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In this paper, we propose a novel algorithm to deal with multi-objective stochastic
integer linear programming problems (MOSILP). Given a stochastic linear function
𝜑, we will optimize it over the full set of efficient solutions of a MOSILP. We convert
the latter into an equivalent deterministic problem using uncertain aspirations which
are inputs specified by the decision maker. For this purpose, we adopt a 2-stage
recourse approach where an augmented weighted Tchebychev program is progressively
optimized to generate an efficient solution, the value of the utility function 𝜑 is improved
to enumerate all efficient solutions. The approach proposed here defines and solves a
sequence of progressively more constrained integer linear programs, so that a new
efficient solution is generated at each step of the algorithm. A numerical example is
presented for illustration.
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Introduction

Let us consider the basic problem

(𝑃𝐸)

{︂
min Φ(𝑥) = 𝑑(𝜉)𝑥,
s.t. 𝑥 ∈ E𝑠,

(1)

where 𝑑 is a random vector of dimension 𝑛 and E𝑠 is the efficient solution set of the multiple
objective stochastic Integer linear programming problem MOSILP,

(𝑀𝑂1)

⎧⎪⎪⎨⎪⎪⎩
min 𝑍𝑖 = 𝐶𝑖(𝜉)𝑥, 𝑖 = 1, ..., 𝑝,
s.t. 𝐴𝑥 = 𝑏,

𝑇 (𝜉)𝑥 = ℎ(𝜉),
𝑥 ≥ 0, integer,

(2)

where 𝑥 is the decision variable vector of dimension (𝑛×1). 𝐶, 𝑇 and ℎ are random matrices
of respective dimensions (𝑝×𝑛), (𝑚1×𝑛) and (𝑚1× 1) with a joint probability distribution
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(independent again of the choice of 𝑥) defined on some probability space (Ξ, 𝐸, 𝑝𝑟𝑜𝑏). 𝐴 and
𝑏 are deterministic matrices of dimensions (𝑚× 𝑛) and (𝑚× 1), respectively. Let 𝐶(𝜉) be a
(𝑝× 𝑛)random matrix with 𝑝 rows 𝐶𝑖(𝜉) ∈ R.

The main difficulty of problem (𝑃𝐸) arises from the nonconvexity of the efficient set E𝑠,
indeed (E𝑠) the union of several faces of the feasible set of problem (𝑀𝑂1). Consequently,
(𝑃𝐸) is a global optimization problem.

(𝑃𝐸) have been discussed extensively in the literature and a variety of methods have been
developed for its solution (or resolution); see for example Philip in [1] studied the problem and
described schematically a cutting plane procedure to solve it. Later, Isermann and Steuer [2]
proposed a similar procedure for solving the problem they optimized one criterion among
the multi-objective linear program functions. Necessary and sufficient conditions for this
problem to be unbounded were established by Benson [3]. In [4], Ecker and Song used Philip’s
approach to introduce two implementable algorithms that involve a pivoting technique on
the feasible set a reduced one of a multiple objectives integer linear program. Philip’s method
was implemented by Bolintineanu [5] for the case where the objective function of the problem
is quasiconcave. Sayin in [6] formulated problem (𝑃𝐸) as a linear program with an additional
reserve convex constraint and proposed a cutting plane method to solve the latter problem.
In [7], Abbas and Chaabane optimized linear function over an integer efficient set and Jorge
developed in [8] another approach that defines a sequence of progressively more constrained
single-objective integer problems that successively eliminates undesirable points, the most
recent work on this topic was conducted by Chabaane et al. in [9].

The first interactive method for solving MOSILP problems was the STRANGE-MOMIX
developed by Teghem [10]. In [11], Abbas and Belhacen (2006) proposed an algorithm that
combines the cutting plane technique [12] and the L-shaped decomposition method described
in [13]. The authors Amrouche and Mouläı (2012) developed in [14] an approach for detecting
all stochastic integer efficient solutions of problem MOSILP based on solving a deterministic
multiple objective integer linear program. When the decision variables are integers, few
methods exist in the literature and cuts or branch and bound techniques are unavoidable.

In this paper, we propose an exact algorithm for solving (𝑃𝐸), it is based on Jorge’s
approach [8] with the concepts L-shaped integer method [15]. We will use the Augmented
Weighted Tchebychev program [16] to generate the set of nondominated objective vectors.

The remainder of the paper is organized as follows: in Section 1 we convert the problem
MOSILP into an equivalent deterministic one; also, definitions and some results concerning
the L-shaped decomposition method are given. Section 2 introduces the concepts of the
utopian vector and the Augmented Weighted Tchebychev program. We describe our algo-
rithm for optimizing a linear function over the efficient set of MOSILP in section 3. Every
step of the method will be illustrated in Section 4 by a numerical example and Section 6
ends the paper with concluding remarks.

1. Construction of equivalent deterministic problem

The basic dual decomposition method for two-stage recourse problems is essentially an ap-
plication of Benders decomposition [15], due to Van Slyke and Wets [13], and is usually
called the L-shaped method in the literature. Assume that we have a joint finite discrete
probability distribution (𝜉𝑟, 𝑝𝑟𝑜𝑏𝑟), 𝑟 = 1, ..., 𝑅, of the random data.
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1. In the first stage, for each realization 𝜉𝑟 of 𝜉, we associate a criterion 𝑍𝑖𝑟 = 𝐶𝑖(𝜉
𝑟)𝑥, a

matrix 𝑇 (𝜉𝑟) and a vector ℎ(𝜉𝑟) to take into account the different scenarios affecting
the 𝑝 objectives and the stochastic constraints.

2. The second stage is to come back to the same idea of recourse used in single-criterion
stochastic programming [17, 18]. Of course, we assume that the Decision Maker (DM) is
able to specify the penalties 𝑞𝑟 = 𝑞(𝜉𝑟) of the constraint violations 𝑦𝑟, 𝑟 = 1, ..., 𝑅, and
the size of the associated deterministic problem remains reasonable. Then, unlike the
Strange method where a supplementary criterion is created to penalize the constraint
violations, a recourse function 𝑄(𝑥, 𝜉𝑟) is added to each criterion 𝑍𝑖𝑟. This penalty
(called the recourse function) is given by:

𝑄(𝑥, 𝜉𝑟) = min
𝑦
{(𝑞𝑟)𝑇𝑦|𝑊 (𝜉𝑟)𝑦 = ℎ(𝜉𝑟)− 𝑇 (𝜉𝑟)𝑥, 𝑦 ≥ 0}. (3)

Then the (DM) has to minimize the expected value of the total costs:

̃︀𝑍𝑖 = 𝐸𝑠𝑝[𝑍𝑖 + 𝑄(𝑥, 𝜉)], 𝑖 = 1, . . . , 𝑝,

with 𝐸𝑠𝑝 meaning expected value. It results in the following deterministic MOSILP problem

(𝑀𝑂2)

⎧⎨⎩ min ̃︀𝑍𝑖 = 𝑍 ′
𝑖 + 𝑄(𝑥)

s.t. 𝐴𝑥 = 𝑏,
𝑥 ≥ 0, integer,

(4)

where

𝑄(𝑥) = 𝐸𝑠𝑝[𝑄(𝑥, 𝜉)] =
𝑅∑︁

𝑟=1

𝑝𝑟𝑜𝑏𝑟(𝑄(𝑥, 𝜉𝑟)) =
𝑅∑︁

𝑟=1

(𝑝𝑟𝑜𝑏𝑟𝑞𝑟)𝑇𝑦𝑟,

𝑍 ′
𝑖 = 𝐸𝑠𝑝[𝑍𝑖] =

𝑝∑︁
𝑖=1

𝑝𝑟𝑜𝑏𝑟𝐶𝑖(𝜉
𝑟)𝑥 = 𝐸𝑠𝑝[𝐶𝑖(𝜉)𝑥], note ̃︀𝐶𝑥 = 𝐸𝑠𝑝[𝐶𝑖(𝜉)𝑥]

are respectively the recourse-function 𝑄(𝑥, 𝜉) and the expected values of ̃︀𝑍𝑖.

We expect the second-stage program (3) to be feasible for all the realizations 𝜉𝑟, 𝑟 =
1, ..., 𝑅, of 𝜉. Depending on the (𝑚1 × 𝑛1)-recourse matrix 𝑊 (𝜉𝑟), this needs not to be true
for all the first-stage decisions 𝑥 ∈ {𝑥|𝐴𝑥 = 𝑏, 𝑥 ≥ 0}. Then, the first-stage decisions are
restricted to 𝑥 ∈ {𝑥|𝐴𝑥 = 𝑏, 𝑥 ≥ 0}∩K ̸= ∅ where, K = {𝑥|𝑇 (𝜉𝑟)𝑥+𝑊 (𝜉𝑟)𝑦𝑟 = ℎ(𝜉𝑟), 𝑦𝑟 ≥
0, 𝑟 = 1, . . . , 𝑅}, is the induced first-stage feasibility set.

