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B npukmaaHoit MaTeMaTuke obpaTHbIE TTPOOIEMBI PEKOHCTPYUPOBAHUSI B 3aaUax T'eo-
JIOTUU, TeOIe3UN, METUIINHBI, SKOHOMUKH W TEXHOJOTUU B IMOCJIEIHEee BpeMsi JOIOTHIINCH
3aja4aMu ToMOrpacun. DTo MPUBEJIO K PA3BUTHIO KOMIILIOTEPHOI ToMorpadun. ObbraHast
KOMITbIOTEPHAST TOMOTPadUs UMEET JI€JI0 C HEITPEPBIBHON IPOCTPAHCTBEHHOM ITepeMEHHO1 ¢
OI'paHUYEHHBIM YHCIOM ITPOEKInii. B nuckpeTHoM ToMorpadun J1ejaeTcst MOMBITKA, PEKOH-
CTPYKIINU JUCKPETHOTO MHOXKECTBA U3 MpoeKIuii. B ctarhe mpuBoauTcst 0030p peMeTHON
obJracTr u HamMX pa3paborok. [IpakTrdeckoe IpuMeHEHHE APYTUX Pa3aeoB MaTeMaTUKI
Takzke paccmorpeno. OrpeseseHnl MpodaeMbl HEIIPOTUBOPEYUBOCTH, €IMHCTBEHHOCTH 1 Pe-
KOHCTpYKIMH. [IpuBeieHbl MOCaeIHNEe TOCTHKEHHSI, 0003HAYEHbI HEpPEIIeHHbIE ITPOOIEeMbI
U TEeMBI JIjIsd Oy IyIIUX UCCACTOBAHUIA.

Introduction

The starting point of computerized tomography (CT) might be the need to construct the density
distribution within the human body by means of X-ray projections. Let us consider the problem
of locating a tumor. We often need an estimate of the location on the basis of noninvasively
available data to plan the treatment or an operation. In our case, the available information
consists of the projections. The algorithm of CT reconstructs the volume data at a resolution
limited by the number of projections. However, it is possible to reconstruct the data at much
higher resolutions, if it may take a limited number of values from a discrete set. The accuracy
of localization depends on the resolution, while larger number of projections cost higher doses
of ionizing radiation. Thus Discrete Tomography, abbreviated as DT, advances CT whenever
it is applicable. In DT, we try to solve such problems in an ideal, at least approximate way
and develop algorithms.
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Fig. 1. A picture illustrating brain tomography taken from Nevzat Genger |13, 23].
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Fig. 2. Illustration of the main problem of DT.

Taking the tomography of a 3 dimensional object, e.g., human brain, means observing the 2
dimensional slides, whereas in two dimensions the projections are obtained by rays, e.g. X-rays.
In brain tomography, the system developed by Nevzat Gencer from Brain Research Laboratory
and Biomedical Group in METU, uses magnetic excitation to induce currents inside the body
and measure the resulting magnetic fields [13, 23] (Fig. 1). They investigate both the biology
of the brain and the technical devices, and look for improving the methods used from numerics
and optimization. A good reference book on inverse problems is given by Aster et al. [1].

We assume that we are given a domain which can be discrete or continuous and a function f
with a discrete range. Our aim is to reconstruct f from weighted sums which are the projections
of f in the chosen horizontal and vertical directions in the image (Fig. 2). This is an inverse
problem in which we want to reconstruct a lattice set from its X-rays or projections [5].
Batenburg [2| presents an improvement of a reconstruction algorithm in order to minimize the
time complexity where the optimized version is 50 times faster than the existing approach [16].

In this paper, we are mainly concerned with the mathematical theory of Discrete Tomography
and about how we can make it useful in applications by means of computer programs or
algorithms.

Let us say a few words about the history of DT. Although the first consistency result
was given by H.J. Ryser in 1957 [31], the name Discrete Tomography was given at 1994 by
Larry Shepp. The question of uniquely determining a planar convex object was proposed by
P.C. Hammer in 1961 [18]. DT strongly developed and valuable scientific exchange took place at
a series of workshops, three of which were held in Germany (1994), Hungary (1997) and France
(1999). The forthcoming meeting will be held in New York in 2005'. For further information on

Thttp://www.dig.cs.gc.cuny.edu/workshops /workshop.html
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the theory, algorithms and applications of DT please refer to the book of Herman and Kuba [19].

