ON THE GENERALIZED HEAT KERNEL*

K. Nonlaopon, A. Kananthai

Department of Mathematics, Chiangmai University, Thailand e-mail: Kamsingn@yahoo.com, malamnka@science.cmu.ac.th

В данной работе мы исследуем уравнение

$$\frac{\partial}{\partial t}u(x,t) = -c^2(-\triangle)^k u(x,t)$$

с начальными условиями

$$u(x,0) = f(x),$$

где $x \in \mathbb{R}^n$, \mathbb{R}^n-n -мерное евклидово пространство. Оператор \triangle^k называется оператором Лапласа, итерированным k раз, и определяется как

$$\triangle^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right)^k,$$

где n — размерность евклидова пространства \mathbb{R}^n ; u(x,t) — неизвестная функция от $(x,t)=(x_1,x_2,\ldots,x_n,t)\in\mathbb{R}^n\times[0,\infty)$;, f(x) — заданная обобщенная функция; k — неотрицательное целое число; c — положительная постоянная.

Решение такого уравнения, называемое обобщенным ядром уравнения теплопроводности, имеет интересные свойства и связано с решением уравнения теплопроводности.

Introduction

It is well known that for the heat equation

$$\frac{\partial}{\partial t}u(x,t) = c^2 \Delta u(x,t) \tag{0.1}$$

with the initial condition

$$u(x,0) = f(x),$$

where $\triangle = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator, $(x,t) = (x_1, x_2, \dots, x_n, t) \in \mathbb{R}^n \times [0, \infty)$, we obtain the solution

$$u(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \int_{\mathbb{R}^n} \exp\left[-\frac{|x-y|^2}{4c^2t}\right] f(y)dy.$$

^{*}Supported by The Royal Golden Jubilee Project grant No. PHD/0221/2543.

[©] Институт вычислительных технологий Сибирского отделения Российской академии наук, 2004.

Alternatevely, this solution can be represented in the convolution form

$$u(x,t) = E(x,t) * f(x),$$
 (0.2)

where

$$E(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \exp\left[-\frac{|x|^2}{4c^2t}\right]. \tag{0.3}$$

The function (0.3) called the heat kernel, where $|x|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$ and t > 0, see [1, p. 208, 209].

Moreover, we obtain $E(x,t) \to \delta$ as $t \to 0$, where δ is the Dirac-delta function. We can extend (0.1) to the equation

$$\frac{\partial}{\partial t}u(x,t) = -c^2 \Delta^2 u(x,t) \tag{0.4}$$

with the initial condition

$$u(x,0) = f(x),$$

where $\triangle^2 = \triangle \triangle$ is the biharmonic operator, that is

$$\triangle^2 = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right)^2.$$

Using the *n*-dimensional Fourier transform we can find the following solution of (0.4)

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-c^2|\xi|^4 t + i(\xi, x - y)} f(y) \, dy \, d\xi. \tag{0.5}$$

Using (0.5) u(x,t) can be rewritten in the convolution form

$$u(x,t) = E(x,t) * f(x),$$

where

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{D}_n} e^{-c^2|\xi|^4 t + i(\xi,x)} d\xi,$$
 (0.6)

 $|\xi|^4 = (\xi_1^2 + \xi_2^2 + \dots + \xi_n^2)^2$ and $(\xi, x) = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n$. The function E(x, t) in (0.6) is the kernel of (0.4), $E(x, t) \to \delta$ as $t \to 0$ since

$$\lim_{t \to 0} E(x, t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{(\xi, x)i}, d\xi = \delta,$$

see [3, p. 396, Eq. (10.2.19(b))].

Now, the purpose of this work is to study the equation

$$\frac{\partial}{\partial t}u(x,t) = -c^2(-\Delta)^k u(x,t) \tag{0.7}$$

with the initial condition

$$u(x,0) = f(x)$$
, for $x \in \mathbb{R}^n$,

where the operator \triangle^k denotes the Laplace operator iterated k-times. This operator is defined as follows

$$\Delta^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right)^k, \tag{0.8}$$

where n is the dimension of Euclidean space \mathbb{R}^n , u(x,t) is an unknown function, $(x,t) = (x_1, x_2, \ldots, x_n, t) \in \mathbb{R}^n \times (0, \infty)$, f(x) is the given generalized function, k is a nonnegative integer and c is a positive constant.

