BrurauciaurenabHbIe TEXHOJIOTAN Tom 8, Ne 5, 2003

BEST PINSKER BOUND EQUALS TAYLOR
POLYNOMIAL OF DEGREE 49*

A.A. FEDOTOV
Institute of Computational Technologies SB RAS, Novosibirsk, Russia
e-mail: lesha@ict.nsc.ru

P. HARREMOES, F. TOPSQE
Unwversity of Copenhagen, DK-2100 Copenhagen, Denmark
e-mail: moes@math.ku.dk, topsoe@math.ku.dk

Ouenku Iunckepa — 910 PEKyPCUBHO ompeessieMble oauHoMbl P, (V') 11y1st KoTophix
BeitonHsiercst HepasercTso L(V) > P, (V), toe L(V) — 310 mounas eparnuya Batide. Mbr
nokaxkeM, 1ro P, (V') coBnanaer ¢ momumnomom Teitopa crenenn v jyist L(V') B mysie Tora
U TOJILKO TOIJIa, KOIJIa U He IpeBocxoauT 49.

Introduction

Let us consider the set of probability distributions M: (n) over an alphabet with n letters. We
introduce two measures of difference between two arbitrary elements P and @ from M (n).
We denote by D = D (P || Q) : Mi(n) x M}(n) — [0; +00] the divergence from P to Q

Di
D (P Q) ZZpiloga,

i€A

and by V = V(P,Q) : M{(n) x M (n) — [0; 2] the total variation

V(P,Q) = Ipi—al

€A

The former is a well-known instrument of Information Theory, which provides a nice geometrical
approach of thinking about channel capacity and optimal predictors and the latter is a common
functional analysis norm.

We are interested in lower bounds of D in terms of V. The research in this direction
starts with an inequality by Pinsker [1], which was improved by Csiszar 2], Kemperman [3, 4],
Kullback [5, 6] to

Lo
D> §V ,
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and the constant 1/2 was proved to be the best possible. The best two-term inequality of this
type is

1 1
D>-V?4+ _—_y*
>3 +36 :

as proved by Krafft [7].

A further term ¢s V°® was added by Krafft and Schmitz 7], Toussaint [8] and by Topsge [9],
who proved that cg = 1/270 is the best possible constant. The authors have extended this
result up to 8 terms in their recent work [10].

Here and further by the best constants ¢"**, v = 0, 1, 2, ..., we shall understand the
constants defined recursively by taking c"** to be the largest constant ¢ for which the inequality

D> e Vi4 ey (1)
i<v

max

holds generally. Clearly, ¢"** are well defined non-negative real constants. In this work we call
the polynomial from the right part of the inequality

P(V)=> V!
i<v
as refined Pinsker bound and our main goal is to find out when it could be easily calculated.

Vajda [11] suggested a closer study of the function L defined by

L(Vo)= inf D(P|Q) £ 2],
(Vo) =, dof | D(PlQ) for Vo €[0; 2]

This function we shall refer to as Vajda’s tight lower bound. In the work [10] we have obtained
a parametrization of L(V') expressed in terms of elementary functions, mainly the hyperbolic
functions. We formulate this basic fact in the following theorem.

Theorem 1. Diffeomorphisms V(t) : Ry — [0;2] , L(t) : Ry — Ry give the following
parametrization of the tight lower bound L(V'):

Vi)t o t(l—(eoth(t)—%)2>, @)

t2
sinh? (¢)’

t
sinh (t)) + t coth (t) —

In the theorem and further we denote by R, a set of non-negative real numbers and
assume that our formulae continuously extend to zero singularities. The following corollary
is a consequence of the fact that the parameter t is equal to dL/dV .

Corollary 1 (integral representation). For all values Vy € [0; 2| Vajda’s tight lower bound
L(V') can be written as

L= | Yy av, 3)

where t (V) : [0; 2[ — Ry is the inverse of the diffeomorphism V (t).
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Exploring this parametrization one could note that any refined Pinsker bound P, (V') obtained
by predesessors equals to Taylor polynomial T, (V') of degree v constructed from L(V') in a zero
neighborhood. It would be nice to understand when they coincide because Taylor polynomials
have a bunch of nice properties: their odd coefficients vanish because parametrization of L(V')
extends to an even function, and even coefficients of these polynomials are rational and could
be easily calculated.