In the second-stage programs (3), the recourse-matrices 𝑊 (𝜉𝑟), could be replaced by a
fixed recourse-matrix 𝑊 without any changes in the presentation of the proposed algorithm.
Even if 𝑊 is being fixed or not, the problem we face is that {𝑥|𝐴𝑥 = 𝑏, 𝑥 ≥ 0} ∩ K
can be empty. To avoid this problem, complete fixed recourse-matrices that satisfy {𝑡|𝑡 =
𝑊𝑦, 𝑡 ≥ 0} are recommended. This implies that, whatever the first-stage decisions 𝑥 and
the realizations 𝜉𝑟 of 𝜉 turn out to be, the second-stage programs (3) are always feasible. A
special case of complete fixed recourse matrix is simple recourse with the identity matrix 𝐼
of order 𝑚1, 𝑊 = (𝐼,−𝐼).



Stochastic optimization over the Pareto front . . . 89

1.1. Associated relaxed problem and basic definitions

Associated to (𝑃𝐸), the deterministic relaxed problem is defined by:

(𝑃𝑅)

⎧⎨⎩ min ̃︀Φ(𝑥) = 𝐸𝑠𝑝(𝑑(𝜉)𝑥) + 𝑄(𝑥)
s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0, integer.

(5)

1.2. Feasibility

The recourse-matrix 𝑊 is being fixed. The question is then: how can we state that a given
decision vector 𝑥0 will yield feasible second-stage problems for all possible realisations of 𝜉.
Therefore, it is a lot advantageous to work with the dual [17]

max{𝜋𝑇 (ℎ(𝜉)− 𝑇 (𝜉)𝑥0)| 𝜋𝑊 ≤ 𝑞(𝜉), 𝜋 ∈ R} (6)

on the other hand, the Farkas lemma states that {𝑦|𝑊𝑦 = ℎ(𝜉)− 𝑇 (𝜉)𝑥0, 𝑦 ≥ 0} ≠ ∅ if and
only if 𝜎𝑇𝑊 ≤ 0 implies that 𝜎𝑇 [ℎ(𝜉)− 𝑇 (𝜉)𝑥0] ≤ 0.

We conclude that 𝑄(𝑥0, 𝜉𝑟) is infeasible if and only if 𝑃 = {𝜋 : 𝜋𝑊 ≤ 𝑞(𝜉)} has an
extreme ray 𝜎 such that 𝜎𝑇 [ℎ(𝜉)− 𝑇 (𝜉)𝑥0] > 0.

Then to check for feasibility of the second stage-problems, we have to find a direction
vector 𝜎 by solving the dual problems:

max{𝜎𝑇 (ℎ(𝜉)− 𝑇 (𝜉)𝑥0) 𝜎𝑇𝑊 ≤ 0, ‖𝜎‖1 ≤ 1, 𝜎 ∈ R}, (7)

where the constraint ‖𝜎‖1 ≤ 1 is added to bound 𝜎. In case where for some 𝑟, 𝑟 = 1, ..., 𝑅
with 𝑟 is the optimal solution of dual problem; we have 𝜎𝑇

𝑟 [ℎ(𝜉)−𝑇 (𝜉)𝑥0] > 0. Then we add
the feasibility cut:

𝜎𝑇
𝑟 [ℎ(𝜉)− 𝑇 (𝜉)𝑥0] ≤ 0. (8)

1.3. Optimality

Assuming that all the feasibility cuts are there, we can reformulate the problem (5) by
introducing a new variable 𝜃:⎧⎪⎪⎨⎪⎪⎩

min ̃︀Φ(𝑥) = 𝐸𝑠𝑝(𝑑(𝜉)𝑥) + 𝜃

s.t. 𝑥 ∈ 𝐷 = ̃︀𝐷 ∩ N,
𝜃 ≥ 𝑄(𝑥),
𝑥 integer,

(9)

where ̃︀𝐷 = {𝑥 ∈ R𝑛|𝐴𝑥 = 𝑏, 𝜎𝑇
𝑟 (𝑇 (𝜉𝑟) − ℎ(𝜉𝑟)) ≥ 0, 𝑟 = 1, ..., 𝑅 } = {𝑥 ∈ R𝑛| ̃︀𝐴𝑥 = ̃︀𝑏}.

Throughout this paper, ̃︀𝐷 is assumed to be a non-empty, compact polyhedron in R𝑛.
The constraint

𝜃 ≥ 𝑄(𝑥), (10)

is in the optimality cut [17].
We define the notion of optimality for (𝑀𝑂2) according to the Pareto concept.

Definition. A point 𝑥* ∈ 𝐷 is said to be efficient for (4) if and only if there does not exist

another point 𝑥1 ∈ 𝐷 such that ̃︀𝑍𝑖(𝑥
*) ≥ ̃︀𝑍𝑖(𝑥

1), 𝑖 ∈ 1, . . . , 𝑝, and ̃︀𝑍𝑖(𝑥
*) > ̃︀𝑍𝑖(𝑥

1) for at
least one 𝑖 ∈ 1, . . . , 𝑝 and for all the realisations, 𝜉𝑟 𝑟 = 1, . . . , 𝑅. Otherwise, 𝑥* is not
efficient and the corresponding vector ( ̃︀𝑍1(𝑥), ̃︀𝑍2(𝑥), . . . , ̃︀𝑍𝑝(𝑥)) is said to be dominated.
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2. The utopian criterion vector and the Augmented Weighted
Tchebychev program

Bowman [19] used a weighted Tchebychev norm for scalarization of multiple objective opti-
mization problems. Based on this approach, Steuer and Choo [20] introduced the augmented
weighted Tchebychev program and the lexicographic weighted Tchebychev program.

Let ̃︀𝑍𝑖𝑑𝑒𝑎𝑙 ∈ R𝑝 be the ideal criterion vector such that ̃︀𝑍𝑖𝑑𝑒𝑎𝑙
𝑖 = min{ ̃︀𝑍𝑖(𝑥)|𝑥 ∈ 𝐷}. A

vector strictly better than ̃︀𝑍𝑖𝑑𝑒𝑎𝑙 is called an utopian point ̃︀𝑍𝑢𝑡𝑜𝑝, ̃︀𝑍𝑢𝑡𝑜𝑝 < ̃︀𝑍𝑖𝑑𝑒𝑎𝑙 or ̃︀𝑍𝑢𝑡𝑜𝑝 =̃︀𝑍𝑖𝑑𝑒𝑎𝑙 − 𝜗 where 𝜗 > 0 and small. The augmented weighted Tchebychev norm of ̃︀𝑍 consist
of measuring the distance between any criteria vector ̃︀𝑍 and the utopian vector ̃︀𝑍𝑢𝑡𝑜𝑝, is
defined as follows [19]:

‖ ̃︀𝑍𝑢𝑡𝑜𝑝 − ̃︀𝑍‖𝜆∞ = max
𝑖=1,...,𝑝

{𝜆𝑖| ̃︀𝑍𝑢𝑡𝑜𝑝
𝑖 − ̃︀𝑍𝑖|}+ 𝜌

𝑝∑︁
𝑖=1

| ̃︀𝑍𝑢𝑡𝑜𝑝
𝑖 − ̃︀𝑍𝑖|,

where 𝜌 is a sufficiently small positive scalar and 𝜆 is weight vector.
Steuer (1986) has shown that if the 𝜌 is small enough, the augmented weighted Tcheby-

chev program not only guarantees to return a nondominated objective vector but generates
any particular nondominated objective vector for an appropriate 𝜆 ∈ Λ. 𝜆𝑖 is the weight of

the design objective 𝑖, and satisfies

𝑝∑︁
𝑖=1

𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0, 𝑖 = 1, 2, ..., 𝑝. The set

Λ =

{︂
𝜆 ∈ R𝑝|

𝑝∑︁
𝑖=1

𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0, ∀𝑖
}︂
⊂ R𝑝

is the weighting vector space and any 𝜆 ∈ Λ is called a weighting vector.
The idea of this approach is to find a vector ̃︀𝑍 in the criteria space which minimizes the

distance to the utopian vector:

min
𝑍∈Z
‖ ̃︀𝑍𝑢𝑡𝑜𝑝 − ̃︀𝑍‖𝜆∞,

where Z is a feasible region in criteria space.