We obtain u(x,t) = E(x,t) * f(x) as a solution of (0.7), where

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^p \xi_i^2\right)^k t + i(\xi, x)\right] d\xi.$$
 (0.9)

All properties of E(x,t) in (0.9) will be studied in details.

Now, if we set k = 1 in (0.9) then (0.9) reduces to (0.3), which is the kernel of (0.1). Also, if we set k = 2 in (0.9), then (0.9) reduces to (0.6), which is the kernel of (0.4).

1. Preliminaries

Definition 1.1. Let $f(x) \in \mathbb{L}_1(\mathbb{R}^n)$ be the space of integrable functions in \mathbb{R}^n . The Fourier transform of f(x) is defined by

$$\widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i(\xi, x)} f(x) \, dx,\tag{1.1}$$

where $\xi = (\xi_1, \xi_2, \dots, \xi_n)$, $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, $(\xi, x) = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n$ is the usual inner product in \mathbb{R}^n , $dx = dx_1 dx_2 \dots dx_n$.

The inverse Fourier transform is given by

$$f(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi,x)} \widehat{f}(\xi) d\xi.$$
 (1.2)

Lemma 1.1. Given the function

$$f(x) = \exp\left[-\left(\sum_{i=1}^{n} x_i^2\right)^k\right],$$

where $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. Then

$$\left| \int_{\mathbb{R}^n} f(x) \, dx \right| \le \frac{\pi^{\frac{n}{2}}}{k} \frac{\Gamma\left(\frac{n}{2k}\right)}{\Gamma\left(\frac{n}{2}\right)},\tag{1.3}$$

where Γ denotes the Gamma function. Therefore, $\int_{\mathbb{D}^n} f(x) dx$ is bounded.

Proof. We have

$$\int_{\mathbb{R}^n} f(x) dx = \int_{\mathbb{R}^n} \exp \left[-\left(\sum_{i=1}^p x_i^2\right)^k \right] dx.$$

Let us transform to bipolar coordinates

$$x_1 = r\omega_1, x_2 = r\omega_2, \dots, x_n = r\omega_n,$$

where $\sum_{i=1}^{n} \omega_i^2 = 1$.

$$\int_{\mathbb{R}^n} f(x) dx = \int_{\mathbb{R}^n} e^{-r^{2k}} r^{n-1} dr d\Omega_n,$$

where

$$dx = r^{n-1} dr d\Omega_n, (1.4)$$

 $d\Omega_n$ is the element of surface area on the unit sphere in \mathbb{R}^n . By direct computation we obtain

$$\int_{\mathbb{R}^n} f(x) \, dx = \Omega_n \int_{0}^{\infty} e^{-r^{2k}} r^{n-1} \, dr, \tag{1.5}$$

where $\Omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$.

When $u = r^{2k}$, we then obtain

$$\left| \int_{\mathbb{R}^n} f(x) \, dx \right| \le \frac{\Omega_n}{2k} \int_0^\infty e^{-u} u^{\frac{n}{2k} - 1} \, du = \frac{\Omega_n}{2k} \Gamma\left(\frac{n}{2k}\right) = \frac{\pi^{\frac{n}{2}}}{k} \frac{\Gamma\left(\frac{n}{2k}\right)}{\Gamma\left(\frac{n}{2}\right)}. \tag{1.6}$$

Therefore, $\int_{\mathbb{R}^n} f(x) dx$ is bounded.

