0,0)
lo} —60% <0,
lot +107 <1

(17)

max 4oy — 2505

T.Q. —205 + 303 <0,
—1o3 + 203 <0, maximum is at
204 — 505 <0, ol = (03,02) = (0,0)
lo) — 603 <0,
loj + 102 <1

The solution is feasible for both first and second scenario.
To test the optimality of ! = (2,5), the dual () is solved for £* and &2.

max —9my + 4}

T.Q. —27?% + 37T% <1, maximum is at
—17l + 272 <0, P e 1
orl — 572 < 6, = (m, ) = (-1 -3
171'% — 67‘(% <2

max 4wy — 2575
1 2
Q. = <
T.Q 27? + 37T% =9 maximum is at
—lmp f2m <3, 7l = (7, 73) = (0,-0.17)
27?%—57T§§2, 2 272 o

Imy — 673 <1

We calculate the value of the second stage problem associated with the two scenarios
Q(z', &) and Q(T', £2) respectively:

Q' ) = llne) - 1) = (-1-5) () =7
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Q(z') = %Q(i‘l,fl) + %Q(i’l,fl) = 5.625.

The solution Z'(z!) = (—17,11) + 5.625 = (—11.375,16.625) is a nondominated point
with minimal weighted Tchebychev distance, we obtain z! = (2,5) and ®(2,5) =
34 5.625 = 8.625.

e Step 3. Solve the equivalent efficient solutions program:

min ®(z) = -1+ 22+ 0
s.t. 1,19 € D,
—x1 — 3we + 60 = —11.375,

(7%) (18)

An optimal solution is z*! = z! = (2,5) with § = 5.625, ®(z*!) = 8.625 < By,
Topt 1= 21, Bypy := da*!, and let E! = {(2,5)}, 1 := I+ 1 = 2 and we solve problem P2,
Iteration 2
e Step 1. _
min ¢(z) = -1+ 22+ 0
s.t. x,10 € 1'—:[,
(P7) —xy — 32y 4 0 < (—=11.375 + 1)y — 7.25(1 — y1), (19)
3x1 4 T2 + 0 < (16.625 + 1)ys + 36.985(1 — y3),
yi +yi > 1, wi,y € {0,1}.

An optimal solution is z? = (6,4), with y* = (1,0). To test the feasibility of the
second-stage problems and , we solve the program ([7)) with:

h(&l)—T(gl)xQZ(g’)_(_lz i)(i)z(—ly)
wr-me=(5)-(14) (2)-(5)

max —11o] + 1307

T.Q. —20f + 307 <0,
—lot + 207 <0, maximum is at
201 — bo? <0, ol = (a1},0%) = (0,0)
lo} — 602 <0,
10% + 10% <1

max 0oy — 3303

T.Q. —20} 4303 <0,
—1lod + 202 <0, maximum 1S at
204 — 502 <0, of = (03,03) = (0,0)
los — 602 <0,
1(7% + 10% <1

The solution is feasible for both first and second scenario. To test the optimality of
22 = (6,4), the dual (6] is solved for ¢! and &2
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max —1177% + 13%%

T.Q. —2n} +37} <1, maximum is at
—1nl + 272 <0, T e 1
2mt — 5mf < 6, m = (m,m) = -1 -3
17T% — 67‘(% <2

max Omy — 3375
o 1 2 <
Q. 27? + 37T§ =9 maximum is at
“lm tim =3, 7t = (73, 75) = (0, —0.17)
27T%—57T%§2, 2 25 12 ; .

In} —6m2 <1

We calculate the value of the second stage problem associated with the two scenarios
Q(2?,&Y) and Q(2?, £2) respectively:

Qe ) = w6 - 1) = (-1-3) (5 ) =5

QW@w:ﬁwwwﬂm%ﬂ:mrmm( O):az

—33
1 1
Q(+*) = 5Q% ¢ + 5Q(* ¢ =5.1.
Then 22 = (6,4) is the optimal basic feasible solution in the current region. Let

Z2(2%) = (—18,22) + 5.1 = (=12.9,27.3), D(6,4) = =2+ 0 = 3.1, B(6,4) < Dy We
compute the weighted vector A\? of the Z2: A\? = (0.782,0.218).
Step 2. We solve the generalized Tchebychev program (P,(A?)), which is defined as

follows: min a4+ 0.001(—3.7765 — 2z, + 2x5)
oy ) st a>0.782(=16.765 + 21 + 3x2),
(Po(A)) a > 0.218(13 — 3z, — ),
reD.