Theorem. [9] Let 𝜆 ∈ Λ, for a small enough fixed 𝜌 > 0, any optimal solution to (𝑃𝜌(𝜆))
problem

(𝑃𝜌(𝜆))

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min 𝛼 + 𝜌

𝑝∑︁
𝑖=1

( ̃︀𝑍𝑢𝑡𝑜𝑝
𝑖 − ̃︀𝑍𝑖)

s.t. 𝛼 ≥ 𝜆𝑖( ̃︀𝑍𝑢𝑡𝑜𝑝
𝑖 − ̃︀𝑍𝑖),

𝑥 ∈ 𝐷,
𝛼 ≥ 0

(11)

is a nondominated objective vector to problem (𝑀𝑂2). Here

𝜆𝑖 =
1̃︀𝑍𝑢𝑡𝑜𝑝 − ̃︀𝑍*

𝑖

[︂ 𝑝∑︁
𝑖=1

1̃︀𝑍𝑢𝑡𝑜𝑝 − ̃︀𝑍*
𝑖

]︂−1

∀1 ≤ 𝑖 ≤ 𝑝,

with ̃︀𝑍*
𝑖 = 𝐶𝑖𝑥*, where 𝑥* is a prefixed vector in 𝐷.
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3. Description of the method

Initially, the procedure determines the utopian objective vector ̃︀𝑍𝑢𝑡𝑜𝑝. And the relaxed
problem (𝑃𝑅) associated to problem (𝑃𝐸) is being solved, its feasible set is defined by deter-
ministic constraints of problem (𝑀𝑂1) without any feasibility or optimality cut. If for some
realisations 𝜉𝑟, 𝑟 ∈ 1, . . . , 𝑅, the second-stage problems yielded by the integer solution 𝑥
found are not feasible, feasibility cuts (8) are introduced, we then get the integer optimal so-
lution 𝑥, compute the recours function 𝑄(𝑥). For a sufficiently small value 𝜌, the augmented
weighted Tchebychev program 𝑝𝜌(𝜆) is solved in order to find the nondominated vector 𝑍

that is the closest to the utopian objective vector ̃︀𝑍𝑢𝑡𝑜𝑝 in the direction determined by 𝑍𝑢𝑡𝑜𝑝

and 𝑍. We then get the integer optimal solution �̄� of 𝑝𝜌(𝜆), feasibility cuts (8) may be added
if infeasibility of second-stage problems appears, and the corresponding value of 𝜃.

Given that, in the decision space it may happen that the obtained solution is not better
than an equivalent efficient solution on the main objective function , therefore, the following
problem has to be solved to find an equivalent efficient solution which improves the main
objective before reducing the current admissible region.

(𝑇 𝑙) : min{̃︀𝑑𝑥|𝑥 ∈ 𝐷, ̃︀𝐶𝑥 + 𝜃 = 𝑍}.

The optimal solution 𝑥*𝑙 of this problem is considered as a first efficient solution.
Afterwards, at an iteration 𝑙, using Sylva and Crema’s idea, see [21], we add to (𝑃 𝑙

𝑅)
new constraints that eliminate all the solutions dominated by 𝑥*𝑙. There by, the admissible
domain is reduced. This task is performed by the resolution of the following problem 𝑃 𝑙

𝑅. It

is worthnothing that all coefficients of ̃︀𝐶 are supposed to be integers:

𝑃 𝑙
𝑅 ≡ min{̃︀𝑑𝑥|𝑥 ∈ 𝐷 − ∪𝑙

𝑠=1𝐷𝑠}, (12)

where 𝐷𝑠 = {𝑥 ∈ Z𝑛| ̃︀𝐶𝑥 ≥ ̃︀𝐶𝑥𝑠} and { ̃︀𝐶𝑥𝑠}𝑙𝑠=1 is a subset of nondominated criteria vectors
for problem (𝑃𝐸). {𝑥𝑠; 𝑠 = 1, ..., 𝑙−1} are solutions of (𝑃𝐸) obtained at iterations 1, 2, ..., 𝑙−1
respectively

̃︀𝐻 = 𝐷 − ∪𝑙
𝑠=1𝐷𝑠 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

̃︀𝐶𝑖𝑥 ≤ ( ̃︀𝐶𝑖𝑥𝑠 + 1)𝑦𝑠𝑖 + 𝑀𝑖(1− 𝑦𝑠𝑖 ),
𝑖 = 1, 2, ...𝑝, 𝑠 = 1, 2, ..., 𝑙,
𝑠∑︁

𝑖=1

𝑦𝑠𝑖 ≥ 1, 𝑠 = 1, 2, ..., 𝑙,

𝑦𝑠𝑖 ∈ {0, 1}, 𝑖 = 1, 2, ...𝑝, 𝑠 = 1, 2, ..., 𝑙,
𝑥 ∈ 𝐷

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

where 𝑀𝑖 is an upper bound for any feasible value of the 𝑖𝑡ℎ objective function. The asso-
ciated variables 𝑦𝑠𝑖 𝑖 = 1, 2, ...𝑝, of 𝑥*𝑠 and additional constraints are added to impose an
improvement on at least one objective function. Note that when 𝑦𝑠𝑖 = 0, the constraint is
not restrictive, and when 𝑦𝑠𝑖 = 1 a strict improvement is forced in the 𝑖𝑡ℎ objective function
evaluated at 𝑥*𝑠.

3.1. Algorithm

The technical description of the method provides a new algorithm with an exponential
complexity.
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Algorithm: Stochastic optimizing over the Pareto optimal front

input :
𝐴(𝑚×𝑛): matrix of deterministic constraints
𝑏(𝑚×1): RHS vector;
𝐶(𝑝×𝑛): matrix criterion of stochastic coefficients;
ℎ(𝑚1 × 1): vector of stochastic constraints ;
𝑊(𝑚1×𝑛1): matrix of stochastic constraints;
𝑇 (𝑚1 × 𝑛): matrix of stochastic constraints;
output :
𝑥𝑜𝑝𝑡: optimal solution of the problem (𝑃𝐸), ̃︀Φ𝑜𝑝𝑡: optimal value of the main criterioñ︀Φ
initialization:
for 𝑖← 1 to 𝑝 do

Solve ̃︀𝑍𝑖𝑑𝑒𝑎𝑙
𝑖 = 𝑚𝑖𝑛{ ̃︀𝐶𝑖𝑥,𝑥 ∈ 𝐷} is called the ideal point.

and set the upper bounds 𝑀𝑖 = 𝑚𝑎𝑥{ ̃︀𝐶𝑖𝑥,𝑥 ∈ 𝐷}.
where 𝜗 = 1 therefore ̃︀𝑍𝑢𝑡𝑜𝑝 = ̃︀𝑍𝑖𝑑𝑒𝑎𝑙 − 1 ;̃︀Φ𝑜𝑝𝑡 := +𝑖𝑛𝑓 , 𝑙 := 1, 𝐸1 := ∅,
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 := 𝐹𝑎𝑙𝑠𝑒,, ̃︀𝐻 := 𝐷, 𝜃 := −∞;
while Terminate:=False do

Solve 𝑃𝑅 ≡ 𝑚𝑖𝑛{̃︀𝑑𝑥|𝑥 ∈ ̃︀𝐻}. Let 𝑥𝑙 be an optimal solution of 𝑃𝑅;
feasibility and optimality test
for 𝑟:=1 to R do

feasibility:=False;

while feasibility:=False do
�̂�𝑇 an optimal solution of the problem:
𝑚𝑎𝑥{𝜎𝑇 (ℎ(𝜉)− 𝑇 (𝜉)𝑥𝑙) | 𝜎𝑇𝑊 ≤ 0, ‖𝜎‖1 ≤ 1,𝜎 ≥ 0}
coup:= �̂�𝑇 (ℎ(𝜉)− 𝑇 (𝜉)𝑥𝑙)
if 𝑐𝑜𝑢𝑝 > 0 theñ︀𝐻 = ̃︀𝐻⋃︀

{�̂�𝑇 [ℎ(𝜉)− 𝑇 (𝜉)𝑥) < 0};
Let 𝑥𝑙 be an optimal solution of 𝑅𝑙

2

else
Fallibility:= true

recours function Q:=0;
for 𝑟:=1 to R do

solve problem: max{𝜋𝑇 (ℎ(𝜉)− 𝑇 (𝜉)𝑥𝑙) | 𝜋𝑊 ≤ 𝑞(𝜉)}
𝑄(𝑥) := 𝑄(𝑥) + 𝑝𝑟𝑜𝑏𝑟 ×𝑄(𝑥𝑙, 𝜉𝑟)

𝜃 := 𝑄(𝑥),
(𝑥𝑙, 𝜃): optimal solution for 𝑃 𝑙

𝑅 (after feasibility and optimality tests)

if Terminate:=false or ̃︀Φ(𝑥𝑙) ≥ ̃︀Φ𝑜𝑝𝑡 then
𝑥𝑜𝑝𝑡 an optimal solution of 𝑃𝐸, Terminate:=True.

else

efficiency test of ̃︀𝑍 𝑙 = ̃︀𝐶𝑥𝑙
𝑇 ;

compute the weighted vector of 𝑃𝜌(𝜆
𝑙) ;

Let (�̄�𝑙, 𝑍 𝑙) be an optimal solution of 𝑃𝜌(𝜆
𝑙)

feasibility and optimality for �̄�𝑙

if ̃︀𝑑�̄�𝑙 = ̃︀Φ𝑜𝑝𝑡 then

𝑥𝑜𝑝𝑡 = �̄�𝑙, ̃︀Φ𝑜𝑝𝑡 = ̃︀Φ(�̄�𝑙), Terminated:=True
else

solve 𝑇 (�̄�𝑙) = 𝑚𝑖𝑛{̃︀𝑑𝑥 + 𝜃|𝑥 ∈ 𝐷, ̃︀𝐶𝑥 + 𝜃 = 𝑍 𝑙};
let 𝑥*𝑙 be an optimal solution of 𝑇 (�̄�𝑙);

feasibility and optimality test if ̃︀Φ𝑜𝑝𝑡 ≤ ̃︀Φ(𝑥*𝑙) then
𝑥𝑜𝑝𝑡 an optimal solution of 𝑃𝐸, Terminate:=True

else

𝑥𝑜𝑝𝑡 := 𝑥*𝑙, ̃︀Φ𝑜𝑝𝑡 := ̃︀Φ(𝑥*𝑙); let E𝑙+1
𝑠 = E𝑙

𝑠 ∪ 𝑥*𝑙;

𝑙 := 𝑙 + 1 and ̃︀𝐻 := 𝐷∖ ∪𝐷𝑙−1
𝑠=1;

Proposition. The algorithm terminates in a finite number of iterations.
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Proof. Since there are finitely many feasible bases coming from the recourse-matrix 𝑊 , there
are only finitely many feasibility and optimality cuts. On other hand, at each iteration of the
algorithm, a new improved efficient solution is generated and the admissible region is being
reduced there until infeasibility. All these additional cuts exclude the points or the edges
once scanned, leading to the convergence of the procedure in a finite number of steps.