In our preceding paper [10] we found out that Taylor coefficient to V%2 of L(V) is negative,
and therefore Taylor polynomials do not generally give a lower bound for L(V'). In this paper
we discuss in detail whether the lower degree Taylor polynomial is a lower bound for L(V).
Shortly speaking, the first 50 polynomials provide the lower bound for L, and polynomials of
degree from 50 till 95 do not.

Our main result could be readily deduced from this analysis. It states that refined Pinsker
bounds correspond to Taylor polynomials of L(V') iff their degree is 49 or less.

The proofs of these results are quite computational, and we were forced to use mathematical
software. Under assumption that Waterloo Maple has a proper implementation of symbolic
and interval arithmetic our proofs are strict. We collect proof ideas in the following section
postponing all technical computations to the appendix.

1. Main Result

Let us start with some definitions. We denote by ¢, the coefficient of V¥ in Taylor expansion
of L(V') around zero and by T, (V') the Taylor polynomial of degree v,

T,(V) = Zt V.
=0

Let R, (V) be the difference between L(V) and T, (V') that is L(V) =T,(V) + R,(V) holds. In
interval computations we use notation [a..b] for some number from the range [a; b].
The following theorem describes when Taylor polynomials of L(V') are global lower bounds.

Theorem 2. Consider the Taylor polynomial T,(V') of degree v approximating L(V') in zero.
The inequality L(V') > T,(V') holds for all V from [0; 2[ if v =0, 1, ..., 49. This inequality
fails for some V if v =50, 51, ..., 95.

Proof. Computations in interval arithmetic give us

Rs0(V(]9.9212..9.9213])) = [~0.0041.. — 0.0034] < 0.

Hence L(V) > Ts50(V) does not hold for some V' in a vicinity of ¢ = 10. Due to Lemma 1

from Appendix we know that Taylor coefficients for v = 52, 53, ..., 61 are nonnegative and
therefore the inequality L(V') > T, (V') does not hold for these v either.
The lemma also states that for v = 60, 61, ..., 95 polynomials 7, (V') are followed by the

negative term in the Taylor expansion of L(V'). This negative term becomes the leading term
of the difference R, (V'), and therefore R, (V') is negative in a neighborhood of zero.

The difficult fact L(V') > Ty is postponed to Lemma 3 in Appendix. To complete the proof
we show that for v < 49 the following chain holds:

L(V) > Ty(V) > T,(V).
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It is obvious consequence of Lemma 1 which claims that coefficients ¢, for v < 49 are nonnegative.
]

From the theorem we can readily deduce our main result which makes a correspondence
between refined Pinsker bounds and Taylor polynomials.

Theorem 3. Refined Pinsker bound P,(V') is equal to the Taylor polynomial T,(V') of L(V)
in zero iff n =0, 1, ..., 49.

Proof. First, let us argue why 7, (V') cannot be refined Pinsker bound for v > 50. Theorem 2
gives us that for v less than 62 polynomial 7, is not a lower bound. For v greater or equal to 62
this polynomial contains a negative coefficient tg5 according to Lemma 1, which cannot appear
in a refined bound.

Then we need to prove that 7, (V) is a refined Pinsker bound for v < 50. From Theorem 2
we obtain that 7, (V') is a lower bound. Hence we only have to show that ¢, is a best possible
constant, i. e. it cannot be substituted with a greater constant preserving the inequality

LWV)>T,(V)=T,(V)+eV".

Let us assume the substitution takes place. In this case the leading coefficient of the
difference become negative:

R,(V)=L(V)=T,(V) = —e V" + R, (V).

Thus R, (V) is a Taylor reminder term, R, (V') = o (V") in a neighborhood of zero and therefore
R,(V) takes negative values in a neighborhood of zero. Hence the inequality fails, and our
assumption fails also. This finishes the proof. m

2. Appendix

We have placed here all the computational things which could not be avoided if we want
to present strict proofs. Nevertheless among the bulky formulae one could find some usefull
techniques how to deal with Waterloo Maple or any other software suited for symbolic computa-
tions.