Then, 2 = (3, 5) is the optimal basic feasible solution of (P,(A\?)). To test the feasibility
of the second-stage problems and ((16]), we solve the program (7)) with:

wormon=(2)-(4 1) (2)- ()
wer-nen=(9)-(3 ) (2)- ()

max —100] + 60%

T.Q. —201 + 307 <0,
—1loi + 207 <0, maximum is at
201 — 501 <0, ol = (a1,0%) = (0,0)
1o} — 602 < 0,
lo} +10f <1

(20)

max 304 — 2805

T.Q. —203 + 305 <0,
—1lol + 203 <0, maximum is at
205 — bos <0, of = (03,03) = (0,0)
loy — 602 <0,
105 + 10% <1
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The solution is feasible for both first and second scenario. To test the optimality of
72 = (3,5), the dual (6] is solved for ¢! and &2

max —107} + 677

T.Q. —2nl+3r <1, maximum is at
—1x} + 272 <0, P o 1
271—% - 57‘(% S 6, ﬂ-l - (7T177T1) - _1, —5
Imi — 672 <2

max 3wy — 2875
_ 1 2 <
TQ. 2”% i 37T% =9, maximum is at
Am A =S 2 (il w2) = (0,-0.17)
27r%—57r§§2, 2 2072 o

Iy — 672 <1

We calculate the value of the second stage problem associated with the two scenarios
Q(72, &) and Q(72, £2) respectively:
1

Qe ) =t lnie) - 1 = (1.3 ) (5 ) =7

Q) = afh(e?) - 7€) = 0,-0am) () =476

Q%) = %Q(xz,gl) + %Q(xz,gl) = 5.88.

The solution Z2(z2) = (—18,14)+5.88 = (—13.88,19.88) is a nondominated point with
minimal weighted Tchebychev distance, we obtain z? = (3,5) and

$(3,5) =2+ 5.88 = 7.88.

e Step 3. Solve the equivalent efficient solutions program:

min $(z) = —xy + a2+ 0
s.t. T1,T2 € D,
—ay — 3ay + 0 = —13.88,

(77) (21)

An optimal solution is 22 = 22 = (3,5) with 6 = 5.88, ®(2*2) = 7.88 < CTDOpt,
Topt = T2, EIVDOpt .= dz*2, and let EZ = {(2,5),(3,5)}, [ := [+ 2 = 3 and we solve
problem (P3).

Iteration 3

e Step 1.

min ®(x) = —zy + x5+ 0
s.t. x1,x9 € ﬁ[,
(P3) —1y — 31y + 0 < (—13.88 4 1)yl — 7.25(1 — yb), (22)
31 4 22 + 60 < (19.88 4+ 1)y + 36.985(1 — v3),
yi +ui > 1, yl,ys € {0, 1},

An optimal solution is 2% = (6,5), with y* = (1,0). To test the feasibility of the
second-stage problems and , we solve the program with:

h(51>—T<51>x3—(§>—(_12 f)(§>_(—1123)
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verren=(7) - (5 3)(5)= ()

max —1lof + 1307

T.Q. —20i + 307 <0,
—1lo] + 207 <0, maximum 1is at
201 — bo? <0, ol = (a},0%) = (0,0)
lot — 607 <0,
10% + 10% <1

max 0oy — 3303

T.Q. —203 + 303 <0,
—1lol + 202 <0, maximum is at
205 — 5o3 <0, o3 = (03,03) = (0,0)
lod — 603 <0,
lod +102 <1

The solution is feasible for both first and second scenario. To test the optimality of
z® = (6,5), the dual (6 is solved for ¢! and &2.

max —13m] + 1277

T.Q. —2m + 37} <1, maximum is at
—lmj +2mf <0, T _ (1 -2\ _ 1
2! — 512 < 6, m = mom) = (=173
In] — 672 <2

max Oms — 3875

T.Q. —27@ + 37T§ <5, . .
1 5 maximum 1s at

R R N
21} — 515 < 2, my = (my,m5) = (0,-0.17)
171'% — 677'% <1

We calculate the value of the second stage problem associated with the two scenarios
Q(x?, &) and Q(x?,£2) respectively:

Qi ) = wllnie) - 1)’ = (-1-3) (') =7

2

Q) = A 1h(e) - (€] = 0.-0a7) (G ) = oo

1 f 1 f
Q(l’?’) = §Q($5>€1) + §Q($3751) =6.73.
Then, z* = (6,5) is the optimal basic feasible solution on the current region. Let
Z3(x) = (—21,23) + 6.73 = (—14.27,29.73), ®(6,5) = —2 + 6 = 4.73, ®(6,5) < D,y
We compute the weighted vector A* of the Z3: A3 = (0.87,0.13).

e Step 2. We solve the generalized Tchebychev program (P,(\?)), which is defined as

follows:
min  « + 0.001(—=3.7765 — 2z + 2x4)

sit. > 0.87(—16.765 + x1 + 3x2),
a > 0.13(13 — 3z1 — 29),
reD.

(P,(A%) (23)
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Then, % = (4, 6) is the optimal basic feasible solution of (P,(A\?)). To test the feasibility
of the second-stage problems and ([L6]), we solve the program (7)) with:

wrmoe=(3)-(4 1)(4)-(F)
wermee=(8)- (1) (4)=( )

max —130] + 70}

T.Q. —20] + 307 <0,
—1lo] + 207 <0, maximum 1S at
201 — Ho? <0, ol = (a},0%) = (0,0)
lo} —60% <0,
10% + 10% <1

max 204 — 3503

T.Q. —203 + 303 <0,
—1lod + 202 <0, maximum is at
204 — 5os <0, o3 = (03,03) = (0,0)
los — 602 <0,
lo) + 103 <1

The solution is feasible for both first and second scenario.
To test the optimality of z° = (4, 6), the dual @ is solved for £! and £2.

max —13m] + T7?

T.Q. —2mf + 37} <1, maximum is at
—lmj +2nf <0, T _ (1 -2\ _ 1
onl “smz <, || ™= M) ={~Lho3
In] — 672 <2

max 27y — 3575

T.Q. —27@ + 37r§ <5, . .
1 5 maximum 1S at
—1my + 2m5 < 3, T

(1 2y B
2} — 52 < 2, my = (m3,m3) = (0,-0.17)
171% — 671'5 <1

We calculate the value of the second stage problem associated with the two scenarios
Q(73,£Y) and Q(73, £2) respectively:

Q. ¢) = w16 - Tehe’ = (-1 -3) () =os.

Q(z%,&") =my [h(€%) — T(£%)z"] = (0,-0.17) ( _35 ) = 5.95,

Q(7°) = %Q(:z-?’,fl) + %Q(i’?’,il) = 7.725.

The solution Z3(z) = (—22,18) + 5.88 = (—14.275,25.725) is a nondominated point
with minimal weighted Tchebychev distance, we obtain z° = (4,6) and ®(4,6) =
247725 =9.725.
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8+ (O Efficient solution

(O: Not efficient solution
-1 - : The path of the
! algorithm iterations

T1

Fig. 3. The end iteration

e Step 3. Solve the equivalent efficient solutions program:

min (I)(ZL’) = -2+ X9+ 0

st. x,x0 € D,
—T1 — 3[E2 + 0 = —142757
3$1 + 1$2 + 0 = 25.725.

(T (24)

An optimal solution is z*3 = 23 = (4,6) with 6 = 7.725, ®(2*3) = 9.725 > B, = 7.88.
Terminated:= True
Topt = %2 = (3,5), oy = 7.88 is the optimal solution of the problem (Pg) (fig. [3).
The set of problems presented above have been solved by the MATLAB 7.0 environment.
However, our algorithm optimizes the linear function ®(z) = —x; + x2 without having to
determine all these solutions but only E? = {(2,5), (3,5), (4,6)}.

Conclusion

In this work we have presented a new exact algorithm for optimizing over the integer efficient
set of a stochastic multi-objective program based on the augmented weighted Tchebychev
Program. The algorithm finds an integer optimal solution for problem (Pg) in a finite number
of steps.