When the subject to be reconstructed is assumed to be continuous, real analysis is used
to develop the theory. As the name suggests, Discrete Tomography has its theory based on
discrete mathematics [11, 14]. In addition, it deals with many other fields of mathematics,
namely combinatorics, functional analysis, geometry, coding theory and graph theory.

In recent years, various applications of DT is reported. It has been applied to diverse
areas such as medical sciences, image processing, electron microscopy, scheduling, statistical
data security, game theory and material sciences. For instance considered as a first result
on medical applications, Reiber et al. [29] reconstructed the right coronary artery from two
cineangiograms. For various medical applications of DT such as reconstruction from sparse
radiographic data, enhancement of tomographic images, reconstruction of human organs, e.g.,
blood vessels, please refer to the survey paper of Kuba et al. [25]. We will provide a survey of
some important applications in Section 5.

After having introduced the problem here, in the rest of the paper we will give the notation,
basic problems of DT and their complexity results. Consistency problem will be presented in
detail. Uniqueness and additivity will be examined. We will finish the paper with some open
problems and applications.

1. Preliminaries

Let us first give the basic notation and definitions which we will use in this paper. We will refer
to the notation used by Shepp et al. [7].

Here Z stands for the set of integers, and N, stands for the set of natural numbers including
0. Lattice sets are discrete sets F' C Z? which are finite subsets of integers (Fig. 3), d > 2.
Lattice directions are nonzero vectors of Z¢ over the field Q, rationals. A finite sequence of
distinct lattice directions will be denoted by D, hence,

D= (vy,...,vy), ¢q>2. (1)

A lattice line 1 is parallel to a vector v, € D and furthermore [ N Z? is nonempty. For a
visualization of lattice lines see [; and Iy in Fig. 2.

The set of all lattice lines that are parallel to v, € D is denoted by L* and & will be the
class of finite sets in Z<.

The collection of the set of lattice lines determined by D is given by

L= (L'...,L%, q>2 (2)
y y
—1T¢ ¢
L L
X X
—1¢
T

Fig. 3. A lattice is given at the left and at the right hand side is a very simple lattice set.
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Fig. 4. An instance illustrating the problem as a linear programming problem. Projection on two lattice
lines in the directions (1,0) and (0,1).

Hence, a lattice line [ will correspond to an X-ray and it will be chosen from the set L* if [ is
parallel to v.

Our reconstruction problem can be redefined and considered as a feastbility problem in
two dimensions. In this case, any two distinct lattice directions can be considered, but since
a linear transformation is enough to transform any two dimensional lattice to a lattice with
directions (1,0) and (0, 1), we will consider that latter case. The aim is to find the binary vector
which satisfies a matrix equation, which may be given as (cf. also [1])

Px =0, (3)

where P € {0,1}*N b € NM. Here, if the smallest rectangular box containing the finite set
to be reconstructed has dimensions n; X ng, then M = ny + ny and N = ny - no. Hence, M
is the number of lattice lines, in this case parallel to the directions (1,0) and (0,1) on which
there is at least one element from out discrete set and N is the total number of points to be
reconstructed.

We could as well extend our feasibility problem by maximizing f(z), the sum of the z;’s
subject to equation (3). A solution of this optimization problem implies feasibility, but
it additionally aims at a maximal atom density. Of course, other objective functions f(z) are
possible as well, and they can be selected depending on the application from science, technology,
ecology, social science or medicine. For the optimization problem we mentioned, there are
polynomial time interior point methods [33].

Example 1. Consider the lattice set given in Fig. 4. It is contained in an 3 x 2 rectangle,
hence M =5 and N = 6.

For this instance we have the following system of equations

Lyq

Ts5+Tg =

N

1 + Z5

Ty +xg =
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Here, P, x and b are

X

100000 1
0007100 2 1
p=looo0oo0 11|, 2=|%] b=]2
100010 “74 2
000001 5 2

Te

Projection of a lattice set in direction vy, is p;i“) - L) — N, such that

k
e () =F il =) fa), (4)
z€l
where f is the characteristic function of F.
Two lattice sets F' and F’ are said to be tomographically equivalent with respect to the
directions D if the following equality is satisfied

PR =pW k=1 ¢ (5)

Now, let us state the three main problems that discrete tomography is concerned with.

Consistency (£, L)

Given: For £k =1,...,q a function pgf) : L) — N, with finite support.

Question: Does there exist an F' € £ such that pgc) =pffork=1,...,q7

Uniqueness (&, L)

Given: An F € £.

Question: Does there exist a different F’ € &£ such that F' and F’ are tomographically
equivalent with respect to the directions of D?