4. An illustrative example

The problem of optimization over the efficient set of the MOSILP.
Two scenarios (𝑅 = 2).
� The principal problem:

𝑑(𝜉1) = (4,−10), 𝑑(𝜉2) = (−6, 12),

we calculate the expected value ̃︀𝑑
̃︀𝑑 = 𝐸𝑠𝑝(𝑑(𝑥, 𝜉)) =

1

2
𝑑(𝜉1)

(︂
𝑥1

𝑥2

)︂
+

1

2
𝑑(𝜉2)

(︂
𝑥1

𝑥2

)︂
=

=
1

2
(4,−10)

(︂
𝑥1

𝑥2

)︂
+

1

2
(−6, 12)

(︂
𝑥1

𝑥2

)︂
=

= −𝑥1 + 𝑥2

and then we obtain a linear function optimization problem over an efficient set

(𝑃𝐸)

{︂
min Φ(𝑥) = −𝑥1 + 𝑥2

s.t. 𝑥 ∈ E𝑠.
(13)

� Multiobjective stochastic problem: let us consider the following example with a struc-
ture similar to problem (𝑀𝑂1), 𝑝 = 2, 𝑛1 = 4, 𝑚1 = 𝑚 = 𝑛 = 2.

� Matrix C:
𝐶1(𝜉

1) = (4,−9), 𝐶1(𝜉
2) = (−6, 3),

𝐶2(𝜉
1) = (8, 5), 𝐶2(𝜉

2) = (−2,−3).

� Matrix T and vector h:

T(𝜉1) =

(︂
1 2
−2 1

)︂
, T(𝜉2) =

(︂
1 0
3 4

)︂
,

h(𝜉1) =

(︂
3
5

)︂
, h(𝜉2) =

(︂
6
1

)︂
.

� The penalties:

𝑞(𝜉1) =
(︀

1 0 6 2
)︀𝑇

, 𝑞(𝜉2) =
(︀

5 3 2 1
)︀𝑇

,

𝑝𝑟𝑜𝑏(𝜉1) =
1

2
, 𝑝𝑟𝑜𝑏(𝜉2) =

1

2
.

� Recourse-matrix:

W(𝜉) = W =

(︂
−2 −1 2 1
3 2 −5 −6

)︂
,
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we calculate the expected value 𝑍1 and 𝑍2:

𝑍1 = 𝐸𝑠𝑝(𝑍1(𝑥, 𝜉)) =
1

2
𝐶1(𝜉

1)

(︂
𝑥1

𝑥2

)︂
+

1

2
𝐶1(𝜉

2)

(︂
𝑥1

𝑥2

)︂
=

=
1

2
(4,−9)

(︂
𝑥1

𝑥2

)︂
+

1

2
(−6, 3)

(︂
𝑥1

𝑥2

)︂
=

= −𝑥1 − 3𝑥2,

𝑍2 = 𝐸𝑠𝑝(𝑍2(𝑥, 𝜉)) =
1

2
𝐶2(𝜉

1)

(︂
𝑥1

𝑥2

)︂
+

1

2
𝐶2(𝜉

2)

(︂
𝑥1

𝑥2

)︂
=

=
1

2
(8, 5)

(︂
𝑥1

𝑥2

)︂
+

1

2
(−2,−3)

(︂
𝑥1

𝑥2

)︂
=

= 3𝑥1 + 𝑥2.

Deterministic constraints

−2𝑥1 + 5𝑥2 ≤ 23,
8𝑥1 + 𝑥2 ≤ 55,
𝑥1 − 𝑥2 ≤ 4,
−𝑥1 − 𝑥2 ≤ −6.

Stochastic constraints

First scenario 𝜉1 𝑥1 + 2𝑥2 = 3,
−2𝑥1 + 𝑥2 = 5.

Second scenario 𝜉2 𝑥1 + 0𝑥2 = 6,
3𝑥1 + 4𝑥2 = 1.

We obtain the following deterministic multiple objective integer linear programming
problem:

𝑀𝑂1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ̃︀𝑍1 = −𝑥1 − 3𝑥2 + 𝑄(𝑥),

min ̃︀𝑍2 = 3𝑥1 + 𝑥2 + 𝑄(𝑥)

s.t. 𝐷 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−2𝑥1 + 5𝑥2 ≤ 23,
8𝑥1 + 𝑥2 ≤ 55,
𝑥1 − 𝑥2 ≤ 4,
−𝑥1 − 𝑥2 ≤ −6,
𝑥1, 𝑥2 ≥ 0, integer,

(14)

with 𝑄(𝑥) =
1

2
𝑄(𝑥, 𝜉1) +

1

2
𝑄(𝑥, 𝜉2), and the second stage problem associated with the

two scenarios 𝑄(𝑥, 𝜉1) and 𝑄(𝑥, 𝜉2) respectively:

Q(𝑥, 𝜉1)

⎧⎪⎪⎨⎪⎪⎩
min 𝑦1 + 6𝑦3 + 2𝑦4
s.t. −2𝑦1 − 𝑦2 + 2𝑦3 + 𝑦4 = 3− 𝑥1 − 2𝑥2,

3𝑦1 + 2𝑦2 − 5𝑦3 − 6𝑦4 = 5 + 2𝑥1 − 𝑥2,
𝑦 ≥ 0,

(15)

Q(𝑥, 𝜉2)

⎧⎪⎪⎨⎪⎪⎩
min 5𝑦1 + 3𝑦2 + 2𝑦3 + 𝑦4
s.t. −2𝑦1 − 𝑦2 + 2𝑦3 + 𝑦4 = 6− 𝑥1,

3𝑦1 + 2𝑦2 − 5𝑦3 − 6𝑦4 = 1 + 3𝑥1 − 4𝑥2,
𝑦 ≥ 0.

(16)
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Fig. 1. Admissibility domain 𝐷1 with efficient set

We can use one of the algorithms developed in [11] to find the efficient set, it can be
shown that five of them are efficient. Particularly, the efficient set E𝑠 is given by

E𝑠 = {(1, 5); (2, 5); (3, 5); (4, 6); (6, 6)},
as shown in Fig. 1.

For this example, the parameter 𝜌 has been fixed at 0.001.
Initial iteration
� We calculate the upper bound of each objective function 𝑀1 = −7.25 , 𝑀2 = 36.9855,
𝐷1 = 𝐷, 𝜃 = −∞;

�
̃︀𝑍𝑖𝑑𝑒𝑎𝑙
1 = −15.765, ̃︀𝑍𝑖𝑑𝑒𝑎𝑙

2 = 14, ̃︀𝑍𝑢𝑡𝑜𝑝
1 = −16.765, ̃︀𝑍𝑢𝑡𝑜𝑝

2 = 13.
� Step 1. With 𝜃 = −∞ and without feasibility and optimality cuts, solve the main de-

terministic relaxed problem 𝑃𝑅 under the deterministic constraints 𝑃 1
𝑅 ≡

{︂
min Φ(𝑥) =

−𝑥1 + 𝑥2|𝑥 ∈ 𝐷

}︂
, an optimal solution is 𝑥1 = (5, 1). To test the feasibility of the

second-stage problems (15) and (16), we solve the program (7) with:

ℎ(𝜉1)− 𝑇 (𝜉1)𝑥1 =

(︂
3
5

)︂
−

(︂
1 2
−2 1

)︂(︂
5
1

)︂
=

(︂
−4
14

)︂
,

ℎ(𝜉2)− 𝑇 (𝜉2)𝑥1 =

(︂
6
1

)︂
−

(︂
1 0
3 4

)︂(︂
5
1

)︂
=

(︂
1
−18

)︂
.

max −4𝜎1
1 + 14𝜎2

1

s.t. −2𝜎1
1 + 3𝜎2

1 ≤ 0,
−1𝜎1

1 + 2𝜎2
1 ≤ 0,

2𝜎1
1 − 5𝜎2

1 ≤ 0,
1𝜎1

1 − 6𝜎2
1 ≤ 0,

1𝜎1
1 + 1𝜎2

1 ≤ 1

maximum is at

𝜎𝑇
1 = (𝜎1

1, 𝜎
2
1) =

(︂
2

3
,
1

3

)︂

max 1𝜎1
2 +−18𝜎2

2

s.t. −2𝜎1
2 + 3𝜎2

2 ≤ 0,
−1𝜎1

2 + 2𝜎2
2 ≤ 0,

2𝜎1
2 − 5𝜎2

2 ≤ 0,
1𝜎1

2 − 6𝜎2
2 ≤ 0,

1𝜎1
2 + 1𝜎2

2 ≤ 1

maximum is at
𝜎𝑇
2 = (𝜎1

2, 𝜎
2
2) = (0, 0)
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Fig. 2. Admissibility domain without stochastic constraint

𝜎𝑇
1 [ℎ(𝜉1)− 𝑇 (𝜉1)𝑥1] =

(︂
2

3
,
1

3

)︂(︂
−4
14

)︂
= 2 > 0,

𝜎𝑇
2 [ℎ(𝜉2)− 𝑇 (𝜉2)𝑥1] =

(︂
5

7
,
2

7

)︂(︂
1
−18

)︂
= 0.

