BoeruuciauresbHbIe TEXHOJIOTUN Tom 9, Ne 1, 2004

ON THE GENERALIZED HEAT KERNEL*

K. NONLAOPON, A. KANANTHAI
Department of Mathematics, Chiangmai University, Thailand
e-mail: Kamsingn@yahoo.com, malamnka@science.cmu.ac.th

B nannoit pabore Mbl uccienyeM ypaBHEHHE

0
5 u(z,t) = = (—A)Fu(z, t)

C HaYaJIbHBIMU yC.HOBI/IﬂMI/I
U(ZE,O) = f('r)v

rie ¢ € R?, R — n-mepHoe eBKInI0B0 npocrpancTio. Oneparop AF maspiBaercs onepa-
topoM Jlarraca, nTepupOBaHHBIM k pa3, U OIPEIEIsIeTCsT KaK
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A= (31‘% * Ox3 L 833%) ’

rJie N — pa3MepHOCTh eBKINI0Ba npoctpancTBa R™; u(xz,t) — HemsBecTHast HyHKINS OT
(x,t) = (x1,29,...,2pn,t) € R" x [0,00);, f(x) — 3anannas obobmennas Gyukimys; k —
HEOTPHUIATEILHOE IEJI0€ UUCII0; ¢ — IOJOXKHUTE/IHbHAS TOCTOTHHA.

Pemenne Takoro ypaBHeHUsI, Ha3bIBaeMOe OOOOIIEHHBIM SPOM YPaBHEHUST TEILJIONPO-
BOJIHOCTH, UMeeT WHTEPECHbIE CBONCTBA U CBS3aHO C PEIleHHueM yPaBHEHUS TEILTOIPOBOI-
HOCTH.

Introduction

It is well known that for the heat equation

5 u(z,t) = A Au(z,t) (0.1)
with the initial condition
u(z,0) = f(z),
n 62
where A = ; —— is the Laplace operator, (z,t) = (21, 22,...,Zn,t) € R" X [0,00),

we obtain the soh;tion
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Alternatevely, this solution can be represented in the convolution form
u(z,t) = E(x,t) x f(z), (0.2)

where

E(z,t) = @] . (0.3)

(4c2mt)n/? P [_ 42t

The function (0.3) called the heat kernel, where |z|?> = 2% + 22+ --- + 22 and ¢ > 0, see |1,
p. 208, 209].

Moreover, we obtain E(z,t) — § as t — 0, where § is the Dirac-delta function. We can
extend (0.1) to the equation

0 2 A2
p u(z,t) = —cANu(x,t) (0.4)

with the initial condition
u(a:,O) = f(l’),
where A? = AA is the biharmonic operator, that is

92 92 92 2
2 f— —_— —_— DY
a = (aﬁ T T axg) ‘

Using the n-dimensional Fourier transform we can find the following solution of (0.4)

ant) = e [ [ e ) dy e 0.5)
Rn Rn

Using (0.5) u(z,t) can be rewritten in the convolution form
u(w ) = B(w,t) x [(x),

where

1 —cC (&,
E(x,t) = (2m)" /e ertere, )dg, (0.6)
Rn

€1 = (§+ &+ +&2)? and (§,2) = &g + Sxo + -+ + &y The function E(z,t) in (0.6)
is the kernel of (0.4), E(x,t) — 6 as t — 0 since

1 ,
; — (&x)i _
llrrol E(z,t) = o /e ,dE =0,

R"

see [3, p. 396, Eq. (10.2.19(b))].
Now, the purpose of this work is to study the equation

0 2 k
au(g,;,t) = —c* (=) u(z,t) (0.7)

with the initial condition
u(z,0) = f(z), for z € R",
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where the operator A* denotes the Laplace operator iterated k-times. This operator is defined

as follows .
0? 0? 0?
A — [ 2 2 )
(8:3% * 03 L 8:B2) ’ (0.8)

n

where n is the dimension of Euclidean space R", u(z,t) is an unknown function, (z,t) =
(x1,22,...,2,,1) € R™ x (0,00), f(x) is the given generalized function, k is a nonnegative
integer and c is a positive constant.

We obtain u(z,t) = E(z,t) * f(z) as a solution of (0.7), where

E(xz,t) = (zi)n/exp —c? (ZE?) t+i(&x)| dE. (0.9)

R

All properties of E(x,t) in (0.9) will be studied in details.
Now, if we set £ = 1 in (0.9) then (0.9) reduces to (0.3), which is the kernel of (0.1). Also,
if we set k =2 in (0.9), then (0.9) reduces to (0.6), which is the kernel of (0.4).

1. Preliminaries

Definition 1.1. Let f(x) € L;(R") be the space of integrable functions in R™. The Fourier
transform of f(x) is defined by

~ 1

7€) = s [ @), (1)

where £ = (&1,&,...,&), © = (T1,T9,...,2,) € R", (§,2) = &y + Eowg + -+ - + &y 08 the
usual inner product in R", de = dxqy dxs . .. dx,.
The inverse Fourier transform is given by

@) = G | €' e e (12

Lemma 1.1. Given the function

where (x1,Ta,...,x,) € R". Then

where I denotes the Gamma function. Therefore, [ f(z)dx is bounded.
R’ﬂ
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Proof. We have
» k
/f /exp — <Z xf) dzx.
Let us transform to bipolar coordinates

Tl =Twi,To = TWa, ..., Ty = Wy,

where Y w? = 1.

i=1

Thus
/f(x) dr = /e_r2kr"_1 dr dSQ,,,
Rn Rn
where
dx = r" "t dr dQ,, (1.4)

dS),, is the element of surface area on the unit sphere in R". By direct computation we obtain

/f Ydr = Q / Ly, (1.5)

P'(n/2)

When v = 72, we then obtain

7 ny =T (50
[f(:v) dx % O/e w2k dy = %I‘ <%> =7 F<<2k>> (1.6)

Therefore, [ f(z)dz is bounded. O

]Rn

Lemma 1.2. For allt > 0 and all z € R we have

/ exp (—c*&%t) d¢ = \/g (1.7)
and
= 2
/ exp [—025275 + z{’:p} dé = \/gexp (—%) , (1.8)

where c 1s a positive constant.