If a set is non-unique, then it means that it can not be distinguished from any other set in
7 by its projections.

Reconstruction (£, L)

Given: For k =1,...,q a function pgf) . L*) — N, with finite support.

Task: Construct a finite set F' € £ such that p%“) =pffork=1,...,q
It should be clear from the definitions that if the reconstruction problem is solvable, then the
consistency problem is solved as well.

Complexity results for lattice lines are given below [10, 22|. In the following table, PTA
stands for polynomial time algorithm.

One of the results by Gritzmann and Gardner [36] states that any discrete set of Z? is
unique with respect to D if the cardinality of D exceeds 6.

The complexity of the problem is not in general developed yet for r-dimensional X-rays
when r is greater than 1. Only a few results are known. For instance, when r = 2,n = 3 and L
consists of the 3 coordinate planes, the problems remain open.

If we only have two lattice directions, then due to Ryser’s theorem, by checking whether a
known sub-matrix is contained in a binary matrix or not, we can say whether it is unique or
not. On the other hand, it is known that one can not check uniqueness with the same procedure
if there are more than two directions.

Consistency Uniqueness | Reconstruction
q=2,n=2 PTA PTA PTA
q>3 NP Complete | NP Complete NP Hard
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2. Two Projections

As we learned, the consistency problem deals with the problem, given a projection function, P,
whether we can find a discrete set I’ which satisfies P. The solution depends on the number of
direction vectors and the dimension of our space. Here we are going to explain and illustrate
the results given in [19].

In this section, we restrict the problem to two dimensional space and two-direction vectors,
i.e., the projection function gives the values of the lines in two directions, namely, in x-axis
direction and in y-axis direction. In this case, we can model the problem by linear algebra. So,
we are actually trying to find a binary m x n matrix F', which corresponds to our discrete set,
whenever a projection function and two vectors R and .S representing the value of row sums
and column sums, are given. The 1’s in the binary matrix denote the existence of a tissue in
that entry and 0’s denote nonexistence.

But the given projection function should satisfy some conditions in order to be meaningful;
this property is called compatibility:

(R, S): pair of vectors is compatible if

1. Re Ny, S eNj.

221, <n for1<i<m, s; <m for 1<j5<n.

3.3 i = Z;L:1 Sj-

These conditions are actually straightforward to deduce. Since the matrix F' is binary, row
and column sums should be natural numbers as a result of first condition. The second condition
implies that any row of F' cannot exceed n since there are n columns; similar bound is requested
for column sums. The third condition is also trivial because it does not matter how one add
the numbers in the matrix.

Let (R,S) be given compatible vectors. Using R = (r1,...,7r,) we define the modified
column sum S = (3, ..., $,) as follows:

Let A be the m x n matrix whose i-th row consists of ; 1’s, followed by n — r; 0’s for each
1 <i<m. Then S is the column sums of A.

Using S = (s1,...,s,) we define S = (s, ..., s,) as follows: S” is nothing but the permutation
of S such that

Example 2. Let (R, S) be given as R = (2,3,4,1) and S = (4,2,1,2,1); then,

— ok WD

— == =
O = = =W
O = O N
o — OO =
o OO o O

This is A since in each row all 1’s are shifted to the very left of the matrix. Hence,

S =(4,3,2,1,0) and 8" = (4,2,2,1,1).

By U(R, S) we denote the class of binary matrices whose vector of row sums is equal to R
and whose vector of column sums is equal to S.

Now, we can state the following theorem that gives a solution for the consistency problem.
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Theorem 1. Let R = (ry,...,7,) and S = (s1,...,8,) be a pair of compatible vectors. The
class (R, S) is non-empty if and only if

ZSQEZEJ-, for2 <1 <n. (6)
=1 =1

Example 3. Using (R, S), given in the previous example, we see that
St 35,

st + )

St + 8y + 4

/ / / /

S5 + S4,
S5 + S4 + S3,
S5 + S4 + S3 + So.

VvV IV IV IV

Hence, by theorem 1, (R, S) is non-empty.

The advantage of this theorem is that it solves the consistency problem. Now, we give an
algorithm solving the reconstruction problem which also proves the sufficiency of theorem 1.
This means that we can find a matrix which satisfies (R, S) if the projection vectors, R and
S, satisfy the conditions above. Our algorithm works as follows:

Algorithm 1.