𝜎𝑇
1 [ℎ(𝜉1) − 𝑇 (𝜉1)𝑥1] > 0. It means that the second-stage is not feasible for the 𝜉1.

Then we create a feasibility cut(︂
2

3

1

3

)︂ (︂
1 0
3 4

)︂ (︂
𝑥1

𝑥2

)︂
≥

(︂
2

3

1

3

)︂ (︂
6
1

)︂
⇐⇒ 5𝑥1 ≥ 11.

The cut is added to the first problem 𝑃 1
𝑅. We get a new integer point (6, 3) (see Fig. 2).

To test the feasibility of the second-stage problems (15) and (16), we solve the pro-
gram (7) with:

ℎ(𝜉1)− 𝑇 (𝜉1)(6, 3) =

(︂
3
5

)︂
−
(︂

1 2
−2 1

)︂(︂
6
3

)︂
=

(︂
−9
14

)︂
,

ℎ(𝜉2)− 𝑇 (𝜉2)(6, 3) =

(︂
6
1

)︂
−
(︂

1 0
3 4

)︂(︂
6
3

)︂
=

(︂
0
−29

)︂
.

max −9𝜎1
1 + 14𝜎2

1

T.Q. −2𝜎1
1 + 3𝜎2

1 ≤ 0,
−1𝜎1

1 + 2𝜎2
1 ≤ 0,

2𝜎1
1 − 5𝜎2

1 ≤ 0,
1𝜎1

1 − 6𝜎2
1 ≤ 0,

1𝜎1
1 + 1𝜎2

1 ≤ 1

maximum is at
𝜎𝑇
1 = (𝜎1

1, 𝜎
2
1) = (0, 0)

max 0𝜎1
2 − 29𝜎2

2

T.Q. −2𝜎1
2 + 3𝜎2

2 ≤ 0,
−1𝜎1

2 + 2𝜎2
2 ≤ 0,

2𝜎1
2 − 5𝜎2

2 ≤ 0,
1𝜎1

2 − 6𝜎2
2 ≤ 0,

1𝜎1
2 + 1𝜎2

2 ≤ 1

maximum is at
𝜎𝑇
2 = (𝜎1

2, 𝜎
2
2) = (0, 0)
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𝜎𝑇
1 [ℎ(𝜉1)− 𝑇 (𝜉1)(6, 3)] = (0, 0)

(︂
−9
14

)︂
= 0,

𝜎𝑇
2 [ℎ(𝜉2)− 𝑇 (𝜉2)(6, 3)] = (0, 0)

(︂
0
−29

)︂
= 0,

𝜎1 = 𝜎2 = 0, this implies that the solution 𝑥1 = (6, 3) yields feasible second-stage
problems. To test the optimality of 𝑥1 = (6, 3), the dual (6) is solved for 𝜉1 and 𝜉2.

max −9𝜋1
1 + 14𝜋2

1

T.Q. −2𝜋1
1 + 3𝜋2

1 ≤ 1,
−1𝜋1

1 + 2𝜋2
1 ≤ 0,

2𝜋1
1 − 5𝜋2

1 ≤ 6,
1𝜋1

1 − 6𝜋2
1 ≤ 2

maximum is at

𝜋𝑇
1 = (𝜋1

1, 𝜋
2
1) =

(︂
−1,−1

2

)︂

max 0𝜋1
2 − 29𝜋2

2

T.Q. −2𝜋1
2 + 3𝜋2

2 ≤ 5,
−1𝜋1

2 + 2𝜋2
2 ≤ 3,

2𝜋1
2 − 5𝜋2

2 ≤ 2,
1𝜋1

2 − 6𝜋2
2 ≤ 1

maximum is at
𝜋𝑇
2 = (𝜋1

2, 𝜋
2
2) = (0,−0.17)

We calculate the value of the second stage problem associated with the two scenarios
𝑄(𝑥1, 𝜉1) and 𝑄(𝑥1, 𝜉2) respectively:

Q(𝑥1, 𝜉1) = 𝜋𝑇
1 [ℎ(𝜉1)− 𝑇 (𝜉1)𝑥1] =

(︂
−1,−1

2

)︂(︂
−9
14

)︂
= 2,

Q(𝑥1, 𝜉1) = 𝜋𝑇
2 [ℎ(𝜉2)− 𝑇 (𝜉2)𝑥1] = (0,−0.17)

(︂
0
−29

)︂
= 4.93,

Q(𝑥1) =
1

2
Q(𝑥1, 𝜉1) +

1

2
Q(𝑥1, 𝜉1) =

1

2
(2 + 4.93) = 3.465.

𝜃 = −∞ < Q(𝑥1) we introduce the optimality cut of the form

𝜃 >
𝑅∑︁

𝑟=1

𝑝𝑟[ℎ(𝜉𝑟)− 𝑇 (𝜉𝑟)𝑥],

adding this cut 𝜃 ≥ 2.835 + 0.255𝑥1 + 1.593𝑥2, and reoptimize the precedent program
𝑃 1
𝑅, 𝜃 = 15.315, then 𝑥1 = (6, 3) is the optimal basic feasible solution on the current

region. Let ̃︀𝑍1(𝑥1) = (−15, 21)+3.465 = (−11.535, 24.465), ̃︀Φ(6, 3) = −3+𝜃 = −0.465,̃︀Φ(6, 3) < ̃︀Φ𝑜𝑝𝑡. We compute the weighted vector 𝜆1 of the ̃︀𝑍1:

𝜆1
1 =

1

−16.765− (−11.535)

[︂
1

(−16.765)− (−11.535)
+

1

(13)− (24.465)

]︂−1

,

𝜆1
2 =

1

(13)− (24.465)

[︂
1

(−16.765)− (−11.535)
+

1

(13)− (24.465)

]︂−1

,

𝜆1 = (0.686, 0.314).
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� Step 2. We solve the generalized Tchebychev program (𝑃𝜌(𝜆
1)), which is defined as

follows:

(𝑃𝜌(𝜆
1))

⎧⎪⎪⎨⎪⎪⎩
min 𝛼 + 0.001(−3.7765− 2𝑥1 + 2𝑥2)
s.t. 𝛼 ≥ 0.686(−16.765 + 𝑥1 + 3𝑥2),

𝛼 ≥ 0.313(13− 3𝑥1 − 𝑥2),
𝑥 ∈ 𝐷.

(17)

Then, �̄�1 = (2, 5) is the optimal basic feasible solution of (𝑃𝜌(𝜆
1)). To test the feasibility

of the second-stage problems (15) and (16), we solve the program (7) with:

ℎ(𝜉1)− 𝑇 (𝜉1)�̄�1 =

(︂
3
5

)︂
−
(︂

1 2
−2 1

)︂(︂
2
5

)︂
=

(︂
−9
4

)︂
,

ℎ(𝜉2)− 𝑇 (𝜉2)�̄�1 =

(︂
6
1

)︂
−
(︂

1 0
3 4

)︂(︂
2
5

)︂
=

(︂
4
−25

)︂
.

max −9𝜎1
1 + 4𝜎2

1

T.Q. −2𝜎1
1 + 3𝜎2

1 ≤ 0,
−1𝜎1

1 + 2𝜎2
1 ≤ 0,

2𝜎1
1 − 5𝜎2

1 ≤ 0,
1𝜎1

1 − 6𝜎2
1 ≤ 0,

1𝜎1
1 + 1𝜎2

1 ≤ 1

maximum is at
𝜎𝑇
1 = (𝜎1

1, 𝜎
2
1) = (0, 0)

max 4𝜎1
2 − 25𝜎2

2

T.Q. −2𝜎1
2 + 3𝜎2

2 ≤ 0,
−1𝜎1

2 + 2𝜎2
2 ≤ 0,

2𝜎1
2 − 5𝜎2

2 ≤ 0,
1𝜎1

2 − 6𝜎2
2 ≤ 0,

1𝜎1
2 + 1𝜎2

2 ≤ 1

maximum is at
𝜎𝑇
2 = (𝜎1

2, 𝜎
2
2) = (0, 0)

The solution is feasible for both first and second scenario.
To test the optimality of �̄�1 = (2, 5), the dual (6) is solved for 𝜉1 and 𝜉2.