The following lemma collects the properties we need to know about the Taylor series of
L(V):

Lemma 1. Consider the first 98 terms of the Taylor series of L(V):

97
LV)=> t,V'+0(V®), Vo

v=0
We claim the following facts about Taylor coefficients t,, .
1. All odd coefficients vanish.
2. Coefficients to, ty, ..., tgo are positive.

3. Coefficients tgo, tes, ..., tog are negative.
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Proof. We establish these facts by a straightforward computation of the decomposition.

1 1 1 221 299
L - V2 V4 V6 e VS VlO
V) 2 + 2232 + 2335 + 2335527 * 238527

5983 ., 9953639 ., 24080603 15
223957211 231154721113 213135471113
258692351 1 125041974165263
2345172111317 2231756 73 112131719
195059968637159  _ ., 79414742287586653 .,
231955 741121317 19 2332056 7411132171923
| 12332430212504640377 | ,; | 38690550172885033008 | g
232258 74 112132171923 2232658 74 112 1317 19 23
1102997556766204706333 _ 4,
23275774 112132171923 29
1420808672749071121149753446087
2532951076 113 132 172 19 2329 31
200025380836995982822569736751 | 3,
233151076 113132172 192329 31
1687481074164181663142672343209
92332 51176 113 13217 192 2329 31
2552634697578168238012697690522568337 55
23% 51276 114133 172 1922329 31 37
8374920073147573235437437941603041543 .

233375127711413317219232931 37
167884507055273625542344904402836 7167813 _ ,,

233851 78114133172192232931 3741
129242409611507829888360377121227642515915757 _ 4

22340514 771141331721922322931374143
688412320898774239999041928101327445665072803 16

2343513781131341721922322931374143
86797720807484723912283809925494359034797861067 s

2434451378 11413417219223293137414347

N 16717278215656887686015556945540739970787015266791939 150
2346515 79115134173192232293137414347

. 8383324693675182038260924490147436255396565137359287 152
22348514710 114 134 173 192 23229 31 3741 43 47

N 415908229508300037012417539226966384407535658325627627 1o
23495167911513317319223229313741434753

<470761523289727402134843798975175222979

+

+

2335351879116 134
23742960216601226833732 ) 156

79116 131 173 19% 232 202 31 37 41 4347 53
103254535060335939024380341960610254939
( 235 5187811613117
10205149657847126254970 s
79116134 173 193 232 292 31 37 41 4347 53)
( 16743007824368979522879407666632932269
22 356 515 711 116 134
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13475251952469638774482782 160
71111613° 17319323229 3123741434753 59
< 154384840962534012470733374057093190830107

2 358 520 710 116 135
435651932441896599258678273297 162
711 116135174193 232292 31237414347535961
452784274754462802902276472795157562103899
26 361 520 711 114 134
57288741570071010814728876421 16l
712116 135174193 2322923137414347535961
93274747960118244800482891167033893749946009
2 362 521 711 116 135
20174501441015496144121903880 1766
712116 135174193232292312374147535961
( 2595058314507283940374284683747246045788579829

92 364 521 711 116 136
1067207664667345644944094981777548 168
711116136 174193233292 3123741434753596167
147672807016578801159881310073597410693059851
2 366 521 712 117 134
160925729209879344086761315504810 70
T 117135173194233293123741434753596167
39021578201448859240028520001141125290845713107
23 367 520 714 117 133
9227125869551225010356937371415892992938 79
714711713617419423329231237241 434753596167 71
< 7633472865654388053719950464610036957562091710351

2 370 523 713 118 133
3892106927826188342109242495091510500948449 v
T4 118136174194233292312372414347535961677173
677420444328896787949969455703133028951942798613357
92372 524 713 117 134
692152643254432508288779029857625668219 76
T41171351741942332923123741434753596167 7173
9611558587118045135043950469884837702896983388133
9373 524713 117 133
108179377138569736997768235319216318685611 Var
715 118136174193 233292 312372414347535961 677173
<643133108246837316426220989770158028036068089336498527