Input : a compatible pair of wvectors (R,S) satisfying (6);
Step 1 : construct S' from S by permutation T;
Step 2 : let B=A and k=n;
Step 3 : while (k>1),
{

while (s, > Zbi’“)’

i=1

{

let jo =mazi<i<m{j <k | bij=1, bij1="-+=by =0}
let row 1y be where such a j, was found;

set bijo =0 and by, =1 (i.e., shift the 1 to the right)

b

reduce k by 1

%

Step 4 : construct the matriz A from B by permutation m !

of the columns;

Output : matriz A.

We note that the complexity of this algorithm is O(n(m +logn)) [19]. Furthermore, it does
not give all the solutions of the problem, instead it gives only one solution which satisfies (6).
Another remark is that, the determination of the precise number of matrices in Y(R, S) is an
open problem, for which only lower bounds are found [20].

In addition to this theorem, there is an alternative solution approach for the consistency
problem. We should give a definition first:
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Definition 1. For all index sets I C {1,...,m} and J C {1,...,n} , let

HLT) =TI T+> = s

il jed

In fact, t(I,J) = oo(A[l,J]) + o1(A[I,J]), where oo(A[l,J]) is the number of 0’s in the
augmented matrix A[l, J] and o1(A[I,J]) denotes the number of 1’s in the matrix (A[I,J])
if such a matrix exists. Using this function, Ford and Fulkerson gave another necessary and
sufficient condition for the consistency problem:

Theorem 2. Let R = (ry,...,ry) and S = (s1,...,8,) be a pair of compatible vectors. The
class (R, S) is non-empty if and only if

t(I,J) >0, for all I C{l,...,m} and J C{1,...,n}.

The difference between these theorems is that the first one can be checked in a polynomial
time, whereas the second one can be computed in an exponential time algorithm. Because it
is enough to consider n — 1 inequalities in the first theorem, whereas in the other one 2"
inequalities should be checked. The second theorem is not only an alternative solution of the
existence problem, but with the help of the function defined in the theorem, we can also solve
the existence problem of a restricted class of $(R,S), which will be introduced in the next
definition.

Now, we will think about what can be done if we have further information about the class
(R, S). With further information we mean the case of not only knowing the row and column
sums, but also some elements of the matrix are prescribed to be 0 or 1. Now, let us consider
the general problem.

Definition 2. Let P and () be binary matrices of size m x n. We say that Q covers P if
pij < qij fori=1,...,m, j=1,...,n. We denote this relation as P < Q). We define

UP(R,S):={A | P<A<QAcU(RS)}
Clearly, U%(R,S) = U(R,S) if P = (0)yxn =: 0 and Q = (1)puxn. By suitable matrices we

are able to prescribe 0 or 1 to any position. Now, without loss of generality, we can restrict
ourselves to the classes U9(R, S) =: U (R, S).

Theorem 3. Let R = (ry,...,ry) and S = (s1,...,8,) be a pair of compatible vectors. The
class U9 (R, S) is nonempty if and only if

ZZqij > max Zri—Zsj,Zsj—Zri\fg {1,...,m}, JC{1,...,n}
iel jeJ LJ iel jeJ jeJ igl
forall I C{1,...,m} and J C{1,...,n}.

As we can see easily, this theorem is the prescribed version of theorem 2. Hence, this theorem
solves the consistency problem for the class U?(R, S).
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Definition 3. Let A € U9(R,S). A switching chain is a finite sequence (iy,j1), (i1, j2),
(i2, j2), (i2,73)s- -, (ig, Jk), (ix, J1) of free positions of the matriz A such that

Qiyj1 = Qiggp = " 7" = Qiggp, =
=1—aij, =1—ai, = =1—a_; =
=1- iy

(k> 2). The corresponding switching (operation) is defined as changing the 0’s and the 1’s at
all positions in the switching chain.

Theorem 4. A binary matrixz with prescribed values is nonunique if and only if it has a
switching chain.

Now, we will give another condition for uniqueness with the help of the first algorithm.
Instead of the inequality in theorem 1, we will examine the situation of equality. Suppose

A e U(R,S) and
Zs}zzgj for 1 <l <n.
=l j=l

In this case it is obvious that S’ = S. Hence, we do not have to change anything in the third
step of Algorithm 1. Therefore, S’ has no switching component since a matrix in the form of A
has all of its 1’s in the leftmost position of it. Then, what we get at the end of the algorithm
from the inverse of the permutation 7 cannot have a switching component. Hence, it is unique.
So, we have showed that the above equality implies uniqueness. We also have shown that, a
matrix in the form of A is a unique matrix.

We will have one more observation for the end of the uniqueness discussion.