max −9𝜋1
1 + 4𝜋2

1

T.Q. −2𝜋1
1 + 3𝜋2

1 ≤ 1,
−1𝜋1

1 + 2𝜋2
1 ≤ 0,

2𝜋1
1 − 5𝜋2

1 ≤ 6,
1𝜋1

1 − 6𝜋2
1 ≤ 2

maximum is at

𝜋𝑇
1 = (𝜋1

1, 𝜋
2
1) =

(︂
−1,−1

2

)︂

max 4𝜋1
2 − 25𝜋2

2

T.Q. −2𝜋1
2 + 3𝜋2

2 ≤ 5,
−1𝜋1

2 + 2𝜋2
2 ≤ 3,

2𝜋1
2 − 5𝜋2

2 ≤ 2,
1𝜋1

2 − 6𝜋2
2 ≤ 1

maximum is at
𝜋𝑇
2 = (𝜋1

2, 𝜋
2
2) = (0,−0.17)

We calculate the value of the second stage problem associated with the two scenarios
𝑄(�̄�1, 𝜉1) and 𝑄(�̄�1, 𝜉2) respectively:

Q(�̄�1, 𝜉1) = 𝜋𝑇
1 [ℎ(𝜉1)− 𝑇 (𝜉1)�̄�1] =

(︂
−1,−1

2

)︂(︂
−9
4

)︂
= 7,

Q(�̄�1, 𝜉1) = 𝜋𝑇
2 [ℎ(𝜉2)− 𝑇 (𝜉2)�̄�1] = (0,−0.17)

(︂
4
−25

)︂
= 4.25,
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Q(�̄�1) =
1

2
Q(�̄�1, 𝜉1) +

1

2
Q(�̄�1, 𝜉1) = 5.625.

The solution ̃︀𝑍1(�̄�1) = (−17, 11) + 5.625 = (−11.375, 16.625) is a nondominated point

with minimal weighted Tchebychev distance, we obtain �̄�1 = (2, 5) and ̃︀Φ(2, 5) =
3 + 5.625 = 8.625.

� Step 3. Solve the equivalent efficient solutions program:

(𝑇 1)

⎧⎪⎪⎨⎪⎪⎩
min Φ(𝑥) = −𝑥1 + 𝑥2 + 𝜃
s.t. 𝑥1, 𝑥2 ∈ 𝐷,

−𝑥1 − 3𝑥2 + 𝜃 = −11.375,
3𝑥1 + 1𝑥2 + 𝜃 = 16.625.

(18)

An optimal solution is 𝑥*1 = 𝑥1 = (2, 5) with 𝜃 = 5.625, ̃︀Φ(𝑥*1) = 8.625 < ̃︀Φ𝑜𝑝𝑡,

𝑥𝑜𝑝𝑡 := 𝑥*1, ̃︀Φ𝑜𝑝𝑡 := ̃︀𝑑𝑥*1, and let E1
𝑠 = {(2, 5)}, 𝑙 := 𝑙+1 = 2 and we solve problem 𝑃 2

𝑅.

Iteration 2
� Step 1.

(𝑃 2
𝑅)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min ̃︀Φ(𝑥) = −𝑥1 + 𝑥2 + 𝜃

s.t. 𝑥1, 𝑥2 ∈ �̃�,
−𝑥1 − 3𝑥2 + 𝜃 ≤ (−11.375 + 1)𝑦11 − 7.25(1− 𝑦11),
3𝑥1 + 𝑥2 + 𝜃 ≤ (16.625 + 1)𝑦12 + 36.985(1− 𝑦12),
𝑦11 + 𝑦11 ≥ 1, 𝑦11, 𝑦

1
2 ∈ {0, 1}.

(19)

An optimal solution is 𝑥2 = (6, 4), with 𝑦1 = (1, 0). To test the feasibility of the
second-stage problems (15) and (16), we solve the program (7) with:

ℎ(𝜉1)− 𝑇 (𝜉1)𝑥2 =

(︂
3
5

)︂
−
(︂

1 2
−2 1

)︂(︂
6
4

)︂
=

(︂
−11
13

)︂
,

ℎ(𝜉2)− 𝑇 (𝜉2)𝑥2 =

(︂
6
1

)︂
−

(︂
1 0
3 4

)︂(︂
6
4

)︂
=

(︂
0
−33

)︂
.

max −11𝜎1
1 + 13𝜎2

1

T.Q. −2𝜎1
1 + 3𝜎2

1 ≤ 0,
−1𝜎1

1 + 2𝜎2
1 ≤ 0,

2𝜎1
1 − 5𝜎2

1 ≤ 0,
1𝜎1

1 − 6𝜎2
1 ≤ 0,

1𝜎1
1 + 1𝜎2

1 ≤ 1

maximum is at
𝜎𝑇
1 = (𝜎1

1, 𝜎
2
1) = (0, 0)

max 0𝜎1
2 − 33𝜎2

2

T.Q. −2𝜎1
2 + 3𝜎2

2 ≤ 0,
−1𝜎1

2 + 2𝜎2
2 ≤ 0,

2𝜎1
2 − 5𝜎2

2 ≤ 0,
1𝜎1

2 − 6𝜎2
2 ≤ 0,

1𝜎1
2 + 1𝜎2

2 ≤ 1

maximum is at
𝜎𝑇
2 = (𝜎1

2, 𝜎
2
2) = (0, 0)

The solution is feasible for both first and second scenario. To test the optimality of
𝑥2 = (6, 4), the dual (6) is solved for 𝜉1 and 𝜉2.
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max −11𝜋1
1 + 13𝜋2

1

T.Q. −2𝜋1
1 + 3𝜋2

1 ≤ 1,
−1𝜋1

1 + 2𝜋2
1 ≤ 0,

2𝜋1
1 − 5𝜋2

1 ≤ 6,
1𝜋1

1 − 6𝜋2
1 ≤ 2

maximum is at

𝜋𝑇
1 = (𝜋1

1, 𝜋
2
1) =

(︂
−1,−1

2

)︂

max 0𝜋1
2 − 33𝜋2

2

T.Q. −2𝜋1
2 + 3𝜋2

2 ≤ 5,
−1𝜋1

2 + 2𝜋2
2 ≤ 3,

2𝜋1
2 − 5𝜋2

2 ≤ 2,
1𝜋1

2 − 6𝜋2
2 ≤ 1

maximum is at
𝜋𝑇
2 = (𝜋1

2, 𝜋
2
2) = (0,−0.17)

We calculate the value of the second stage problem associated with the two scenarios
𝑄(𝑥2, 𝜉1) and 𝑄(𝑥2, 𝜉2) respectively:

Q(𝑥2, 𝜉2) = 𝜋𝑇
1 [ℎ(𝜉1)− 𝑇 (𝜉1)𝑥2] =

(︂
−1,−1

2

)︂(︂
−11
13

)︂
= 4.5,

Q(𝑥2, 𝜉1) = 𝜋𝑇
2 [ℎ(𝜉2)− 𝑇 (𝜉2)𝑥2] = (0,−0.17)

(︂
0
−33

)︂
= 5.2,

Q(𝑥2) =
1

2
Q(𝑥2, 𝜉1) +

1

2
Q(𝑥2, 𝜉1) = 5.1.

Then 𝑥2 = (6, 4) is the optimal basic feasible solution in the current region. Let̃︀𝑍2(𝑥2) = (−18, 22) + 5.1 = (−12.9, 27.3), ̃︀Φ(6, 4) = −2 + 𝜃 = 3.1, ̃︀Φ(6, 4) < ̃︀Φ𝑜𝑝𝑡. We

compute the weighted vector 𝜆2 of the ̃︀𝑍2: 𝜆2 = (0.782, 0.218).
� Step 2. We solve the generalized Tchebychev program (𝑃𝜌(𝜆

2)), which is defined as
follows:

(𝑃𝜌(𝜆
2))

⎧⎪⎪⎨⎪⎪⎩
min 𝛼 + 0.001(−3.7765− 2𝑥1 + 2𝑥2)
s.t. 𝛼 ≥ 0.782(−16.765 + 𝑥1 + 3𝑥2),

𝛼 ≥ 0.218(13− 3𝑥1 − 𝑥2),
𝑥 ∈ 𝐷.