Lemma 1.2. For all t > 0 and all $x \in \mathbb{R}$ we have

$$\int_{-\infty}^{\infty} \exp\left(-c^2 \xi^2 t\right) d\xi = \sqrt{\frac{\pi}{c^2 t}}$$
(1.7)

and

$$\int_{-\infty}^{\infty} \exp\left[-c^2 \xi^2 t + i \xi x\right] d\xi = \sqrt{\frac{\pi}{c^2 t}} \exp\left(-\frac{x^2}{4c^2 t}\right),\tag{1.8}$$

where c is a positive constant.

2. Main Results

Theorem 2.1. Given the equation

$$\frac{\partial}{\partial t}u(x,t) = -c^2(-\Delta)^k u(x,t) \tag{2.1}$$

with the initial condition

$$u(x,0) = f(x), \tag{2.2}$$

where \triangle^k is the Laplace operator iterated k-times defined by

$$\triangle^k = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right)^k,$$

where n is the dimension of Euclidean space \mathbb{R}^n , k is a nonnegative integer, u(x,t) is an unknown function, $(x,t) = (x_1, x_2, \dots, x_n, t) \in \mathbb{R}^n \times (0, \infty)$, f(x) is the given generalized function, and c is a positive constant. Then we obtain that

$$u(x,t) = E(x,t) * f(x)$$
(2.3)

is a solution of (2.1), which satisfies (2.2) where E(x,t) is the kernel of (2.1) defined by

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t + i(\xi, x)\right] d\xi.$$
 (2.4)

Proof. Applying the Fourier transform (1.1) to both sides of (2.1), we obtain

$$\frac{\partial}{\partial t}\widehat{u}(\xi,t) = -c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k \widehat{u}(\xi,t).$$

Thus,

$$\widehat{u}(\xi,t) = K(\xi) \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t\right], \tag{2.5}$$

where $K(\xi)$ is a constant and $\widehat{u}(\xi,0) = K(\xi)$.

 $\widehat{u}(\xi,t)$ in (2.5) is bounded and from (2.2) we have

$$K(\xi) = \widehat{u}(\xi, 0) = \widehat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{D}_n} e^{-i(\xi, x)} f(x) dx$$
 (2.6)

and using the inversion in (1.2) we obtain from (2.5) and (2.6)

$$u(x,t) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{i(\xi,x)} \widehat{u}(\xi,t) d\xi =$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\xi,x)} e^{-i(\xi,y)} f(y) \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t\right] dy d\xi.$$

Therefore,

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(\xi,x-y)} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t\right] f(y) \, dy \, d\xi \tag{2.7}$$

or

$$u(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t + i(\xi, x - y)\right] f(y) \, dy \, d\xi. \tag{2.8}$$

Set

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t + i(\xi, x)\right] d\xi.$$
 (2.9)

Thus, (2.8) can be rewritten in the convolution form

$$u(x,t) = E(x,t) * f(x),$$
 (2.10)

where u(x,t) in (2.8) is a solution of (2.1) and E(x,t) is defined by (2.9). It is clear that the kernel E(x,t) exists.

Moreover, since E(x,t) exists, then

$$\lim_{t \to 0} E(x, t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(\xi, x)} d\xi = \delta(x), \text{ for } x \in \mathbb{R}^n.$$
 (2.11)

See [3, p. 396, Eq. (10.2.19(b))].

From (2.11) we obtain

$$u(x,0) = \lim_{t \to 0} u(x,t) = \lim_{t \to 0} (E(x,t) * f(x)) = \delta * f(x) = f(x).$$

Thus, u(x,t) in (2.3) satisfies (2.2).

In particular, if we set k = 1 in (2.9), then we obtain

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{j=1}^n \xi_j^2\right) t + i(\xi, x)\right] d\xi =$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \sum_{j=1}^n \xi_j^2 t + i \sum_{j=1}^n \xi_j x_j\right] d\xi =$$

$$= \frac{1}{(2\pi)^n} \prod_{j=1}^n \int_{-\infty}^{\infty} \exp\left[-c^2 \xi_j^2 t + i \xi_j x_j\right] d\xi_j =$$

$$= \frac{1}{(2\pi)^n} \prod_{j=1}^n \sqrt{\frac{\pi}{c^2 t}} \exp\left(-\frac{x_j^2}{4c^2 t}\right)$$