Lemma 5. If A is a unique binary matriz, then
Qi = 1 <~ Sj > |{]€ ’ Tk 27"1}|

By the help of this lemma, we will give our last condition for uniqueness of binary matrices.
However, we should first define another concept of ’additivity’.

Definition 4. A = (a;;) is additive if there are vectors X = (xy,...,2,) € R™ and Y =
Y1y -+ Yn) € R™ such that, fori=1,... mand j=1,...,n,

aij:1<:>$i+yj > 0.
The following theorem gives our last condition for binary matrices being unique.
Theorem 6. A binary matrix is unique if and only if it is additive.

If a binary matrix is unique, taking y; = s; and ; = [{k | 7 > r;}| implies that it
is additive by the previous lemma. Also, since the sum of any two real numbers cannot be
negative and at the same time non-negative, no binary matrix can have a switching component
if it is additive. This yields the above theorem.

Summarizing what we did up to here in this section of uniqueness, gives us the following
theorem.
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Theorem 7. Let A € U(R,S). The following conditions are equivalent:

(1) A is unique with respect to
R and S,

(2) A has no switching component;

(3) ZSQ:Z‘%’ for 2</{<n;
=t j=t
(4) A is additive.

Now, for more detailed observations, we will classify the elements of a binary matrix into three
sets.

Definition 5. Let (R, S) be a nonempty class. The position (i,7) is variant if there exist
matrices A, B € (R, S) such that a;; = 1 — b;;. A position (i,j) is an tnvariant 0 or an
invariant 1 if a;; =0 or a;; = 1 for all A € (R, S), respectively.

Also, we will use non-increasing permutations of the row and column sums, without loss of
generality.

Definition 6. A class W(R',S") is called normalized if the elements of the vectors R' =

(ry...,r') and S" = (si',...,s,)) are ordered as nonincreasing. In a normalized class, we
define the (m+1) x (n+1) structure matriz T = (ty;) by

tw = min{t(l,J) | |I|=k, |J|=1}=

= ]{Z'Z—FZT’Z'/—ZSJ'/

i>k j<l

forallk=0,1,....,m andl =0,1,...,n.

By theorem 2, we see that ${'(R’,S’) is non-empty if and only if 7" has no non-negative
elements.

Now, we state two lemmas by which we will show that invariant sets are unions of rectangles.

Lemma 8. Let W(R',S") be a normalized class.

(i) If there is a matriz A in the class W' (R',S") such that a;; =0 and
aijy =1 for some 1 <i<m and1<j<j <n, then both (i,j)
and (i,7') are variant positions of a switching component in A.

(ii) If there is a matriz A in the class W (R',S") such that a;; = 0 and
ap; =1 for some 1 <i<i' <m and1<j<n, then both (i,j)

and (i',j) are variant positions of a switching component in A.

What this lemma says is that, invariant 1’s come before variants and variants come before
invariant 0’s from left to right and from top to down.
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Lemma 9. Let W(R',S") be a normalized class, let iy and iy be two rows which contain
variant positions such that 1 < iy < iy < m and let [j1,j1'] and [ja, 52'] be the corresponding
integer ranges of the (consecutive) variant positions. Then, either

J1> g2
or
both ji = ja and ji' = jo'.
Joining these two lemmas and some more observations, we conclude the following theorem.

Theorem 10. The variant set of a normalized class &' = W(R',S") # 0, can always be
written as
V(W) =Ui_ I, x J,

(p=0 if there are no variant elements), where
Iy =Aig, ... i)'}, 1<ip<iy <ig<ip <. <ip,<iy <m,

Jq:{jq>"'ajq/}> 1§jp<jp,<jpfl<]'p71,<"‘<]'1 <j1/§n.

By this theorem, we can deduce that invariant sets are unions of discrete rectangles between
invariant 1’s and invariant 0’s. Then, we can also conclude that invariant 1’s and invariant 0’s
are unions of discrete rectangles as well.

Here, we will define another concept called compatibility, which is close to additivity and
will be useful to decide whether a position is variant or not.

Definition 7. Let A = (a;;) be an mxn binary matriz. A pair of vectors X = (xq,...,2,) €
R™ and Y = (y1,...,yn) € R™ is said to be compatible with A if for i = 1,....,m and
j=1...,n

> Oa Zf Qjj = 17
:Ci+yj{ <0, if a;; = 0.