94 375 526 713 118 134
2499651645215163441699641528774130057689938274 180
715118135 175191233292 312 37241243 475359616771 7379
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5880000716180293320116448341489974136094807276192303489
- 2380525 715118133
608873671150080414636861310787797376252899974524 )v82

716118137 175194233292 3123724124347535961 67717379
<67950093416665836624322615109825783711
o 92 381 524 79
218640552056180107705138867139836150617384978946
526716 118 137175194233 292 31237241432
57802760323023892 ) 84

175194 233292312372 4143247535961 6771737983
<2862915725716590838052494793698868398433
9383 528 78
7352726393836184001352106598454098301981572687373
528715119137 175 194 234 293 312 372
8088284813421368027926 ) 86

175194234292 312372412432 47535961 6771737983
< 162353835527174558474516745035704919529697
93 385 528 79
9113451611256761782008279839336259936704544037903
528716 118 137175 194 234 293 312 372
714482859310720289431 88
175194234293 312372 4124347535961 67717379 83>
( 135604582688475931769467677144873070002953
9 386 527 711
5339918816834213916167835542888340548472336189898
527717118 137175 194 234 293 312 372
9170049296122221032130238 90
175195234293 312372412 43247535961 6771737983 89)
<471926322317777708883331452609556438128083
92 389 529 710
238877778424907093269907902660448645890101129313814843
529717 1110138 175195234293 313 37
173554072606254222178919293620 92
176195234293 313372412432 4725359616771 737983 89)
(3797436199765817554317033640929385668809173
9391 527 711
62031183309955240801028673780492163922043358318538826
529 7171110138 176 195 233 293 313 372
827383504200864175444257518 94
176195233293 313372412432 4725359616771 737983 89)
<264804680787472794501496912563512610683592511
95 392 529 713
858447609893232567223557068482982345555677027
530 7171110138 176 195 234 293
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15866921185581024582777185

* 138176 195234293 313372 41243247535961 6773
126330
/9% O (%) .
* 293313372412432475961 6771737983 89) * (x )

To handle these computations we apply the integral representation (3), i. e. we invert the
diffeomorphism V' (t) by means of series and integrate the result with respect to V. This could
be easily done by the following Maple program.

> Vt := t*x(1-(coth(t)-1/t)"2):
> QOrder := 97:
> int(solve(series(Vt, t) =V, t), V);

The coefficients presented here are slighlty reformatted to fit the page. m
Following lemmata prepare us to prove that L(V') is bounded by its Taylor polynomial of
degree 49. We start with the following upper bound for V' (¢).

Lemma 2. Fort > 2 the following inequality holds
V) <2-1/t.
Proof. This inequality is equivalent to the following one
(coth(t) — 1) (t coth(t) +t —2) > 0,

which is obvious when £ > 2. =

The following lemma states that function L(V') is bounded by its Taylor polynomial of
degree 49. We present a computational proof, which is not specific for this problem. This
method can be easily utilized to claim any type of inequalities in one variable.

Lemma 3. The following inequality holds for V' from [0; 2]
L(V) > Ty(V),

where Tyo(V') is the Taylor polynomial of order 49 constructed from L(V') in a neighborhood
of 0.

Proof. Let us start claiming that
24
Tw(V)=Tg(V)= Zt% v,
i=1

which is obvious consequence of Lemma 1.
We need to prove Ryg(V) = L(V) — Tys(V') > 0 for all possible V. It is sufficient to prove
an inequality
Rys(t) = Rus(V(t)) 2 0 (4)

for all . For t < 0.8 we state the inequality (4) estimating a derivative of Rys(t) by means of
interval arithmetic. The derivative has a zero of order 49 when ¢ = 0. To avoid computational
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9]
i

0 0.2 04 0.6 08 11
Fig. 1. Behavior of the function R/ () x 10*® in a zero neighborhood.
R48 ]

0.0003

0.0002

0.0001 -

0 2 4 6 8 t

Fig. 2. Graph of the function R4g(¢) on [0; 8].

t749

difficulties we normalize the derivative in zero with a multiplier and denote the normalized

derivative as R} (t):

R (1) = o T )

We depict a graph of the function in Fig. 1. The function R/ (¢) has a positive limit

1531262192 1 4
lim R/ (1) 53126219273551808399

t—0 T 79115134173 1922322931 37414347 *
24243923906662864859970002659

346 51375115 134

in zero, so we are able to compute values of R/ (t) in a zero neighborhood and put them in
a table. This table shows that the derivative is positive for small ¢. It is easy to see that
R4s(0) = 0, hence Rys(t) is positive in the neighborhood also.