from (1.8). Thus,

$$E(x,t) = \frac{1}{(4c^2\pi t)^{n/2}} \exp\left(-\frac{|x|^2}{4c^2t}\right),\,$$

since

$$\left(\frac{\pi}{c^2t}\right)^{\frac{n}{2}}\exp\left(-\frac{|x|^2}{4c^2t}\right) = \prod_{j=1}^n \sqrt{\frac{\pi}{c^2t}}\exp\left(-\frac{x_j^2}{4c^2t}\right)$$

and $|x|^2 = \sum_{i=1}^{n} x_i^2$.

Therefore, if we set k = 1 in (2.1) and (2.9), then (2.1) and (2.9) will be reduced to (0.1) and (0.3), respectively. If we set k=2 in (2.9), then we obtain

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^2 t + i(\xi, x)\right] d\xi =$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-c^2 |\xi|^4 t + i(\xi, x)} d\xi,$$

where $|\xi|^4 = (\xi_1^2 + \xi_2^2 + \dots + \xi_n^2)^2$.

Therefore, if we set k=2 in (2.1) and (2.9), then (2.1) and (2.9) will be reduced to (0.4) and (0.6), respectively.

Theorem 2.2. The kernel E(x,t) defined by (2.9) has the following properties:

1) $E(x,t) \in C^{\infty}$, where C^{∞} is the space of continuous infinitely differentiable functions,

2)
$$\left(\frac{\partial}{\partial t} + c^2(-\Delta)^k\right) E(x,t) = 0 \text{ for } t > 0;$$

3) $\dot{E}(x,t) > 0 \text{ for } t > 0;$ 4)

$$|E(x,t)| \le \frac{1}{2^n \pi^{n/2} k(c^2 t)^{n/2k}} \frac{\Gamma\left(\frac{n}{2k}\right)}{\Gamma\left(\frac{n}{2}\right)}, \text{ for } t > 0,$$

where Γ denotes the Gamma function. Thus E(x,t) is bounded for any fixed t; $5) \lim_{t \to 0} E(x, t) = \delta.$

Proof.

1. This property follows from (2.9), since

$$\frac{\partial^n}{\partial x^n} E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{\partial^n}{\partial x^n} \exp \left[-c^2 \left(\sum_{i=1}^n \xi_i^2 \right)^k t + i(\xi,x) \right] d\xi.$$

Thus, $E(x,t) \in C^{\infty}$ for $x \in \mathbb{R}^n$, t > 0.

2. By direct computation we obtain

$$\left(\frac{\partial}{\partial t} + c^2(-\triangle)^k\right)E(x,t) = 0$$

for t > 0, where E(x, t) is defined by (2.9).

3. E(x,t) > 0 for t > 0 is obvious from (2.9).

4. From (2.9) we have

$$E(x,t) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 \left(\sum_{i=1}^n \xi_i^2\right)^k t + i(\xi,x)\right] d\xi.$$

Therefore,

$$|E(x,t)| \le \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \exp\left[-c^2 t \left(\sum_{i=1}^n x_i^2\right)^k\right] dy.$$

Using the same procedure as in Lemma 1.1, we obtain

$$|E(x,t)| \le \frac{1}{2^n \pi^{n/2} k (c^2 t)^{n/2k}} \frac{\Gamma\left(\frac{n}{2k}\right)}{\Gamma\left(\frac{n}{2}\right)}.$$

Thus, E(x,t) is bounded for any fixed t.

5. This property is obvious from (2.11).

Acknowledgement. The authors would like to thank The Thailand Research Fund for financial support.

References

- [1] JOHN F. Partial Differential Equations. N. Y.: Springer-Verlag, 1982.
- [2] IORIO R. J., IORIO JR, V. M. Fourier Analysis and Partial Differential Equation. Cambridge: Cambridge Univ. Press, 2001.
- [3] HABERMAN R. Elementary Applied Partial Differential Equations. Prentice-Hall Intern., Inc. 1983.

Received for publication September 17, 2003