Theorem 11. Let R = (r1,...,7m) and S = (s1,...,5,) be vectors of nonnegative integers
such that there is a binary matriv A € (R, S). Then, fori=1,..., m and j =1,...,n, (i,7)
is not a variant position if and only if there exists a pair of vectors X = (xy,...,z,) and

Y = (y1,...,n) which is compatible with A such that
x; + yj 7§ 0.

Therefore, if we have a pair of vectors which are compatible with the matrix, it is easy
to find the structure of the class (R, S"). Accordingly, by reversing the permutations of the
column and row sums, we can obtain the structure of the class (R, S).

To finalize this section, we give the algorithm to reconstruct the unique binary matrix in
(R, S) from its row and column sums. Since we know that it is unique, just determining the
rows with maximum 1’s and putting enough 1’s to the columns with highest sums is sufficient.
As it is seen, the complexity of this algorithm is much better than the Algorithm 1 as it is
expected.
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Algorithm 2.

Input :  a compatible pair of vectors, (R,S), satisfying

Zs'j = ZEj, for 2<{<mn;

j=¢ j=t
Step 1. A=0 (zero matriz);
Step 2. find iy, i9,...,%, such that

Tiy 2 Tig 2 000 2 Tipys
Step 3. for 7=1 to n,

for k=1 to sj,
a5 =1

Output : matriz A.

Example 4. Let R = (4,3,2,0) and S = (2,3,3,1) be given. There is a unique matrix in the
class U(R, S) because S = S” hence

n n
Zs;:ZEj, for 2<1<n.
=1 =1

The matrix is

4 3 2 0
2/1 1 0 O
3[1 1 1 0
311 1 1 0
1\1 0 0 O

3. More Projections in Higher Dimensions

In this section, we will first give the definition of the terms used to develop the problem for
more than two projections [7|. These definitions will often be generalizations of the ones given
in Section 2. We will explain their correspondence where it is necessary. Here, instead of lattice
lines our projections will be taken from a set H = {hq,..., h,}, called discrete Radon base. It
consists of linear subspaces of R” with dimensions 1 to n — 1. These subspaces should satisfy
the following properties:

1. Their intersection should only consist of the origin:

() 7 = {0}.
k=1
2. Each one of them does not contain any other:
3. Their intersection with the integers should contain at least two points:

|h; NZ"] > 2.
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The family of translates of hy will be denoted by Hj. These translates have nonempty
intersections with Z". A translate h is

h=hy+a where acR"

such that hy +a N Z" is nonempty.
Finally, we can define the family H as

H - O Hk.
k=1

We will define here the projection function by a transformation. The discrete Radon transform
is the mapping vg : H — N, such that for all h € 'H we have

vs(h) = |S N .

Consider a lattice set S and a discrete Radon base H. We say that S is a set of uniqueness
with respect to S, or S is H-unique if vg = vy for some T' C Z" then S =T.
Suppose that there exists a mapping g : H — R such that for all x € Z" we have

r €S Y v(h)g(h)>0. (7)

Then, S is additive with respect to H, or S is H-additive.
Now, let us see that the definition of additivity in two dimensions (R?) and in more
dimensions (R") are the same. First, let us recall the first definition.

Recall. Anm x n binary matriz A = (a;;) is additive if there are vectors X = (z1,...,xy) €
R™ and Y = (y1,...,Yyn) € R" such that fori=1,...,m and j =1,...,n, a;; =1 if and only
Zf T; + Y; > 0.

In the first definition, we mention matrices, while in the second we mention lattice sets.
However, we can consider the 1’s of the matrix as our lattice set. Hence, reconstructing a matrix
A is in fact nothing but reconstructing the lattice set S, which corresponds to the 1’s of the
matrix A, in the R? plane.

Now, assume that an m x n binary matrix A = (a;;) is additive. Therefore, there are vectors
X =(z1,...,2p) ER"and Y = (y1,...,y,) € R" such that, fori=1,...,mand j =1,...,n,
a;; = 1 if and only if z; + y; > 0. Also, since A exists, the corresponding lattice set S C Z2,
which consists of the 1’s of A, exists as well. Now, we should find a function g : $§ — R such
that for all x € Z™ we have

reSe > v(h)g(h) >0,

where H has two elements h; and hs, namely h; being the x-axis and hs being the y-axis. These
are our two directions, and we refer to = {hy +a : hy +aNZ* # ¢} for k = 1,2. We will
construct the function ¢ in the following way.