The segment [0.8; 8.0] could be splitted approximately into 17000 interval numbers which
validate the inequality Ryg(t) > 0. There is no room here for all the computations. We only
present a graph of Rys(t) on Fig. 2.

To complete the proof we need to show that Rus(t) is positive for ¢t > 8. Because Rus(8) is
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Values of function R],(t) for ¢ from [0; 0.8]

t R/ (t) x 10% t R’ (t) x 10'
[0.000..0.400] | [0.532..3.220] | [0.400..0.500] | [0.134..1.966 ]
[0.500..0.550] | [0.132..1.388] | [0.550..0.575] | [0.260..1.009 ]
[0.575..0.600] | [0.124..0.972] | [0.600..0.613] | [0.252..0.739 ]
[0.613..0.626] | [0.196..0.719] | [0.626..0.639] | [0.141..0.703 ]
[0.639..0.652] | [0.086..0.691] | [0.652..0.665] | [0.030..0.684]
[0.665..0.672] | [0.150..0.524] | [0.672..0.679] | [0.126..0.517]
[0.679..0.686] | [0.103..0.511] | [0.686..0.693] | [0.079..0.506]
[0.693..0.700] | [0.056..0.502] | [0.700..0.707] | [0.033..0.500]
[0.707..0.714] | [0.009..0.498] | [0.714..0.718] | [0.100..0.390 ]
[0.718..0.722] | [0.089..0.387] | [0.722..0.726] | [0.078..0.385]
[0.726..0.730] | [0.067..0.383] | [0.730..0.734] | [0.057..0.381]
[0.734..0.738] | [0.046..0.379] | [0.738..0.742] | [0.035..0.378 ]
[0.742..0.746] | [0.025..0.377] | [0.746..0.750] | [0.014..0.377]
[0.750..0.754] | [0.003..0.376] | [0.754..0.756] | [0.090..0.282]
[0.756..0.758] | [0.086..0.280] | [0.758..0.760] | [0.082..0.279]
[0.760..0.762] | [0.078..0.278] | [0.762..0.764] | [0.074..0.277]
[0.764..0.766] | [0.070..0.276] | [0.766..0.768] | [0.066..0.275]
[0.768..0.770] | [0.062..0.274] | [0.770..0.772] | [0.058..0.273]
[0.772..0.774] | [0.054..0.272] | [0.774..0.776] | [0.049..0.272]
[0.776..0.778] | [0.045..0.271] | [0.778..0.780] | [0.041..0.270]
[0.780..0.782] | [0.037..0.270] | [0.782..0.784] | [0.033..0.269 ]
[0.784..0.786] | [0.029..0.269] | [0.786..0.788] | [0.025..0.269 ]
[0.788..0.790] | [0.021..0.268] | [0.790..0.792] | [0.017..0.268 ]
[0.792..0.794] | [0.013..0.268] | [0.794..0.796] | [0.008..0.268 ]
[0.796..0.798] | [0.004..0.268] | [0.798..0.800] | [0.000..0.268 ]

positive it is sufficient to prove that derivative

R.(t) = %VV“” ) =t=>Y (v+1)t, V()"

v=0

is positive for ¢ > 8. Moreover, if we substitute V' (¢) with the upper bound from Lemma 2 then
we get a stronger inequality

48

t=) (w+1)t, (2-1/t)" >0.

v=0

We can multiply it by t4” and rewrite it as a polynomial inequality P(t —8) > 0. This inequaliy
is obviously valid for t > 8 because P has all coefficients greater then zero. This finishes the
proof. m
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