The proposed algorithm is formed on, the stochastic data are treated by recourse ap-
proach to obtain an equivalent deterministic program. We achieve this objective by com-
bining two ideas: one consists of solving the augmented weighted Tchebychev program in
the outcome space criteria to characterize nondominated criterion vector; then adding suc-
cessive Gomory cuts, if necessary, we obtain an integer feasible solution and the feasibility
cuts eliminate some parts of the first-stage decision set. And the second idea is to reduce
progressively the admissible domain by adding more constraints eliminating all the points
dominated by the current solution. A small number of iterations is necessary to obtain the
optimal solution for (Pg).

In some applications the decision maker does not often have the possibility to use recours
in the future, after the occurrence of a scenario (all K induced stresses are empty). In
this case, we have to use another approach to the stochastic programming to convert the
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problem to a deterministic stochastic problem. Concerning the complexity, as we are obliged
to transform the stochastic problem into deterministic one, problem (Pg) remains hard as
was stated in deterministic case by Guyen (1992).
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Annorarus

B 370it cTarhe MBI TIpearaeM HOBBIN AJITOPUTM JJIA PEITeHNsT MHOTOIETEBBIX 33/0aY CTOXACTH-
YECKOTO TETOIUCIEHHOTO uHeiiHoro mporpavMvuposarus (MOSILP). Mel ontuMusupyeM JaHHYTO
CTOXaCTUIECKYIO JIMHENHYIO (DyHKIU ¢ 1o mogaoMy Habopy 3ddextusnbix pemenunit MOSILP,
KOTOpble ObLin Ipeobpa3oBaHbl B SKBUBAJEHTHYIO JETEPMUHUPOBAHHYIO 33/1a4y C HCIOJb30BAHU-
€M HeOTIPeJIeJIEHHBIX MPEITOI0KEHNH, BBOAUMBIX JIUTIOM, TPUHUMAONINM perterust. JIs 9Toit mieu
MBI IPUMEHAEM JBYXITAIHBIN PEKYPCUBHBIN MMOAX0, IIPU KOTOPOM PACIIAPEHHAS B3BEIICHHAS TIPO-
rpamma YebbIleBa MOCTENEHHO ONTUMUIUPYETCA /i CO3aHus 3PHEeKTUBHOTO PEIIEHUs, TEM Ca-
MBIM Y/IydIliad 3HaUEHne BCIIOMOTaTebHON (pyukimu ¢. IlpemraraeMbiit 31ech TOAXO OTPEIEIIeT
U PEeIIaeT MOCIe0BATEIbHOCTE 1IeJIOUHCIEHHBIX JTHHENHBIX TPOrPAMM ¢ HAPACTAIIIUMU OrDAHIYIe-
HUAMHU, TaK 9TO HA KayKJIOM ITAIe aJrOpuTMa renepupyerca HoBoe 3dhdexTusHoe perenune. g
WJLTFOCTPAIIMU TIPEJCTABJIEH YUCI0BON TIPUMED.

Kmoueswvie cao6a: MHOTOIIEIEBAS 3318494, [I€J0UNC/TEHHOE TPOIPAMMUAPOBAHNE, CTOXACTHIECKOE
JINHENHOE [pOoTrpaMMUpOBaHue, HopMa ebbiesa.

ITumuposanue: Younsi-Abbaci L., Moulal M. Stochastic optimization over the Pareto front by
the augmented weighted Tchebychev program. Computational Technologies. 2021; 26(3):86-106.
DOI:10.25743 /1CT.2021.26.3.006.

Bularopapnoctu. lccieoBanne BBIIOJHEHO IPU YaCTUYIHON NOJep2KKe MUHUCTEPCTBA BBICITIETO
0bpazoBaHWs U HAYYIHBIX UCCAeA0BaHU Akupa. ABTOPBI TaKyKe BBIPAXKAT OJar0IapHOCTh TPO-
deccopy DPapyky dAnayu u gokropy Daiiceny Xuaiteny nz Texnonoruueckoro yausepcurera LOSI
(Tpya, @pannms) 3a ux MOMOIIH U MOAJAEPKKY B IOJArOTOBKE JAHHON CTATHU.
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