For the vectors X = (z1,...,2,,) and Y = (y1,...,Yn), let x; = g(hy;) and y; = g(hy;) for
i=1,...,mand j =1,...,n, where hy; = hy + a; and hyj; = hy + b; for some a;,b; € R?* and
i=1,...,m,j=1,...,n. For other h € H let g(h) = 0. Since there are only two directions,
there are only two lattice lines that pass through any point in Z2. Therefore, for the point
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a;j € S only g(h1;) and g(hg;) pass through a;;. Hence, only vy, (h1;) = 1 = va,;(ho;). For any
other lattice line, say h', v,,;(h’) = 0. Hence,

Z Va,; (h)g(h) = g(h1s) + g(hoj) = zi +y; > 0,

heH

since we know that x; +y; > 0.

Also, by a similar argumentation, we can also construct the vectors X and Y from the
function g : H — R.

Hence, the two definitions of additivity are in fact the same if we are working in Z? and
with two lattice directions which are the coordinate axes.

Note that additivity is a stronger concept than uniqueness. In other words, if a set is additive
then it is unique, but the converse is not true, which will be explained later on.

In the remainder of this section, we will make use of the mappings of Z" either into the set
{0,1} or to the interval [0, 1]. Namely,

E:7" — {01},
F:7"—0,1],

where for a mapping f in the union of £ and F', f must take positive values for a finite number
of x’s. Hence, the set

{xeZ": f(x) >0}

is finite. For a given S and H, we define
Esy={f€eE: f(hNZ")=vs(h) VYhe H},

FS,H:{fGF:f(hﬂZ”) Us(h) VhGH}

First of all, let us observe that a discrete set S is H-unique if and only if Esy = {xs},
where Yg is the characteristic function of S. If S is not H-unique, then there exists a discrete
set T' distinct from S with the same discrete radon transform. Therefore, Egpy will contain
the characteristic functions of both 7" and S. Conversely, if Egy does not consist of the
characteristic function of S only, there exists a set adjoint from S with the same discrete
transform. Hence, S is not H-unique.

Consider Fig. 5 in which we assume that (0,0,0) and (1,1,1) define the set S and (0,0, 1)
and (1, 1,0) make up the set 7. Observe that when H consists of the three planes perpendicular
to the three axis, S and T" will have the same projections with respect to the elements of H.
This substructure, which we want to avoid, is called a bad H-rectangle.

To generalize the notion of bad rectangles, let K-bad H-configuration for S, K > 2, be a
pair of lists x1,...,zx of K distinct points in S and yy,...,yx of K distinct points in Z™\S
such that

K K
> v (h) = v, (h) VheH
k=1 k=1
A weakly K-bad H-configuration is defined in the same way except for the condition that
the elements would be distinct, hence they can appear with multiplicity in the sum above. A
bad H-configuration for S is any K-bad H-configuration for S and the same argument holds
for a weakly bad H-configuration. We are then faced with the connections of additivity and
uniqueness. It is known that additivity implies uniqueness but the converse is valid only when
m = 2.
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Fig. 5. A bad H-rectangle.

Theorem 12. The following conditions are equivalent:
1. S is H-unique.

2. S has no bad H-configuration.

3. ES,H = {Xs}

Theorem 13. The following conditions are equivalent:
1. S is H-additive.
2. S has no weakly bad H-configuration.

3. Fsn = {xs}-

The following theorem states that uniqueness and additivity are equivalent when m = 2.
This property is validated when m is increased.

Theorem 14. Suppose H = {hy, ha} is a discrete Radon base and S is a nonempty finite
subset of Z™. Then, the following conditions are equivalent:

1. S is H-unique.

2. S is H-additive.

3. Fs = {xs}

4. S has no weakly bad H -configuration.

5. S has no bad H-configuration.

6. S has no bad H-rectangle.

This theorem is extremely important in reducing the time complexity. As it states that,
when m = 2, instead of checking all subsets of S to see if they are bad H-configurations for
S, one only needs to look at bad H-rectangles. This is not valid when m is greater than two,
which is illustrated with an example by Fishburn et al. [7]. This instance lies in 3 dimensions,
H consists of the three planes perpendicular to an axis of R and the set S is

S = {111,222, 333,113, 121,122,123, 131, 133, 221, 223, 231, 233, 323}

Then, it is pointed out that S has no bad H-rectangle but it is not H-unique.

Furthermore, Fishburn and Shepp have shown that for the case of a plane when H consists
of three lines through the origin, one can construct a set of 11 points which are unique but not
additive.
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4. Applications

Although the birth of Discrete Tomography is not long a time ago, it has been used in many
applications. Mostly, DT is applied for electron microscopy-techniques, for quality control of
industrial products in industrial imaging, for reconstruction of the shape of heart chambers from
orthogonal biplane cardiac angiograms in medical imaging and for quality control in VLSI chip
design. These applications promise to result in significant improvements in their fields.