(20)

Then, �̄�2 = (3, 5) is the optimal basic feasible solution of (𝑃𝜌(𝜆
2)). To test the feasibility

of the second-stage problems (15) and (16), we solve the program (7) with:

ℎ(𝜉1)− 𝑇 (𝜉1)�̄�2 =

(︂
3
5

)︂
−
(︂

1 2
−2 1

)︂(︂
3
5

)︂
=

(︂
−10

6

)︂
,

ℎ(𝜉2)− 𝑇 (𝜉2)�̄�2 =

(︂
6
1

)︂
−
(︂

1 0
3 4

)︂(︂
3
5

)︂
=

(︂
3
−28

)︂
.

max −10𝜎1
1 + 6𝜎2

1

T.Q. −2𝜎1
1 + 3𝜎2

1 ≤ 0,
−1𝜎1

1 + 2𝜎2
1 ≤ 0,

2𝜎1
1 − 5𝜎2

1 ≤ 0,
1𝜎1

1 − 6𝜎2
1 ≤ 0,

1𝜎1
1 + 1𝜎2

1 ≤ 1

maximum is at
𝜎𝑇
1 = (𝜎1

1, 𝜎
2
1) = (0, 0)

max 3𝜎1
2 − 28𝜎2

2

T.Q. −2𝜎1
2 + 3𝜎2

2 ≤ 0,
−1𝜎1

2 + 2𝜎2
2 ≤ 0,

2𝜎1
2 − 5𝜎2

2 ≤ 0,
1𝜎1

2 − 6𝜎2
2 ≤ 0,

1𝜎1
2 + 1𝜎2

2 ≤ 1

maximum is at
𝜎𝑇
2 = (𝜎1

2, 𝜎
2
2) = (0, 0)
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The solution is feasible for both first and second scenario. To test the optimality of
�̄�2 = (3, 5), the dual (6) is solved for 𝜉1 and 𝜉2.

max −10𝜋1
1 + 6𝜋2

1

T.Q. −2𝜋1
1 + 3𝜋2

1 ≤ 1,
−1𝜋1

1 + 2𝜋2
1 ≤ 0,

2𝜋1
1 − 5𝜋2

1 ≤ 6,
1𝜋1

1 − 6𝜋2
1 ≤ 2

maximum is at

𝜋𝑇
1 = (𝜋1

1, 𝜋
2
1) =

(︂
−1,−1

2

)︂

max 3𝜋1
2 − 28𝜋2

2

T.Q. −2𝜋1
2 + 3𝜋2

2 ≤ 5,
−1𝜋1

2 + 2𝜋2
2 ≤ 3,

2𝜋1
2 − 5𝜋2

2 ≤ 2,
1𝜋1

2 − 6𝜋2
2 ≤ 1

maximum is at
𝜋𝑇
2 = (𝜋1

2, 𝜋
2
2) = (0,−0.17)

We calculate the value of the second stage problem associated with the two scenarios
𝑄(�̄�2, 𝜉1) and 𝑄(�̄�2, 𝜉2) respectively:

Q(�̄�2, 𝜉1) = 𝜋𝑇
1 [ℎ(𝜉1)− 𝑇 (𝜉1)�̄�2] =

(︂
−1,−1

2

)︂(︂
−10

6

)︂
= 7,

Q(�̄�2, 𝜉1) = 𝜋𝑇
2 [ℎ(𝜉2)− 𝑇 (𝜉2)�̄�2] = (0,−0.17)

(︂
3
−28

)︂
= 4.76,

Q(�̄�2) =
1

2
Q(�̄�2, 𝜉1) +

1

2
Q(�̄�2, 𝜉1) = 5.88.

The solution ̃︀𝑍2(�̄�2) = (−18, 14)+5.88 = (−13.88, 19.88) is a nondominated point with
minimal weighted Tchebychev distance, we obtain �̄�2 = (3, 5) and̃︀Φ(3, 5) = 2 + 5.88 = 7.88.

� Step 3. Solve the equivalent efficient solutions program:

(𝑇 2)

⎧⎪⎪⎨⎪⎪⎩
min Φ(𝑥) = −𝑥1 + 𝑥2 + 𝜃
s.t. 𝑥1, 𝑥2 ∈ 𝐷,

−𝑥1 − 3𝑥2 + 𝜃 = −13.88,
3𝑥1 + 1𝑥2 + 𝜃 = 19.88.

(21)

An optimal solution is 𝑥*2 = 𝑥2 = (3, 5) with 𝜃 = 5.88, ̃︀Φ(𝑥*2) = 7.88 < ̃︀Φ𝑜𝑝𝑡,

𝑥𝑜𝑝𝑡 := 𝑥*2, ̃︀Φ𝑜𝑝𝑡 := ̃︀𝑑𝑥*2, and let E2
𝑠 = {(2, 5), (3, 5)}, 𝑙 := 𝑙 + 2 = 3 and we solve

problem (𝑃 3
𝑅).

Iteration 3
� Step 1.

(𝑃 3
𝑅)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min ̃︀Φ(𝑥) = −𝑥1 + 𝑥2 + 𝜃

s.t. 𝑥1, 𝑥2 ∈ �̃�,
−𝑥1 − 3𝑥2 + 𝜃 ≤ (−13.88 + 1)𝑦11 − 7.25(1− 𝑦11),
3𝑥1 + 𝑥2 + 𝜃 ≤ (19.88 + 1)𝑦12 + 36.985(1− 𝑦12),
𝑦11 + 𝑦11 ≥ 1, 𝑦11, 𝑦

1
2 ∈ {0, 1}.

(22)

An optimal solution is 𝑥3 = (6, 5), with 𝑦1 = (1, 0). To test the feasibility of the
second-stage problems (15) and (16), we solve the program (7) with:

ℎ(𝜉1)− 𝑇 (𝜉1)𝑥3 =

(︂
3
5

)︂
−

(︂
1 2
−2 1

)︂(︂
6
5

)︂
=

(︂
−13
12

)︂
,
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ℎ(𝜉2)− 𝑇 (𝜉2)𝑥3 =

(︂
6
1

)︂
−
(︂

1 0
3 4

)︂(︂
6
5

)︂
=

(︂
0
−37

)︂
.

max −11𝜎1
1 + 13𝜎2

1

T.Q. −2𝜎1
1 + 3𝜎2

1 ≤ 0,
−1𝜎1

1 + 2𝜎2
1 ≤ 0,

2𝜎1
1 − 5𝜎2

1 ≤ 0,
1𝜎1

1 − 6𝜎2
1 ≤ 0,

1𝜎1
1 + 1𝜎2

1 ≤ 1

maximum is at
𝜎𝑇
1 = (𝜎1

1, 𝜎
2
1) = (0, 0)

max 0𝜎1
2 − 33𝜎2

2

T.Q. −2𝜎1
2 + 3𝜎2

2 ≤ 0,
−1𝜎1

2 + 2𝜎2
2 ≤ 0,

2𝜎1
2 − 5𝜎2

2 ≤ 0,
1𝜎1

2 − 6𝜎2
2 ≤ 0,

1𝜎1
2 + 1𝜎2

2 ≤ 1

maximum is at
𝜎𝑇
2 = (𝜎1

2, 𝜎
2
2) = (0, 0)

The solution is feasible for both first and second scenario. To test the optimality of
𝑥3 = (6, 5), the dual (6) is solved for 𝜉1 and 𝜉2.

max −13𝜋1
1 + 12𝜋2

1

T.Q. −2𝜋1
1 + 3𝜋2

1 ≤ 1,
−1𝜋1

1 + 2𝜋2
1 ≤ 0,

2𝜋1
1 − 5𝜋2

1 ≤ 6,
1𝜋1

1 − 6𝜋2
1 ≤ 2

maximum is at

𝜋𝑇
1 = (𝜋1

1, 𝜋
2
1) =

(︂
−1,−1

2

)︂

max 0𝜋1
2 − 38𝜋2

2

T.Q. −2𝜋1
2 + 3𝜋2

2 ≤ 5,
−1𝜋1

2 + 2𝜋2
2 ≤ 3,

2𝜋1
2 − 5𝜋2

2 ≤ 2,
1𝜋1

2 − 6𝜋2
2 ≤ 1

maximum is at
𝜋𝑇
2 = (𝜋1

2, 𝜋
2
2) = (0,−0.17)

We calculate the value of the second stage problem associated with the two scenarios
𝑄(𝑥3, 𝜉1) and 𝑄(𝑥3, 𝜉2) respectively:

Q(𝑥3, 𝜉2) = 𝜋𝑇
1 [ℎ(𝜉1)− 𝑇 (𝜉1)𝑥3] =

(︂
−1,−1

2

)︂(︂
−13
12

)︂
= 7,

Q(𝑥3, 𝜉1) = 𝜋𝑇
2 [ℎ(𝜉2)− 𝑇 (𝜉2)𝑥3] = (0,−0.17)

(︂
0
−38

)︂
= 6.46,

Q(𝑥3) =
1

2
Q(𝑥3, 𝜉1) +

1

2
Q(𝑥3, 𝜉1) = 6.73.

Then, 𝑥3 = (6, 5) is the optimal basic feasible solution on the current region. Let̃︀𝑍3(𝑥3) = (−21, 23) + 6.73 = (−14.27, 29.73), ̃︀Φ(6, 5) = −2 + 𝜃 = 4.73, ̃︀Φ(6, 5) < ̃︀Φ𝑜𝑝𝑡.

We compute the weighted vector 𝜆3 of the ̃︀𝑍3: 𝜆3 = (0.87, 0.13).
� Step 2. We solve the generalized Tchebychev program (𝑃𝜌(𝜆

3)), which is defined as
follows:

(𝑃𝜌(𝜆
3))

⎧⎪⎪⎨⎪⎪⎩
min 𝛼 + 0.001(−3.7765− 2𝑥1 + 2𝑥2)
s.t. 𝛼 ≥ 0.87(−16.765 + 𝑥1 + 3𝑥2),

𝛼 ≥ 0.13(13− 3𝑥1 − 𝑥2),
𝑥 ∈ 𝐷.