Proof. See |2, p. 117, 118]. O
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2. Main Results

Theorem 2.1. Given the equation

9 >
au(;p t) —C (—A)ku(x,t) (21)

with the initial condition
u(z,0) = f(z), (2.2)
where AF is the Laplace operator iterated k-times defined by

o2 52 o2 k
AN TR
(agﬁ Tt 6’x%) :

where n is the dimension of FEuclidean space R", k is a nonnegative integer, u(x,t) is an
unknown function, (v,t) = (r1,22,...,2,,t) € R" x (0,00), f(x) is the given generalized
function, and c is a positive constant. Then we obtain that

u(z,t) = E(z,t) * f(z) (2.3)
is a solution of (2.1), which satisfies (2.2) where E(x,t) is the kernel of (2.1) defined by

E(x,t) = (2i)n/ <Zg> t+i(&,x)| de. (2.4)

Rn

Proof. Applying the Fourier transform (1.1) to both sides of (2.1), we obtain

k
8 n
(g ) = —c 53) u(é,t
Thus,
n k
(6. 1) = K(§)exp |~ (Zﬁ) f. (25)
i=1

where K () is a constant and u(§,0) = K(§).
u(&,t) in (2.5) is bounded and from (2.2) we have

K(€) =u(£,0) = f(¢) = (27r1)”/2 / e & f(a) da (2.6)

R

and using the inversion in (1.2) we obtain from (2.5) and (2.6)

u(z,t) = (271)71/2 /ei(ﬁ,z)a@ t) dé =

&)=Y £y exp | — (Zg) t| dyde.

R?» R?
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Therefore,
k
_ 1 i(€,2-) (N
Uzt = G R/ R/ 67V exp | —c2 (Zf) t| f(y) dy de (2.7)
or N
_ 1 N - 2 _
u(m’t)_@”)”RZHJQP : (Z&) triea—y)| fo)dyds (28)
Set

Thus, (2.8) can be rewritten in the convolution form

u(z,t) = E(x,t) x f(z), (2.10)

where u(z,t) in (2.8) is a solution of (2.1) and E(z,t) is defined by (2.9). It is clear that the
kernel F(z,t) exists.
Moreover, since F(z,t) exists, then

lin% E(z,t) = /ei(f"”) d¢ = 0(z), for x € R™. (2.11)

Rn

1
(27m)"

See [3, p. 396, Eq. (10.2.19(b))].
From (2.11) we obtain

u(z,0) = limu(x,t) = im(E(z,t) x f(z)) =0 * f(x) = f(x).

t—0 t—0

Thus, u(x,t) in (2.3) satisfies (2.2).
In particular, if we set £ =1 in (2.9), then we obtain

E(x,t):(%lr)n/exp <Z§>t+z§, ] dé =
R I
1 .
= (QW)”HJGXP _—02;§?t+2;§jx]~] d¢ =
1

=1

n 2
_ 7 %
- (27r)n£[1 \ e teXp( 1 2t)

from (1.8). Thus,

5
8
~
S~—
i
o
Do
)
=
3
~
[N}
¢
>
ko]
7N
’h‘
[N}
~
~__
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since

and |z]? = Z 7

Therefore if we set k= 1in (2.1) and (2.9), then (2.1) and (2.9) will be reduced to (0.1)
and (0.3), respectively. If we set k = 2 in (2.9), then we obtain

1
E = =
(@) = e [ o0 (Zf) ti(6,n)| de
Rn
_ 1 / e~CIEl i) ge
(2m)" ’
Rn
where (' = (& + &+ +&)%
Therefore, if we set £k = 2 in (2.1) and (2.9), then (2.1) and (2.9) will be reduced to (0.4)
and (0.6), respectively. d

Theorem 2.2. The kernel E(x,t) defined by (2.9) has the following properties:
1) E(z,t) € C*®, where C™ is the space of continuous infinitely differentiable functions,
r€eR™ t>0;

2) (%—i—c (— A)k) E(z,t) =0 fort > 0;

3) E(x,t) >0 fort>0;
4)

T n
Bl bl < 202k ()2 F%;)) fort >0,

where I' denotes the Gamma function. Thus E(x,t) is bounded for any fized t;
5) PI%E(JJ,t) = 0.

Proof.
1. This property follows from (2.9), since

o 1 o
@E(x’w:—(gﬁ)n/axn (Z§> t+i(§ x)| dE.
Rn

Thus, E(z,t) € C* for x € R", t > 0.
2. By direct computation we obtain

(;Jrc( A)k> E(z,t) =0

for ¢t > 0, where E(z,t) is defined by (2.9).
3. E(x,t) >0 fort> 0 is obvious from (2.9).
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4. From (2.9) we have

E(xz,t) = (2;)n/exp —c? (ZE?) t+i(& x)| dE.

Rn

Therefore,

k
1 n

|E(x,t)| < e )n/eXp e <fo> dy.
(NS i=1

Using the same procedure as in Lemma 1.1, we obtain

1
E(z,t) < .
|E(z,t)] < 2nﬂ-n/2k(02t>n/2k r (ﬁ)

Thus, E(z,t) is bounded for any fixed ¢.
5. This property is obvious from (2.11).
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