The study of Discrete Tomography with medical applications is emerging as an important
new research area. Significant applications have been found in medical research, for instance in
radiosurgical treatment planning, virtual endoscopy, the reconstruction of the shape of hearth
chambers from orthogonal biplane cardiac angiograms [17, 26, 27]. To recover cross-section
images from a number of projections, the object is illuminated by X-ray beams from a number
of directions. The transmitted rays convey information about the density distribution inside the
body. The problem is reconstructing the best approximation of the real cross-section. In order to
model the 3 dimensional shape of the left or right heart chambers from the density distributions
of orthogonal biplane ventriculograms, Onnasch and Prause 28] introduce a reconstruction
method. In 28], techniques of image acquisition and restoration are also presented.

One can make use of coding theory to represent the problem under consideration applied
to Very Large Scale Integration (VLSI) systems chip design (Weber [35]). If we represent any
existing atom cluster inside of a grid containing our discrete points to be reconstructed and
interpret it as a word over the alphabet in the {0,1} field, linear coding theory may help us
in error detection and correction in the reconstruction process [21]. To this end, one looks for
Hamming codes or asks for the extent of cyclicity. To detect roughness in layer structures
on chips wavelets can be used [15, 35|. There are also other approaches coming from optimal
experimental design. Bertram et al. [3] use methods from experimental design, which were
introduced by Gaffke and Heiligers [8, 9], in the optimization of crystal structures (cf. [35]).

In industrial imaging, to obtain shape and dimensional information of industrial parts, CT
has been used as an important and powerful tool [6], for instance in reconstructing radioactive
materials. Pointing out that most of the objects are made up of one material, one can use DT
by representing the related material with 1 and air with 0. In [4], the authors point out how
DT may act as a valuable application in industrial imaging and manufacturing. This may be
applied to a wide range of materials [32].

The revival of interest in DT problems in the past decade was motivated by new develop-
ments in electron-microscopy |24, 34]. Being able to scan objects at the atomic scale, is not
just important for research purposes. Quoting from [30] let us explain the usage of DT in this
field. It has now become possible to count the number of atoms lying on each line in a crystal
lattice, measuring along the lattices principal directions. When attempting to reconstruct the
crystal structure from these partial data, continuous tomographic techniques cannot be used,
because the unknown image is binary instead of real-valued: A lattice cell either contains one
or no atom, but it certainly will not contain half an atom. Introducing this extra constraint
transforms the problem from an analytic problem into a combinatorial problem. Because of
the additional constraints on the unknown image, one may hope that it is possible to reduce
the number of measurement directions that is necessary for reconstruction. In the particular
application of electron-microscopy, this is even a necessity, since measuring the crystal lattice
destroys some of its structure. The new theory helps to improve existing electron-microscopy
techniques.
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Conclusion

Discrete Tomography is a promising field of mathematics which is developing rapidly. As
we have seen in the previous section, it has various applications such as in medicine, brain
tomography, DNA-microarray chips [12]. Nevertheless, its use requires appropriate modeling
of the problem and efficient implementation of the algorithms. Hence, further research in this
field suggests significant improvements.

In this paper, we have reflected the main problems that Discrete Tomography is concerned
with and their state-of-the-art. The existence problem in two projections and two dimensions
is closer explained and algorithms for solving it are given, as we mentioned in Sections 2 and 3.
On the other hand, if the number of projections increases, the problem gets more complex. The
theory needed and the concepts of additivity and uniqueness are given in Section 4.

Finally, let us mention some open problems. It has been pointed out by Fishburn and
Shepp [7] that for a discrete Radon base with at least two elements it is difficult to construct
sets S which are unique but not additive. It stimulated the idea that the number of non-similar
sets that are unique but not additive tends to zero as the cardinality of S increases.

Another open problem considers a grid with a known number of objects of the same size
to be put on each row or column. The aim is to cover the whole area with the objects. The
problem is solvable in polynomial time if there is only one object which was considered in detail
in Section 3. The computational complexity of the two object case is open. For three or more
objects the problem is NP-complete. It is also known that it is NP hard for six or more objects.

After examining the theory of the problem, our future work will concentrate on applications
of Discrete Tomography, especially on medical applications. In addition, by developing practical
algorithms we will work on improving and extending the existing applications further.
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