(23)
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Then, �̄�3 = (4, 6) is the optimal basic feasible solution of (𝑃𝜌(𝜆
3)). To test the feasibility

of the second-stage problems (15) and (16), we solve the program (7) with:

ℎ(𝜉1)− 𝑇 (𝜉1)�̄�3 =

(︂
3
5

)︂
−
(︂

1 2
−2 1

)︂(︂
4
6

)︂
=

(︂
−13

7

)︂
,

ℎ(𝜉2)− 𝑇 (𝜉2)�̄�3 =

(︂
6
1

)︂
−
(︂

1 0
3 4

)︂(︂
4
6

)︂
=

(︂
2
−35

)︂
.

max −13𝜎1
1 + 7𝜎2

1

T.Q. −2𝜎1
1 + 3𝜎2

1 ≤ 0,
−1𝜎1

1 + 2𝜎2
1 ≤ 0,

2𝜎1
1 − 5𝜎2

1 ≤ 0,
1𝜎1

1 − 6𝜎2
1 ≤ 0,

1𝜎1
1 + 1𝜎2

1 ≤ 1

maximum is at
𝜎𝑇
1 = (𝜎1

1, 𝜎
2
1) = (0, 0)

max 2𝜎1
2 − 35𝜎2

2

T.Q. −2𝜎1
2 + 3𝜎2

2 ≤ 0,
−1𝜎1

2 + 2𝜎2
2 ≤ 0,

2𝜎1
2 − 5𝜎2

2 ≤ 0,
1𝜎1

2 − 6𝜎2
2 ≤ 0,

1𝜎1
2 + 1𝜎2

2 ≤ 1

maximum is at
𝜎𝑇
2 = (𝜎1

2, 𝜎
2
2) = (0, 0)

The solution is feasible for both first and second scenario.
To test the optimality of �̄�3 = (4, 6), the dual (6) is solved for 𝜉1 and 𝜉2.

max −13𝜋1
1 + 7𝜋2

1

T.Q. −2𝜋1
1 + 3𝜋2

1 ≤ 1,
−1𝜋1

1 + 2𝜋2
1 ≤ 0,

2𝜋1
1 − 5𝜋2

1 ≤ 6,
1𝜋1

1 − 6𝜋2
1 ≤ 2

maximum is at

𝜋𝑇
1 = (𝜋1

1, 𝜋
2
1) =

(︂
−1,−1

2

)︂

max 2𝜋1
2 − 35𝜋2

2

T.Q. −2𝜋1
2 + 3𝜋2

2 ≤ 5,
−1𝜋1

2 + 2𝜋2
2 ≤ 3,

2𝜋1
2 − 5𝜋2

2 ≤ 2,
1𝜋1

2 − 6𝜋2
2 ≤ 1

maximum is at
𝜋𝑇
2 = (𝜋1

2, 𝜋
2
2) = (0,−0.17)

We calculate the value of the second stage problem associated with the two scenarios
𝑄(�̄�3, 𝜉1) and 𝑄(�̄�3, 𝜉2) respectively:

Q(�̄�3, 𝜉1) = 𝜋𝑇
1 [ℎ(𝜉1)− 𝑇 (𝜉1)�̄�3] =

(︂
−1,−1

2

)︂(︂
−13

7

)︂
= 9.5,

Q(�̄�3, 𝜉1) = 𝜋𝑇
2 [ℎ(𝜉2)− 𝑇 (𝜉2)�̄�3] = (0,−0.17)

(︂
2
−35

)︂
= 5.95,

Q(�̄�3) =
1

2
Q(�̄�3, 𝜉1) +

1

2
Q(�̄�3, 𝜉1) = 7.725.

The solution ̃︀𝑍3(�̄�3) = (−22, 18) + 5.88 = (−14.275, 25.725) is a nondominated point

with minimal weighted Tchebychev distance, we obtain �̄�3 = (4, 6) and ̃︀Φ(4, 6) =
2 + 7.725 = 9.725.
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Fig. 3. The end iteration

� Step 3. Solve the equivalent efficient solutions program:

(𝑇 3)

⎧⎪⎪⎨⎪⎪⎩
min Φ(𝑥) = −𝑥1 + 𝑥2 + 𝜃
s.t. 𝑥1, 𝑥2 ∈ 𝐷,

−𝑥1 − 3𝑥2 + 𝜃 = −14.275,
3𝑥1 + 1𝑥2 + 𝜃 = 25.725.

(24)

An optimal solution is 𝑥*3 = 𝑥3 = (4, 6) with 𝜃 = 7.725, ̃︀Φ(𝑥*3) = 9.725 > ̃︀Φ𝑜𝑝𝑡 = 7.88.
Terminated:= True

𝑥𝑜𝑝𝑡 = 𝑥*2 = (3, 5), ̃︀Φ𝑜𝑝𝑡 = 7.88 is the optimal solution of the problem (𝑃𝐸) (fig. 3).
The set of problems presented above have been solved by the MATLAB 7.0 environment.

However, our algorithm optimizes the linear function Φ(𝑥) = −𝑥1 + 𝑥2 without having to
determine all these solutions but only E3

𝑠 = {(2, 5), (3, 5), (4, 6)}.

Conclusion

In this work we have presented a new exact algorithm for optimizing over the integer efficient
set of a stochastic multi-objective program based on the augmented weighted Tchebychev
Program. The algorithm finds an integer optimal solution for problem (𝑃𝐸) in a finite number
of steps.

The proposed algorithm is formed on, the stochastic data are treated by recourse ap-
proach to obtain an equivalent deterministic program. We achieve this objective by com-
bining two ideas: one consists of solving the augmented weighted Tchebychev program in
the outcome space criteria to characterize nondominated criterion vector; then adding suc-
cessive Gomory cuts, if necessary, we obtain an integer feasible solution and the feasibility
cuts eliminate some parts of the first-stage decision set. And the second idea is to reduce
progressively the admissible domain by adding more constraints eliminating all the points
dominated by the current solution. A small number of iterations is necessary to obtain the
optimal solution for (𝑃𝐸).

In some applications the decision maker does not often have the possibility to use recours
in the future, after the occurrence of a scenario (all 𝐾 induced stresses are empty). In
this case, we have to use another approach to the stochastic programming to convert the
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problem to a deterministic stochastic problem. Concerning the complexity, as we are obliged
to transform the stochastic problem into deterministic one, problem (𝑃𝐸) remains hard as
was stated in deterministic case by Guyen (1992).
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[17] Kall P., Mayer J. Stochastic linear programming. Springer, 1976; (21):92.

[18] Kall P., Wallace S.W. Stochastic programming. Journal of the Operational Research Soci-
ety. 1994; 46(9). DOI:10.2307/2584504.

[19] V Joseph Bowman Jr. On the relationship of the Tchebycheff norm and the efficient frontier
of multiple-criteria objectives. In Multiple criteria decision making. Springer; 1976: 76–86.

[20] Steuer R.E., Choo E.-U. An interactive weighted tchebycheff procedure for multiple objec-
tive programming. Mathematical Programming. 1983; 26(3):326–344.

[21] Sylva J., Crema A. A method for finding the set of non-dominated vectors for mul-
tiple objective integer linear programs. European Journal of Operational Research. 2004;
158(1):46–55.

Вычислительные технологии, 2020, том 25, � 6, с. 86–106.© ФИЦ ИВТ, 2020 ISSN 1560-7534

Computational Technologies, 2020, vol. 25, no. 6, pp. 86–106. © FRC ICT, 2020 eISSN 2313-691X

ВЫЧИСЛИТЕЛЬНЫЕ ТЕХНОЛОГИИ

DOI:10.25743/ICT.2021.26.3.006

Стохастическая оптимизация по фронту Парето с помощью расширенной

взвешенной программы Чебышева

Л. Юнси-Аббаси*, М. Мула

Университет науки и технологии Уари Бумедьен, лаборатория LaROMaD, факультет математики,

16111, Баб-Эззуар, Эль-Алия, Алжир
* Контактный автор: Лейла Юнси-Аббаси, e-mail: abbaci.leila@yahoo.fr

Поступила 14 декабря 2020 г., доработана 21 апреля 2021 г., принята в печать 28 апреля 2021 г.

Аннотация

В этой статье мы предлагаем новый алгоритм для решения многоцелевых задач стохасти-
ческого целочисленного линейного программирования (MOSILP). Мы оптимизируем данную
стохастическую линейную функцию 𝜑 по полному набору эффективных решений MOSILP,
которые были преобразованы в эквивалентную детерминированную задачу с использовани-
ем неопределенных предположений, вводимых лицом, принимающим решения. Для этой цели
мы применяем двухэтапный рекурсивный подход, при котором расширенная взвешенная про-
грамма Чебышева постепенно оптимизируется для создания эффективного решения, тем са-
мым улучшая значение вспомогательной функции 𝜑. Предлагаемый здесь подход определяет
и решает последовательность целочисленных линейных программ с нарастающими ограниче-
ниями, так что на каждом этапе алгоритма генерируется новое эффективное решение. Для
иллюстрации представлен числовой пример.

Ключевые слова: многоцелевая задача, целочисленное программирование, стохастическое
линейное программирование, норма Чебышева.
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